Isopropyl Alcohol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-272.8kJ/molEqkBuckley and Herington, 1965ALS
Δfgas-271.1kJ/molN/AChao and Rossini, 1965Value computed using ΔfHliquid° value of -317.0±0.3 kj/mol from Chao and Rossini, 1965 and ΔvapH° value of 45.9 kj/mol from Snelson and Skinner, 1961.; DRB
Δfgas-272.3 ± 0.92kJ/molCcbSnelson and Skinner, 1961ALS
Δfgas-272.8kJ/molN/AParks, Mosley, et al., 1950Value computed using ΔfHliquid° value of -318.7 kj/mol from Parks, Mosley, et al., 1950 and ΔvapH° value of 45.9 kj/mol from Snelson and Skinner, 1961.; DRB

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
35.3250.Thermodynamics Research Center, 1997p=1 bar. Discrepancies with other statistically calculated values [ Green J.H.S., 1963] and [51KOB] increase at high temperatures up to 5 and 9 J/mol*K, respectively, in Cp(T). There is a good agreement with results [ Chao J., 1986]. Please also see Chao J., 1986, 2.; GT
46.04100.
57.98150.
68.28200.
83.72273.15
89.32 ± 0.15298.15
89.74300.
112.15400.
131.96500.
148.30600.
161.75700.
173.04800.
182.67900.
190.971000.
198.161100.
204.411200.
209.851300.
214.601400.
218.751500.
227.01750.
233.12000.
237.62250.
241.02500.
243.72750.
245.73000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
103.06358.72Stromsoe E., 1970Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.59 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Other experimental values of Cp [ Parks G.S., 1940] (118.83 at 427.9 K, 127.61 at 457.7 K, and 135.56 J/mol*K at 480.3 K) are believed to be less reliable. Please also see Hales J.L., 1963, Berman N.S., 1964.; GT
105.7 ± 1.6365.75
105.77371.15
106.29373.15
108.1 ± 1.6378.85
109.2 ± 1.6384.95
110.08391.15
110.8 ± 1.6393.65
111.65398.15
113.0 ± 1.6405.35
114.35411.15
117.02423.15
118.70431.15
122.10448.15
122.80451.15
121.7 ± 1.6453.15
124.2 ± 1.6466.75
127.01473.15
126.7 ± 1.6480.55
130.3 ± 1.6499.75
132.9 ± 1.6513.95
137.5 ± 1.6539.05
142.6 ± 1.6567.05
148.1 ± 1.6597.25

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-317.0 ± 0.3kJ/molCcbChao and Rossini, 1965see Rossini, 1934; ALS
Δfliquid-318.2 ± 0.71kJ/molCcbSnelson and Skinner, 1961ALS
Δfliquid-318.7kJ/molCcbParks, Mosley, et al., 1950see Parks and Moore, 1939; ALS
Quantity Value Units Method Reference Comment
Δcliquid-2006.9 ± 0.2kJ/molCcbChao and Rossini, 1965see Rossini, 1934; Corresponding Δfliquid = -316.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-2005.8 ± 0.4kJ/molCcbSnelson and Skinner, 1961Corresponding Δfliquid = -318.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-2005.1kJ/molCcbParks, Mosley, et al., 1950see Parks and Moore, 1939; Corresponding Δfliquid = -318.7 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid180.58J/mol*KN/AAndon, Counsell, et al., 1963DH
liquid179.9J/mol*KN/AKelley, 1929DH
liquid192.9J/mol*KN/AParks and Kelley, 1928Extrapolation below 70 K, 43.56 J/mol*K.; DH
liquid190.8J/mol*KN/AParks and Kelley, 1925Extrapolation below 90 K, 53.22 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
161.2298.15Roux, Roberts, et al., 1980DH
154.75298.15Brown and Ziegler, 1979T = 185 to 304 K. Results as equation only.; DH
165.6311.6Griigo'ev, Yanin, et al., 1979T = 311 to 453 K. p = 0.98 bar.; DH
154.43298.15Andon, Counsell, et al., 1963T = 10 to 330 K.; DH
162.8298.2Katayama, 1962T = 10 to 60°C.; DH
180.3324.Swietoslawski and Zielenkiewicz, 1958Mean value 21 to 81°C.; DH
154.0298.Ginnings and Corruccini, 1948T = 0 to 200°C.; DH
159.99298.04Zhdanov, 1945T = 7 to 41°C. Value is unsmoothed experimental datum.; DH
172.4303.2Phillip, 1939DH
163.6298.Trew and Watkins, 1933DH
149.75292.84Kelley, 1929T = 16 to 298 K. Value is unsmoothed experimental datum.; DH
180.3298.1Parks, Kelley, et al., 1929Extrapolation below 90 K, 42.68 J/mol*K.; DH
151.0293.1Parks and Kelley, 1928T = 71 to 293 K. Value is unsmoothed experimental datum.; DH
152.3293.1Parks and Kelley, 1925T = 71 to 293 K. Value is unsmoothed experimental datum.; DH
169.9303.Willams and Daniels, 1924T = 303 to 323 K. Equation only.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil355.5 ± 0.4KAVGN/AAverage of 102 out of 118 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus185.75KN/AOgimachi, Corcoran, et al., 1961Uncertainty assigned by TRC = 0.5 K; TRC
Tfus185.35KN/AAnonymous, 1958TRC
Quantity Value Units Method Reference Comment
Ttriple184.9 ± 0.6KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Tc509. ± 2.KAVGN/AAverage of 19 out of 20 values; Individual data points
Quantity Value Units Method Reference Comment
Pc49. ± 5.barAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.222l/molN/AGude and Teja, 1995 
Vc0.223l/molN/AAmbrose, Counsell, et al., 1978Uncertainty assigned by TRC = 0.003 l/mol; PVT compatible with values chosen.; TRC
Quantity Value Units Method Reference Comment
ρc4.51 ± 0.02mol/lN/AGude and Teja, 1995 
ρc4.54mol/lN/ATeja, Lee, et al., 1989TRC
ρc4.538mol/lN/AAmbrose and Townsend, 1963TRC
Quantity Value Units Method Reference Comment
Δvap45. ± 3.kJ/molAVGN/AAverage of 11 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
39.85355.4N/AMajer and Svoboda, 1985 
43.2337.N/ASegura, Galindo, et al., 2002Based on data from 322. to 355. K.; AC
39.8355.N/AWormald and Vine, 2000AC
29.7423.N/AWormald and Vine, 2000AC
23.7453.N/AWormald and Vine, 2000AC
16.5483.N/AWormald and Vine, 2000AC
10.5503.N/AWormald and Vine, 2000AC
44.8315.N/AAucejo, Gonzalez-Alfaro, et al., 1995Based on data from 300. to 355. K.; AC
50.3213.AStephenson and Malanowski, 1987Based on data from 195. to 228. K.; AC
42.0355.AStephenson and Malanowski, 1987Based on data from 347. to 368. K.; AC
41.3365.AStephenson and Malanowski, 1987Based on data from 350. to 383. K.; AC
39.2394.AStephenson and Malanowski, 1987Based on data from 379. to 461. K.; AC
35.3468.AStephenson and Malanowski, 1987Based on data from 453. to 508. K.; AC
43.1340.A,EBStephenson and Malanowski, 1987Based on data from 325. to 362. K. See also Ambrose, Counsell, et al., 1970.; AC
45.7288.N/AWilhoit and Zwolinski, 1973Based on data from 273. to 374. K.; AC
45.5303.N/AVan Ness, Soczek, et al., 1967Based on data from 288. to 348. K.; AC
42.7 ± 0.1330.CBerman, Larkam, et al., 1964AC
41.0 ± 0.1346.CBerman, Larkam, et al., 1964AC
39.8 ± 0.1355.CBerman, Larkam, et al., 1964AC
38.9 ± 0.1363.CBerman, Larkam, et al., 1964AC
39.1410.N/AAmbrose and Townsend, 1963, 2Based on data from 395. to 508. K.; AC
42.8344.EBBiddiscombe, Collerson, et al., 1963Based on data from 329. to 363. K.; AC
43.2324.CHales, Cox, et al., 1963AC
41.7339.CHales, Cox, et al., 1963AC
39.8355.CHales, Cox, et al., 1963AC
43.40 ± 0.08324.11VWilliamson and Harrison, 1957ALS
41.1369.N/AFoz Gazulla, Morcilio, et al., 1955Based on data from 354. to 420. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 380.
A (kJ/mol) 53.38
α -0.708
β 0.6538
Tc (K) 508.3
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
395.1 to 508.244.577951221.423-87.474Ambrose and Townsend, 1963, 3Coefficents calculated by NIST from author's data.
329.92 to 362.414.86101357.427-75.814Biddiscombe, Collerson, et al., 1963, 2Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
5.410185.20Andon, Counsell, et al., 1963DH
5.372184.67Kelley, 1929DH
5.41185.2Domalski and Hearing, 1996AC
5.301184.6Parks and Kelley, 1928DH
5.297184.6Parks and Kelley, 1925DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
29.21185.20Andon, Counsell, et al., 1963DH
29.09184.67Kelley, 1929DH
28.72184.6Parks and Kelley, 1928DH
28.7184.6Parks and Kelley, 1925DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C3H7O- + Hydrogen cation = Isopropyl Alcohol

By formula: C3H7O- + H+ = C3H8O

Quantity Value Units Method Reference Comment
Δr1569. ± 4.2kJ/molD-EARamond, Davico, et al., 2000gas phase; B
Δr1571. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1576. ± 4.2kJ/molCIDTDeTuri and Ervin, 1999gas phase; B
Δr1572. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Quantity Value Units Method Reference Comment
Δr1542. ± 4.6kJ/molH-TSRamond, Davico, et al., 2000gas phase; B
Δr1543. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1544. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B

Chlorine anion + Isopropyl Alcohol = (Chlorine anion • Isopropyl Alcohol)

By formula: Cl- + C3H8O = (Cl- • C3H8O)

Quantity Value Units Method Reference Comment
Δr81.17 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr76.6 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Δr73.6 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Δr97.1J/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(cl-)t-C4H9OH, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M
Quantity Value Units Method Reference Comment
Δr47.36kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr45.61kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B
Δr44.8 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M

C2H7O+ + Isopropyl Alcohol = (C2H7O+ • Isopropyl Alcohol)

By formula: C2H7O+ + C3H8O = (C2H7O+ • C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr133.kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr124.J/mol*KN/ABomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr96.7kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M

C3H9O+ + Isopropyl Alcohol = (C3H9O+ • Isopropyl Alcohol)

By formula: C3H9O+ + C3H8O = (C3H9O+ • C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr133.kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr124.J/mol*KN/ABomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr96.7kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M

C4H11O+ + Isopropyl Alcohol = (C4H11O+ • Isopropyl Alcohol)

By formula: C4H11O+ + C3H8O = (C4H11O+ • C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr128.kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr118.J/mol*KN/ABomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr92.5kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M

C4H11O+ + Isopropyl Alcohol = (C4H11O+ • Isopropyl Alcohol)

By formula: C4H11O+ + C3H8O = (C4H11O+ • C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr134.kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr115.J/mol*KN/ABomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr99.6kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M

CN- + Isopropyl Alcohol = (CN- • Isopropyl Alcohol)

By formula: CN- + C3H8O = (CN- • C3H8O)

Quantity Value Units Method Reference Comment
Δr69.9 ± 3.3kJ/molTDAsLarson, Szulejko, et al., 1988gas phase; B,M
Δr76. ± 15.kJ/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSLarson, Szulejko, et al., 1988gas phase; M
Δr104.J/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr37.7 ± 0.84kJ/molTDAsLarson, Szulejko, et al., 1988gas phase; B
Δr44.8 ± 9.6kJ/molIMRELarson and McMahon, 1987gas phase; B,M

Fluorine anion + Isopropyl Alcohol = (Fluorine anion • Isopropyl Alcohol)

By formula: F- + C3H8O = (F- • C3H8O)

Quantity Value Units Method Reference Comment
Δr140.2 ± 2.9kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr135. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M
Δr139. ± 9.2kJ/molCIDTDeTuri and Ervin, 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr107.J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr107.5kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr103. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M

C3H9Si+ + Isopropyl Alcohol = (C3H9Si+ • Isopropyl Alcohol)

By formula: C3H9Si+ + C3H8O = (C3H9Si+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr184.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr129.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
123.468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

(Chlorine anion • 2Isopropyl Alcohol) + Isopropyl Alcohol = (Chlorine anion • 3Isopropyl Alcohol)

By formula: (Cl- • 2C3H8O) + C3H8O = (Cl- • 3C3H8O)

Quantity Value Units Method Reference Comment
Δr62.3 ± 2.1kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr52.3 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr109.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr22.2kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr20. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • Isopropyl Alcohol) + Isopropyl Alcohol = (Chlorine anion • 2Isopropyl Alcohol)

By formula: (Cl- • C3H8O) + C3H8O = (Cl- • 2C3H8O)

Quantity Value Units Method Reference Comment
Δr69.9 ± 1.3kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr65.3 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr32.1kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr34. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 7Isopropyl Alcohol) + Isopropyl Alcohol = (Chlorine anion • 8Isopropyl Alcohol)

By formula: (Cl- • 7C3H8O) + C3H8O = (Cl- • 8C3H8O)

Quantity Value Units Method Reference Comment
Δr45.6 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B,M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KN/AHiraoka and Mizuse, 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr6.7 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B

Iodide + Isopropyl Alcohol = (Iodide • Isopropyl Alcohol)

By formula: I- + C3H8O = (I- • C3H8O)

Quantity Value Units Method Reference Comment
Δr54.81 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr51.0 ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KPHPMSCaldwell and Kebarle, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr26.5kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr27. ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B

Hydrogen + Acetone = Isopropyl Alcohol

By formula: H2 + C3H6O = C3H8O

Quantity Value Units Method Reference Comment
Δr-68.74 ± 0.42kJ/molCmWiberg, Crocker, et al., 1991liquid phase; ALS
Δr-55.23kJ/molEqkBuckley and Herington, 1965gas phase; ALS
Δr-55.40 ± 0.42kJ/molChydDolliver, Gresham, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -56.1 ± 0.4 kJ/mol; At 355 °K; ALS

Bromine anion + Isopropyl Alcohol = C3H8BrO-

By formula: Br- + C3H8O = C3H8BrO-

Quantity Value Units Method Reference Comment
Δr60.25 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr34.9kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr38. ± 8.4kJ/molIMRETanabe, Morgon, et al., 1996gas phase; Anchored to H2O..Br- of Hiraoka, Mizure, et al., 19882; B

Sodium ion (1+) + Isopropyl Alcohol = (Sodium ion (1+) • Isopropyl Alcohol)

By formula: Na+ + C3H8O = (Na+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr113. ± 4.2kJ/molCIDTArmentrout and Rodgers, 2000RCD
Δr113. ± 4.6kJ/molCIDTRodgers and Armentrout, 1999RCD

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
85.4298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD
0.00.CIDTRodgers and Armentrout, 1999RCD

(Chlorine anion • 3Isopropyl Alcohol) + Isopropyl Alcohol = (Chlorine anion • 4Isopropyl Alcohol)

By formula: (Cl- • 3C3H8O) + C3H8O = (Cl- • 4C3H8O)

Quantity Value Units Method Reference Comment
Δr49.8 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr14. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 4Isopropyl Alcohol) + Isopropyl Alcohol = (Chlorine anion • 5Isopropyl Alcohol)

By formula: (Cl- • 4C3H8O) + C3H8O = (Cl- • 5C3H8O)

Quantity Value Units Method Reference Comment
Δr48.5 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr128.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr10. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 5Isopropyl Alcohol) + Isopropyl Alcohol = (Chlorine anion • 6Isopropyl Alcohol)

By formula: (Cl- • 5C3H8O) + C3H8O = (Cl- • 6C3H8O)

Quantity Value Units Method Reference Comment
Δr47.3 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr8.4 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 6Isopropyl Alcohol) + Isopropyl Alcohol = (Chlorine anion • 7Isopropyl Alcohol)

By formula: (Cl- • 6C3H8O) + C3H8O = (Cl- • 7C3H8O)

Quantity Value Units Method Reference Comment
Δr46.4 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr131.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr7.1 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

MeS anion + Isopropyl Alcohol = (MeS anion • Isopropyl Alcohol)

By formula: CH3S- + C3H8O = (CH3S- • C3H8O)

Quantity Value Units Method Reference Comment
Δr71.55 ± 0.84kJ/molTDAsSieck and Meot-ner, 1989gas phase; B,M
Quantity Value Units Method Reference Comment
Δr96.7J/mol*KPHPMSSieck and Meot-ner, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr42.7 ± 3.3kJ/molTDAsSieck and Meot-ner, 1989gas phase; B

Fluorine anion + 2Isopropyl Alcohol = C6H16FO2-

By formula: F- + 2C3H8O = C6H16FO2-

Quantity Value Units Method Reference Comment
Δr87.03 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr55.48kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

thiophenoxide anion + Isopropyl Alcohol = C9H13OS-

By formula: C6H5S- + C3H8O = C9H13OS-

Quantity Value Units Method Reference Comment
Δr62.76 ± 0.42kJ/molTDAsSieck and Meot-ner, 1989gas phase; B
Quantity Value Units Method Reference Comment
Δr30.5 ± 1.7kJ/molTDAsSieck and Meot-ner, 1989gas phase; B

Fluorine anion + 3Isopropyl Alcohol = C9H24FO3-

By formula: F- + 3C3H8O = C9H24FO3-

Quantity Value Units Method Reference Comment
Δr73.64 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr35.0kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Iodide + 2Isopropyl Alcohol = C6H16IO2-

By formula: I- + 2C3H8O = C6H16IO2-

Quantity Value Units Method Reference Comment
Δr46.0 ± 1.3kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr19.5kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Bromine anion + 2Isopropyl Alcohol = C6H16BrO2-

By formula: Br- + 2C3H8O = C6H16BrO2-

Quantity Value Units Method Reference Comment
Δr51.46 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr22.8kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Iodide + 3Isopropyl Alcohol = C9H24IO3-

By formula: I- + 3C3H8O = C9H24IO3-

Quantity Value Units Method Reference Comment
Δr39.7 ± 2.9kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr14.8kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

1-Propene, 2-methyl- + Isopropyl Alcohol = Propane, 2-methyl-2-(1-methylethoxy)-

By formula: C4H8 + C3H8O = C7H16O

Quantity Value Units Method Reference Comment
Δr-22.9 ± 1.3kJ/molEqkCalderon, Tejero, et al., 1997liquid phase; ALS
Δr-21.7 ± 1.6kJ/molCmSola, Pericas, et al., 1997liquid phase; ALS

Isopropyl Alcohol = Hydrogen + Acetone

By formula: C3H8O = H2 + C3H6O

Quantity Value Units Method Reference Comment
Δr55.23kJ/molEqkBuckley and Herington, 1965gas phase; ALS
Δr56.543kJ/molEqkKolb and Burwell, 1945gas phase; ALS

Fluorine anion + Isopropyl Alcohol = C3H7D8FO-

By formula: F- + C3H8O = C3H7D8FO-

Quantity Value Units Method Reference Comment
Δr102. ± 8.4kJ/molIMREWilkinson, Szulejko, et al., 1992gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B

Magnesium ion (1+) + Isopropyl Alcohol = (Magnesium ion (1+) • Isopropyl Alcohol)

By formula: Mg+ + C3H8O = (Mg+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr270. ± 20.kJ/molICROperti, Tews, et al., 1988gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M

Isopropyl acetate + Water = Acetic acid + Isopropyl Alcohol

By formula: C5H10O2 + H2O = C2H4O2 + C3H8O

Quantity Value Units Method Reference Comment
Δr2.3 ± 0.2kJ/molCmWadso, 1958liquid phase; Heat of Hydrolysis; ALS

Isopropyl Alcohol + Chloral = 2,2,2-trichloro-1-isopropoxyethanol

By formula: C3H8O + C2HCl3O = 2,2,2-trichloro-1-isopropoxyethanol

Quantity Value Units Method Reference Comment
Δr-41.6kJ/molEqkJensen and Pedersen, 1971liquid phase; solvent: Heptane; ALS

Cyclohexanol + Acetone = Cyclohexanone + Isopropyl Alcohol

By formula: C6H12O + C3H6O = C6H10O + C3H8O

Quantity Value Units Method Reference Comment
Δr9.9 ± 1.9kJ/molEqkFedoseenko, Yursha, et al., 1983gas phase; At 503 K; ALS

Isopropyl Alcohol + Ethene, 1,1-dichloro-2,2-difluoro- = C5H8Cl2F2O

By formula: C3H8O + C2Cl2F2 = C5H8Cl2F2O

Quantity Value Units Method Reference Comment
Δr-183. ± 1.kJ/molEqkKennedy, Lacher, et al., 1969gas phase; ALS

Cyclohexanone + Isopropyl Alcohol = Cyclohexanol + Acetone

By formula: C6H10O + C3H8O = C6H12O + C3H6O

Quantity Value Units Method Reference Comment
Δr-9.9 ± 1.9kJ/molEqkKabo, Yursha, et al., 1988gas phase; ALS

Isopropyl Alcohol + Nitric acid = Nitric acid, 1-methylethyl ester + Water

By formula: C3H8O + HNO3 = C3H7NO3 + H2O

Quantity Value Units Method Reference Comment
Δr-23.4kJ/molEqkRubtsov, 1986liquid phase; ALS

Ketene + Isopropyl Alcohol = Isopropyl acetate

By formula: C2H2O + C3H8O = C5H10O2

Quantity Value Units Method Reference Comment
Δr-150.2kJ/molCmRice and Greenberg, 1934liquid phase; ALS

Lithium ion (1+) + Isopropyl Alcohol = (Lithium ion (1+) • Isopropyl Alcohol)

By formula: Li+ + C3H8O = (Li+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr173. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C3H8O+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.17 ± 0.02eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)793.0kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity762.6kJ/molN/AHunter and Lias, 1998HL

Proton affinity at 298K

Proton affinity (kJ/mol) Reference Comment
796. ± 6.Cao and Holmes, 2001MM

Ionization energy determinations

IE (eV) Method Reference Comment
10.15 ± 0.07EIBowen and Maccoll, 1984LBLHLM
10.10 ± 0.02PIPotapov and Sorokin, 1972LLK
10.29 ± 0.02PECocksey, Eland, et al., 1971LLK
10.18PEDewar and Worley, 1969RDSH
10.12 ± 0.03PIRefaey and Chupka, 1968RDSH
10.15 ± 0.05PIWatanabe, 1957RDSH
10.44PEBenoit and Harrison, 1977Vertical value; LLK
10.49 ± 0.03PEPeel and Willett, 1975Vertical value; LLK
10.42PERobin and Kuebler, 1973Vertical value; LLK
10.36PEKatsumata, Iwai, et al., 1973Vertical value; LLK
10.42PEBaker, Betteridge, et al., 1971Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH3+30.2 ± 0.2?EIOlmsted, Street, et al., 1964RDSH
CH3O+12.5?EIFriedman, Long, et al., 1957RDSH
C2H3+14.6?EIFriedman, Long, et al., 1957RDSH
C2H4O+10.27 ± 0.09CH4EIBowen and Maccoll, 1984LBLHLM
C2H4O+10.26CH4EIHolmes, Burgers, et al., 1982LBLHLM
C2H4O+10.23 ± 0.02CH4PIPotapov and Sorokin, 1972LLK
C2H4O+10.27 ± 0.03CH4PIRefaey and Chupka, 1968RDSH
C2H5O+10.20 ± 0.08CH3EIBowen and Maccoll, 1984LBLHLM
C2H5O+10.26CH3EILossing, 1977LLK
C2H5O+10.40 ± 0.03CH3PIPotapov and Sorokin, 1972LLK
C2H5O+10.70CH3EIHaney and Franklin, 1969RDSH
C2H5O+10.40CH3PIRefaey and Chupka, 1968RDSH
C3H6+~12.0 ± 0.9H2OEIBowen and Maccoll, 1984LBLHLM
C3H6+~12.0H2OPIRefaey and Chupka, 1968RDSH
C3H7+11.6OHPIRefaey and Chupka, 1968RDSH
C3H7O+≤10.48 ± 0.08HEIBowen and Maccoll, 1984LBLHLM
C3H7O+≤10.48HEILossing, 1977LLK
C3H7O+10.3 ± 0.5HPIPotapov and Sorokin, 1972LLK
C3H7O+10.6HPIRefaey and Chupka, 1968RDSH
C3H7O+11.85HEILambdin, Tuffly, et al., 1959RDSH

De-protonation reactions

C3H7O- + Hydrogen cation = Isopropyl Alcohol

By formula: C3H7O- + H+ = C3H8O

Quantity Value Units Method Reference Comment
Δr1569. ± 4.2kJ/molD-EARamond, Davico, et al., 2000gas phase; B
Δr1571. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1576. ± 4.2kJ/molCIDTDeTuri and Ervin, 1999gas phase; B
Δr1572. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Quantity Value Units Method Reference Comment
Δr1542. ± 4.6kJ/molH-TSRamond, Davico, et al., 2000gas phase; B
Δr1543. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1544. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Tanya L. Myers, Russell G. Tonkyn, Ashley M. Oeck, Tyler O. Danby, John S. Loring, Matthew S. Taubman, Stephen W. Sharpe, Jerome C. Birnbaum, and Timothy J. Johnson

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin VERIFINN
NIST MS number 289584

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillarySE-30100.508.Tarjan, Nyiredy, et al., 1989 
CapillarySE-3060.491.Tarjan, Nyiredy, et al., 1989 
CapillarySE-3080.453.Tarjan, Nyiredy, et al., 1989 
CapillarySE-30100.508.Haken and Korhonen, 1985Column length: 25. m; Column diameter: 0.33 mm
CapillarySE-3060.491.Haken and Korhonen, 1985Column length: 25. m; Column diameter: 0.33 mm
CapillarySE-3080.453.Haken and Korhonen, 1985Column length: 25. m; Column diameter: 0.33 mm
CapillarySE-30100.508.Haken, Madden, et al., 1985N2; Column length: 25. m; Column diameter: 0.33 mm
CapillarySE-3060.491.Haken, Madden, et al., 1985N2; Column length: 25. m; Column diameter: 0.33 mm
CapillarySE-3080.453.Haken, Madden, et al., 1985N2; Column length: 25. m; Column diameter: 0.33 mm
PackedSE-30100.480.Winskowski, 1983Gaschrom Q; Column length: 2. m
PackedPorapack Q200.458.Goebel, 1982N2
PackedSE-30150.447.Haken, Nguyen, et al., 1979Celatom AW silanized; Column length: 3.7 m
PackedApiezon L120.450.Bogoslovsky, Anvaer, et al., 1978Celite 545
PackedApiezon L160.444.Bogoslovsky, Anvaer, et al., 1978Celite 545
PackedApiezon L70.450.Bogoslovsky, Anvaer, et al., 1978 
PackedApolane70.446.0Riedo, Fritz, et al., 1976He, Chromosorb; Column length: 2.4 m
PackedSE-30100.477.Pías and Gascó, 1975Ar, Chromosorb W AW DMCS HP (80-100 mesh); Column length: 1. m
PackedApiezon M130.456.Golovnya and Garbuzov, 1974N2, Chromosorb W; Column length: 2.1 m
PackedApiezon L100.460.Wagaman and Smith, 1971CH4; Column length: 3. m
PackedSqualane50.476.Mira and Sanchez, 1970Chromosorb G
PackedSE-30100.490.Zarazir, Chovin, et al., 1970Chromosorb W; Column length: 2. m
PackedDC-200100.486.Rohrschneider, 1966Column length: 4. m
PackedApiezon L100.463.Rohrschneider, 1966Column length: 5. m
PackedApiezon L70.450.von Kováts, 1958Celite (40:60 Gewichtsverhaltnis)

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillarySE-54524.Rembold, Wallner, et al., 198930. m/0.25 mm/0.25 μm, He, 0. C @ 12. min, 12. K/min; Tend: 250. C

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH-100494.Haagen-Smit Laboratory, 1997He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min)

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillarySupelcowax-1060.935.Castello, Vezzani, et al., 1991N2; Column length: 60. m; Column diameter: 0.75 mm
CapillaryOV-35160.949.Haken and Korhonen, 1985N2; Column length: 25. m; Column diameter: 0.32 mm
CapillaryOV-35180.957.Haken and Korhonen, 1985N2; Column length: 25. m; Column diameter: 0.32 mm
CapillaryOV-35160.949.Haken, Madden, et al., 1985N2; Column length: 25. m; Column diameter: 0.32 mm
CapillaryOV-35180.957.Haken, Madden, et al., 1985N2; Column length: 25. m; Column diameter: 0.32 mm
PackedCarbowax 20M75.962.Goebel, 1982N2, Kieselgur (60-100 mesh); Column length: 2. m
PackedCarbowax 20M100.885.Kevei and Kozma, 1976Chromosorb
PackedPEG-2000150.963.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000152.935.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000179.928.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000200.922.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedCarbowax 20M100.912.Zarazir, Chovin, et al., 1970Chromosorb W; Column length: 2. m
PackedPolyethylene Glycol 4000100.932.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 4000120.920.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 4000140.910.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 400080.940.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m
PackedCarbowax 20M100.903.Rohrschneider, 1966Column length: 2. m

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCBP-20927.Shimadzu, 200325. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C

Kovats' RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedCarbowax 20M891.Kevei and Kozma, 1976Chromosorb; Program: not specified

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCP-Sil 8CB-MS524.Hierro, de la Hoz, et al., 200460. m/0.25 mm/0.25 μm, 40. C @ 2. min, 4. K/min, 280. C @ 5. min
CapillaryCP-Sil 8CB-MS524.Bruna, Hierro, et al., 200360. m/0.25 mm/0.25 μm, 40. C @ 2. min, 4. K/min, 280. C @ 5. min
CapillaryPetrocol DH495.4Censullo, Jones, et al., 200350. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min
CapillaryPetrocol DH500.Censullo, Jones, et al., 200350. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min
CapillaryCP Sil 5 CB481.Pino, Almora, et al., 200360. m/0.32 mm/0.25 μm, He, 60. C @ 10. min, 3. K/min, 280. C @ 60. min
CapillaryDB-5515.8Xu, van Stee, et al., 200330. m/0.25 mm/1. μm, He, 2.5 K/min; Tstart: 50. C; Tend: 200. C
CapillarySE-30515.Korhonen, 19846. K/min; Column length: 25. m; Column diameter: 0.3 mm; Tstart: 50. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5MS510.Bonaiti, Irlinger, et al., 200530. m/0.25 mm/0.25 μm, He; Program: 5C(8min) => 3C/min => 20C => 10C/min => 150C(10min)
CapillaryHP-5510.Engel, Baty, et al., 200230. m/0.25 mm/0.25 μm, He; Program: 5C(5min) => 3C/min => 20C => 5C/min => 100C 15C/min => 150C (5min)
PackedSE-30483.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-Innowax884.Quijano, Linares, et al., 200760. m/0.25 mm/0.25 μm, He, 50. C @ 4. min, 4. K/min, 220. C @ 10. min
CapillaryDB-Wax920.Malliaa, Fernandez-Garcia, et al., 200560. m/0.32 mm/1. μm, He, 45. C @ 1. min, 5. K/min, 250. C @ 12. min
CapillaryDB-Wax935.Malliaa, Fernandez-Garcia, et al., 200560. m/0.32 mm/1. μm, He, 45. C @ 1. min, 5. K/min, 250. C @ 12. min
CapillaryCarbowax941.4Censullo, Jones, et al., 200360. m/0.25 mm/0.5 μm, He, 50. C @ 10. min, 5. K/min, 250. C @ 10. min
CapillaryFFAP950.Ott, Fay, et al., 199730. m/0.25 mm/0.25 μm, He, 20. C @ 1. min, 4. K/min, 200. C @ 1. min
CapillaryDB-Wax921.Shimoda, Wu, et al., 199660. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 50. C; Tend: 230. C
CapillaryDB-Wax912.Shimoda, Shigematsu, et al., 199560. m/0.25 mm/0.25 μm, 2. K/min; Tstart: 50. C; Tend: 230. C
CapillaryCarbowax 20M884.Suárez and Duque, 19912. K/min; Column length: 25. m; Column diameter: 0.31 mm; Tstart: 50. C; Tend: 200. C
CapillaryCarbowax 20M888.Suárez and Duque, 19912. K/min; Column length: 25. m; Column diameter: 0.31 mm; Tstart: 50. C; Tend: 200. C
CapillaryDB-Wax932.Fröhlich, Duque, et al., 198930. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 250. C
CapillaryDB-Wax938.Fröhlich, Duque, et al., 198930. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 4. K/min; Tend: 250. C
CapillaryOV-351909.Korhonen, 19846. K/min; Column length: 25. m; Column diameter: 0.32 mm; Tstart: 50. C

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-10975.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillarySupelcowax-10970.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillaryDB-Wax935.Radovic, Careri, et al., 200130. m/0.25 mm/0.25 μm; Program: 30C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillaryFFAP924.Yasuhara, 198750. m/0.25 mm/0.25 μm, He; Program: 20C (5min) => 2C/min => 70C => 4C/min => 210C

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryDB-160.480.Shimadzu, 2003, 260. m/0.32 mm/1. μm, He
PackedSynachrom150.472.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m
PackedSynachrom150.474.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m
PackedDC-400150.456.Anderson, 1968Helium, Gas-Pak (60-80 mesh); Column length: 3.0 m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
PackedSE-30530.MHA, 9999Nitrogen, Chromosorb G AW DMCS (80-100 mesh); Column length: 2. m; Tstart: 100. C; Tend: 300. C
CapillaryPolydimethyl siloxane: CP-Sil 5 CB496.Bramston-Cook, 201360. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min
CapillaryPetrocol DH493.Supelco, 2012100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min
CapillarySPB-5506.Vasta, Ratel, et al., 200760. m/0.32 mm/1. μm, 40. C @ 5. min, 3. K/min, 230. C @ 5. min
CapillaryHP-5483.4Leffingwell and Alford, 200560. m/0.32 mm/0.25 μm, He, 30. C @ 2. min, 2. K/min, 260. C @ 28. min
CapillaryMDN-5514.van Loon, Linssen, et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 270. C @ 5. min
CapillaryHP-5500.García, Martín, et al., 200060. m/0.32 mm/1. μm, He, 3. K/min; Tstart: 40. C; Tend: 240. C
CapillaryBP-1488.Health Safety Executive, 200050. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C
CapillaryOV-101500.Anker, Jurs, et al., 19902. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C
CapillaryOV-101502.del Rosario, de Lumen, et al., 1984He, 0. C @ 1. min, 3. K/min; Column length: 50. m; Column diameter: 0.31 mm; Tend: 225. C
CapillarySF-96516.Donetzhuber, Johansson, et al., 1976Nitrogen, 3. K/min, 130. C @ 40. min; Column length: 111. m; Column diameter: 0.76 mm; Initial hold: 8. min

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5516.Rotsatschakul, Visesanguan, et al., 200960. m/0.25 mm/0.25 μm, Helium; Program: 30 0C (2 min) 2 0Cmin -> 60 0C 10 0C/min -> 100 0C 20 0C/min -> 140 0C 10 0C/min -> 200 0C (10 min)
CapillaryMethyl Silicone477.Chen and Feng, 2007Program: not specified
CapillaryMethyl Silicone477.Kou, Zhang, et al., 2006Program: not specified
CapillaryMethyl Silicone498.Blunden, Aneja, et al., 200560. m/0.32 mm/1.0 μm, Helium; Program: -50 0C (2 min) 8 0C/min -> 200 0C (7.75 min) 25 0C -> 225 0C (8 min)
CapillaryHP-5499.Thierry, Maillard, et al., 200560. m/0.32 mm/1. μm; Program: not specified
CapillaryMethyl Silicone477.Fu and Wang, 2004Program: not specified
CapillarySE-30500.Vinogradov, 2004Program: not specified
CapillaryPolydimethyl siloxane511.Spanier, Shahidi, et al., 2001Program: not specified
CapillaryMethyl Silicone486.Zenkevich, 1999Program: not specified
CapillaryPolydimethyl siloxanes486.Zenkevich, 1998Program: not specified
CapillarySPB-1474.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryMethyl Silicone486.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillarySPB-1474.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1530.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryDB-1475.Binder, Flath, et al., 1989Column length: 60. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCP Sil 8 CB491.Weller and Wolf, 198940. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C
Capillarymethyl silicone oil with 5% Igepal481.Schultz, Flath, et al., 1988Column length: 150. m; Column diameter: 0.75 mm; Program: not specified
Capillarymethyl silicone oil with 5% Igepal503.Schultz, Flath, et al., 1988Column length: 150. m; Column diameter: 0.75 mm; Program: not specified
CapillaryDB-1475.Takeoka, Flath, et al., 198830. m/0.25 mm/0.25 μm, H2; Program: 30C (2min) => 2C/min => 150C => 4C/min => 250C
CapillaryOV-101500.Shibamoto, 1987Program: not specified

Normal alkane RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryCarbowax 20M100.917.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium
CapillaryCarbowax 20M60.928.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium
CapillaryCarbowax 20M80.922.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium
CapillaryDB-Wax60.948.Shimadzu, 2003, 250. m/0.32 mm/1. μm, He

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax923.Hayata, Sakamoto, et al., 200260. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min, 220. C @ 10. min
CapillaryHP-FFAP884.Qian and Reineccius, 200225. m/0.32 mm/0.52 μm, 60. C @ 1. min, 5. K/min, 240. C @ 5. min
CapillaryTC-Wax925.Suhardi, Suzuki, et al., 200260. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min, 230. C @ 10. min
CapillaryDB-Wax926.Chyau and Mau, 199960. m/0.25 mm/0.25 μm, N2, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryCarbowax 20M884.Anker, Jurs, et al., 19902. K/min; Column length: 80. m; Column diameter: 0.2 mm; Tstart: 70. C; Tend: 170. C
CapillaryDB-Wax917.Binder, Flath, et al., 198950. C @ 0.1 min, 4. K/min, 230. C @ 10. min; Column length: 60. m; Column diameter: 0.32 mm
CapillaryFFAP885.Vernin, Metzger, et al., 1988He, 60. C @ 5. min, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tend: 240. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax921.Gyawali and Kim, 201260. m/0.20 mm/0.25 μm, Helium; Program: 40 0C (3 min) 2 0C/min -> 150 0C 4 0C/min -> 220 0C (20 min) 5 0C/min -> 230 0C
CapillaryDB-Wax912.Welke, Manfroi, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-Wax925.Welke, Manfroi, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-Wax938.Welke, Manfroi, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-Wax947.Kadar, Juan-Borras, et al., 201060. m/0.32 mm/1.0 μm, Helium; Program: 40 0C (2 min) 4 0C/min -> 190 0C (11 min) 8 0C/min -> 220 0C (8 min)
CapillarySupelcowax-10970.Berard, Bianchi, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 6C/min => 60C => 4C/min => 160C => 20C/min => 200C(1min)
CapillarySupelcowax-10975.Berard, Bianchi, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 6C/min => 60C => 4C/min => 160C => 20C/min => 200C(1min)
CapillaryDB-Wax910.Mattheis, Fan, et al., 200560. m/0.25 mm/0.25 μm, He; Program: 35C(5min) => 2C/min => 50C => 5C/min => 200C (5min)
CapillaryDB-Wax933.Kim. J.H., Ahn, et al., 200460. m/0.25 mm/0.25 μm, Helium; Program: 60 0C (3 min) 2 0C/min -> 150 0C 4 0C/min -> 200 0C
CapillaryCarbowax 20M884.Vinogradov, 2004Program: not specified
CapillaryPolyethylene Glycol906.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillaryDB-Wax931.Mattheis, Buchanan, et al., 199260. m/0.25 mm/0.25 μm, He; Program: 35C (5min) => 2C/min => 50C => 5C/min => 200C(5min)
CapillaryDB-Wax931.Mattheis, Buchanan, et al., 199260. m/0.25 mm/0.25 μm, He; Program: 35C (5min) => 2C/min => 50C => 5C/min => 200C(5min)
CapillaryDB-Wax942.Peng, Yang, et al., 1991Program: not specified
CapillaryDB-Wax921.Binder, Flath, et al., 1989Column length: 60. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 20M884.Shibamoto, 1987Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.962.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 20M908.Ramsey and Flanagan, 1982Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Buckley and Herington, 1965
Buckley, E.; Herington, E.F.G., Equilibria in some secondary alcohol + hydrogen + ketone systems, Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]

Chao and Rossini, 1965
Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, 10, 374-379. [all data]

Snelson and Skinner, 1961
Snelson, A.; Skinner, H.A., Heats of combustion: sec-propanol, 1,4-dioxan, 1,3-dioxan and tetrahydropyran, Trans. Faraday Soc., 1961, 57, 2125-2131. [all data]

Parks, Mosley, et al., 1950
Parks, G.S.; Mosley, J.R.; Peterson, P.V., Jr., Heats of combustion and formation of some organic compounds containing oxygen, J. Chem. Phys., 1950, 18, 152. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Green J.H.S., 1963
Green J.H.S., Thermodynamic properties of organic oxygen compounds. Part 12. Vibrational assignment and calculated thermodynamic properties 0-1000 K of isopropyl alcohol, Trans. Faraday Soc., 1963, 59, 1559-1563. [all data]

Chao J., 1986
Chao J., Ideal gas thermodynamic properties of simple alkanols, Int. J. Thermophys., 1986, 7, 431-442. [all data]

Chao J., 1986, 2
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Parks G.S., 1940
Parks G.S., Some heat capacity data for isopropyl alcohol vapor, J. Chem. Phys., 1940, 8, 429. [all data]

Hales J.L., 1963
Hales J.L., Thermodynamic properties of organic oxygen compounds. Part 10. Measurement of vapor heat capacities and latent heats of vaporization of isopropyl alcohol, Trans. Faraday Soc., 1963, 59, 1544-1554. [all data]

Berman N.S., 1964
Berman N.S., Vapor heat capacity and heat of vaporization of 2-propanol, J. Chem. Eng. Data, 1964, 9, 218-219. [all data]

Rossini, 1934
Rossini, F.D., Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages, J. Res. NBS, 1934, 13, 189-197. [all data]

Parks and Moore, 1939
Parks, G.S.; Moore, G.E., The heat of combustion of isopropanol, J. Chem. Phys., 1939, 7, 1066-1067. [all data]

Andon, Counsell, et al., 1963
Andon, R.J.L.; Counsell, J.F.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part II. The thermodynamic properties from 10 to 330 K of isopropyl alcohol, Trans. Faraday Soc., 1963, 59, 1555-1558. [all data]

Kelley, 1929
Kelley, K.K., The heats capacities of isopropyl alcohol and acetone from 16 to 298 °K and the corresponding entropies and free energies, J. Am. Chem. Soc., 1929, 51, 1145-1150. [all data]

Parks and Kelley, 1928
Parks, G.S.; Kelley, K.K., The application of the third law of thermodynamics to some organic reactions, J. Phys. Chem., 1928, 32, 734-750. [all data]

Parks and Kelley, 1925
Parks, G.S.; Kelley, K.K., Thermal data on organic compounds. II. The heat capacities of five organic compounds. The entropies and free energies of some homologous series of aliphatic compounds, J. Am. Chem. Soc., 1925, 47, 2089-2097. [all data]

Roux, Roberts, et al., 1980
Roux, G.; Roberts, D.; Perron, G.; Desnoyers, J.E., Microheterogeneity in aqueous-organic solutions: heat capacities, volumes and expansibilities of some alcohols, aminoalcohol and tertiary amines in water, J. Solution Chem., 1980, 9(9), 629-647. [all data]

Brown and Ziegler, 1979
Brown, G.N., Jr.; Ziegler, W.T., Temperature dependence of excess thermodynamic properties of ethanol + n-heptane and 2-propanol + n-heptane solutions, J. Chem. Eng. Data, 1979, 24, 319-330. [all data]

Griigo'ev, Yanin, et al., 1979
Griigo'ev, B.A.; Yanin, G.S.; Rastorguev, Yu.L.; Thermophysical parameters of alcohols, Tr. GIAP, 54, 1979, 57-64. [all data]

Katayama, 1962
Katayama, T., Heats of mixing, liquid heat capacities and enthalpy, concentration charts for methanol-water and isopropanol-water systems, Kagaku Kogaku, 1962, 26, 361-372. [all data]

Swietoslawski and Zielenkiewicz, 1958
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heats of binary positive azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1958, 6, 367-369. [all data]

Ginnings and Corruccini, 1948
Ginnings, D.C.; Corruccini, R.J., Liquid isopropyl alcohol. Enthalpy, entropy, and specific heat from 0° to 200°C, Ind. Eng. Chem., 1948, 40, 1990-1991. [all data]

Zhdanov, 1945
Zhdanov, A.K., On the thermal capacity of some pure liquids and azeotropic mixtures, Zhur. Obshch. Khim., 1945, 15, 895-902. [all data]

Phillip, 1939
Phillip, N.M., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]

Trew and Watkins, 1933
Trew, V.C.G.; Watkins, G.M.C., Some physical properties of mixtures of certain organic liquids, Trans. Faraday Soc., 1933, 29, 1310-1318. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Willams and Daniels, 1924
Willams, J.W.; Daniels, F., The specific heats of certain organic liquids at elevated temperatures, J. Am. Chem. Soc., 1924, 46, 903-917. [all data]

Ogimachi, Corcoran, et al., 1961
Ogimachi, N.N.; Corcoran, J.M.; Kruse. H.W., Thermal Analysis of Systems of Hydrazine with Propyl Alcohol, Isopropyl Alcohol, and Allyl Alcohol, J. Chem. Eng. Data, 1961, 6, 238. [all data]

Anonymous, 1958
Anonymous, X., Am. Pet. Inst. Res. Proj. 50, 1958, Unpublished, 1958. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Ambrose, Counsell, et al., 1978
Ambrose, D.; Counsell, J.F.; Lawrenson, I.J.; Lewis, G.B., Thermodynamic properties of organic oxygen compounds XLVII. Pressure, volume, temperature relations and thermodynamic properties of propan-2-ol, J. Chem. Thermodyn., 1978, 10, 1033-1043. [all data]

Teja, Lee, et al., 1989
Teja, A.S.; Lee, R.J.; Rosenthal, D.J.; Anselme, M.J., Correlation of the Critical Properties of Alkanes and Alkanols in 5th IUPAC Conference on Alkanes and AlkanolsGradisca, 1989. [all data]

Ambrose and Townsend, 1963
Ambrose, D.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds IX. The Critical Properties and Vapor Pressures Above Five Atmospheres of Six Aliphatic Alcohols, J. Chem. Soc., 1963, 54, 3614-25. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Segura, Galindo, et al., 2002
Segura, Hugo; Galindo, Graciela; Reich, Ricardo; Wisniak, Jaime; Loras, Sonia, Isobaric Vapor-Liquid Equilibria and Densities for the System Methyl 1,1-Dimethylethyl Ether +2-Propanol, Physics and Chemistry of Liquids, 2002, 40, 3, 277-294, https://doi.org/10.1080/0031910021000004865 . [all data]

Wormald and Vine, 2000
Wormald, C.J.; Vine, M.D., Specific enthalpy increments for propan-2-ol at temperatures up to 563.2 K and pressures up to 11.3 MPa, The Journal of Chemical Thermodynamics, 2000, 32, 5, 659-669, https://doi.org/10.1006/jcht.1999.0631 . [all data]

Aucejo, Gonzalez-Alfaro, et al., 1995
Aucejo, Antonio; Gonzalez-Alfaro, Vicenta; Monton, Juan B.; Vazquez, M. Isabel, Isobaric Vapor-Liquid Equilibria of Trichloroethylene with 1-Propanol and 2-Propanol at 20 and 100 kPa, J. Chem. Eng. Data, 1995, 40, 1, 332-335, https://doi.org/10.1021/je00017a073 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J., The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point, The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Van Ness, Soczek, et al., 1967
Van Ness, Hendrick C.; Soczek, C.A.; Peloquin, G.L.; Machado, R.L., Thermodynamic excess properties of three alcohol-hydrocarbon systems, J. Chem. Eng. Data, 1967, 12, 2, 217-224, https://doi.org/10.1021/je60033a017 . [all data]

Berman, Larkam, et al., 1964
Berman, Neil S.; Larkam, Charles W.; McKetta, John J., Vapor Heat Capacity and Heat of Vaporization of 2-Propanol., J. Chem. Eng. Data, 1964, 9, 2, 218-219, https://doi.org/10.1021/je60021a020 . [all data]

Ambrose and Townsend, 1963, 2
Ambrose, D.; Townsend, R., 681. Thermodynamic properties of organic oxygen compounds. Part IX. The critical properties and vapour pressures, above five atmospheres, of six aliphatic alcohols, J. Chem. Soc., 1963, 3614, https://doi.org/10.1039/jr9630003614 . [all data]

Biddiscombe, Collerson, et al., 1963
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S., 364. Thermodynamic properties of organic oxygen compounds. Part VIII. Purification and vapour pressures of the propyl and butyl alcohols, J. Chem. Soc., 1963, 1954, https://doi.org/10.1039/jr9630001954 . [all data]

Hales, Cox, et al., 1963
Hales, J.L.; Cox, J.D.; Lees, E.B., Thermodynamic properties of organic oxygen compounds. Part 10.-Measurement of vapour heat capacities and latent heats of vaporization of isopropyl alcohol, Trans. Faraday Soc., 1963, 59, 1544. [all data]

Williamson and Harrison, 1957
Williamson, K.D.; Harrison, R.H., Heats of vaporization of 1,1,2-trichloroethane, 1-propanol, and 2-propanol; vapor heat capacity of 1,1,2-trichloroethane, J. Chem. Phys., 1957, 26, 1409-14. [all data]

Foz Gazulla, Morcilio, et al., 1955
Foz Gazulla, O.R.; Morcilio, J.; Perez-Masia, A.; Mendes, A., Anales Real Soc. Espan. Fis. Quim. (Madrid), 1955, 50B, 23. [all data]

Ambrose and Townsend, 1963, 3
Ambrose, D.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds. Part 9. The Critical Properties and Vapour Pressures, above Five Atmospheres, of Six Aliphatic Alcohols, J. Chem. Soc., 1963, 3614-3625, https://doi.org/10.1039/jr9630003614 . [all data]

Biddiscombe, Collerson, et al., 1963, 2
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S., Thermodynamic Properties of Organic Oxygen Compounds. Part 8. Purification and Vapor Pressures of the Propyl and Butyl Alcohols, J. Chem. Soc., 1963, 1954-1957, https://doi.org/10.1039/jr9630001954 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C., Vibronic structure of alkoxy radicals via photoelectron spectroscopy, J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols, J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Bogdanov, Peschke, et al., 1999
Bogdanov, B.; Peschke, M.; Tonner, D.S.; Szulejko, J.E.; McMahon, T.B., Stepwise solvation of halides by alcohol molecules in the gas phase, Int. J. Mass Spectrom., 1999, 187, 707-725, https://doi.org/10.1016/S1387-3806(98)14180-5 . [all data]

Hiraoka and Mizuse, 1987
Hiraoka, K.; Mizuse, S., Gas-Phase Solvation of Cl- with H2O, CH3OH, C2H4OH, i-C3H7OH, n-C3H7OH, and t-C4H9OH, Chem. Phys., 1987, 118, 3, 457, https://doi.org/10.1016/0301-0104(87)85078-4 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

Bomse and Beauchamp, 1981
Bomse, D.S.; Beauchamp, J.L., Slow Multiphoton Excitation as a Probe of Bimolecular and Unimolecular Reaction Energetics. Multiphoton Dissociation of Proton-Bound Alcohol Dimers, J. Am. Chem. Soc., 1981, 103, 12, 3292, https://doi.org/10.1021/ja00402a011 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Larson, Szulejko, et al., 1988
Larson, J.W.; Szulejko, J.E.; McMahon, T.B., Gas Phase Lewis Acid-Base Interactions. An Experimental Determination of Cyanide Binding Energies From Ion Cyclotron Resonance and High-Pressure Mass Spectrometric Equilibrium Measurements., J. Am. Chem. Soc., 1988, 110, 23, 7604, https://doi.org/10.1021/ja00231a004 . [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P., Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements, J. Am. Chem. Soc., 1984, 106, 967. [all data]

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E., Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds, J. Am. Chem. Soc., 1938, 60, 440-450. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Tanabe, Morgon, et al., 1996
Tanabe, F.K.J.; Morgon, N.H.; Riveros, J.M., Relative Bromide and Iodide Affinity of Simple Solvent Molecules Determined by FT-ICR, J. Phys. Chem., 1996, 100, 8, 2862-2866, https://doi.org/10.1021/jp952290p . [all data]

Hiraoka, Mizure, et al., 1988
Hiraoka, K.; Mizure, S.; Yamabe, S.; Nakatsuji, Y., Gas Phase Clustering Reactions of CN- and CH2CN- with MeCN, Chem. Phys. Lett., 1988, 148, 6, 497, https://doi.org/10.1016/0009-2614(88)80320-8 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B., Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities., J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079 . [all data]

Calderon, Tejero, et al., 1997
Calderon, A.; Tejero, J.; Izuierdo, J.F.; Iborra, M.; Cunill, F., Equilibrium Constants for the liquid-phase synthesis of isopropyl tert-butyl ether from 2-propanol and isobutene, Ind. Eng. Chem. Res., 1997, 36, 896-902. [all data]

Sola, Pericas, et al., 1997
Sola, L.; Pericas, M.A.; Cunill, F.; Izquierdo, J.F., A comparative thermodynamic and kinetic study of the reaction between olefins and light alcohols leading to branced ethers. Reaction calorimetry study of the formation of tert-amyl methyl ether (TAME) and tert-butyl isopropyl ether (IPTBE), Ind. Eng. Chem. Res., 1997, 36, 2012-2018. [all data]

Kolb and Burwell, 1945
Kolb, H.J.; Burwell, R.L., Jr., Equilibrium in the dehydrogenation of secondary propyl and butyl alcohols, J. Am. Chem. Soc., 1945, 67, 1084-1088. [all data]

Wilkinson, Szulejko, et al., 1992
Wilkinson, F.E.; Szulejko, J.E.; Allison, C.E.; Mcmahon, T.B., Fourier Transform Ion Cyclotron Resonance Investigation of the Deuterium Isotope Effect on Gas Phase Ion/Molecule Hydrogen Bonding Interactions in Alcohol-Fluoride Adduct Ions, Int. J. Mass Spectrom., 1992, 117, 487-505, https://doi.org/10.1016/0168-1176(92)80110-M . [all data]

Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S., Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques, J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020 . [all data]

Wadso, 1958
Wadso, I., The heats of hydrolysis of some alkyl acetates, Acta Chem. Scand., 1958, 12, 630-633. [all data]

Jensen and Pedersen, 1971
Jensen, R.B.; Pedersen, S.B., Reaction between chloral and alcohols. 9. Dissociation of chloral hemiacetals of some aliphatic primary and secondary alcohols, Acta Chem. Scand., 1971, 25, 2911-2930. [all data]

Fedoseenko, Yursha, et al., 1983
Fedoseenko, V.I.; Yursha, I.A.; Kabo, G.Ya., Equilibrium and thermodynamics of cyclohexanol dehydrogenation reactions, Dokl. Akad. Nauk BSSR, 1983, 27, 926-929. [all data]

Kennedy, Lacher, et al., 1969
Kennedy, M.B.; Lacher, J.R.; Park, J.D., Reaction heats of organic compounds. VI. Heats of addition of some alcohols to 1,1-dichloro-2,2-difluoroethylene, Trans. Faraday Soc., 1969, 65, 1435-1442. [all data]

Kabo, Yursha, et al., 1988
Kabo, G.J.; Yursha, I.A.; Frenkel, M.L.; Poleshchuk, P.A.; Fedoseenko, V.I.; Ladutko, A.I., Thermodynamic properties of cyclohexanol and cyclohexanone, J. Chem. Thermodyn., 1988, 20, 429-437. [all data]

Rubtsov, 1986
Rubtsov, Yu.I., Thermodynamic calculation of equilibrium in nitration of alcohols, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 19-22. [all data]

Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J., Ketene. III. Heat of formation and heat of reaction with alcohols, J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Cao and Holmes, 2001
Cao, J.; Holmes, J.L., Determination of the proton affinities of secondary alcohols from the dissocation of proton-bound molecular trios, European J. Mass Spectrom., 2001, 7, 243-247. [all data]

Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A., Low energy, low temperature mass spectra, Org. Mass Spectrom., 1984, 19, 379. [all data]

Potapov and Sorokin, 1972
Potapov, V.K.; Sorokin, V.V., Kinetic energies of products of dissociative photoionization of molecules. I. Aliphatic ketones and alcohols, Khim. Vys. Energ., 1972, 6, 387. [all data]

Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J., The effect of alkyl substitution on ionisation potential, J. Chem. Soc., 1971, (B), 790. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Refaey and Chupka, 1968
Refaey, K.M.A.; Chupka, W.A., Photoionization of the lower aliphatic alcohols with mass analysis, J. Chem. Phys., 1968, 48, 5205. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Peel and Willett, 1975
Peel, J.B.; Willett, G.D., Photoelectron spectroscopic studies of the higher alcohols, Aust. J. Chem., 1975, 28, 2357. [all data]

Robin and Kuebler, 1973
Robin, M.B.; Kuebler, N.A., Excited electronic states of the simple alcohols, J. Electron Spectrosc. Relat. Phenom., 1973, 1, 13. [all data]

Katsumata, Iwai, et al., 1973
Katsumata, S.; Iwai, T.; Kimura, K., Photoelectron spectra and sum rule consideration. Higher alkyl amines and alcohols, Bull. Chem. Soc. Jpn., 1973, 46, 3391. [all data]

Baker, Betteridge, et al., 1971
Baker, A.D.; Betteridge, D.; Kemp, N.R.; Kirby, R.E., Application of photoelectron spectrometry to pesticide analysis. II.Photoelectron spectra of hydroxy-, and halo-alkanes and halohydrins, Anal. Chem., 1971, 43, 375. [all data]

Olmsted, Street, et al., 1964
Olmsted, J., III; Street, K., Jr.; Newton, A.S., Excess-kinetic-energy ions in organic mass spectra, J. Chem. Phys., 1964, 40, 2114. [all data]

Friedman, Long, et al., 1957
Friedman, L.; Long, F.A.; Wolfsberg, M., Study of the mass spectra of the lower aliphatic alcohols, J. Chem. Phys., 1957, 27, 613. [all data]

Holmes, Burgers, et al., 1982
Holmes, J.L.; Burgers, P.C.; Mollah, Y.A., Alkane elimination from ionized alkanols, Org. Mass Spectrom., 1982, 17, 127. [all data]

Lossing, 1977
Lossing, F.P., Heats of formation of some isomeric [CnH2n+1]+ ions. Substitutional effects on ion stability, J. Am. Chem. Soc., 1977, 99, 7526. [all data]

Haney and Franklin, 1969
Haney, M.A.; Franklin, J.L., Excess energies in mass spectra of some oxygen-containing organic compounds, J. Chem. Soc. Faraday Trans., 1969, 65, 1794. [all data]

Lambdin, Tuffly, et al., 1959
Lambdin, W.J.; Tuffly, B.L.; Yarborough, V.A., Appearance potentials as obtained with an analytical mass spectrometer, Appl. Spectry., 1959, 13, 71. [all data]

Tarjan, Nyiredy, et al., 1989
Tarjan, G.; Nyiredy, Sz.; Gyor, M.; Lombosi, E.R.; Lombosi, T.S.; Budahegyi, M.V.; Meszaros, S.Y.; Takacs, J.M., Review. Thirtieth Anniversary of the Retention Index According to Kovats in Gas-Liquid Chromatography, J. Chromatogr., 1989, 472, 1-92, https://doi.org/10.1016/S0021-9673(00)94099-8 . [all data]

Haken and Korhonen, 1985
Haken, J.K.; Korhonen, I.O.O., Gas-liquid chromatography of homologous esters. XXIX. Propanoyl and monochlorpropanoyl esters of lower saturated branched-chain and unsaturated alcohols, J. Chromatogr., 1985, 324, 343-353, https://doi.org/10.1016/S0021-9673(01)81333-9 . [all data]

Haken, Madden, et al., 1985
Haken, J.K.; Madden, B.G.; Korhonen, I.O.O., Gas chromatography of homologous esters. XXXI. Butanoyl and monochlorobutanoyl esters of lower saturated branched chain and unsaturated alcohols on SE-30 and OV-351 capillary columns, J. Chromatogr., 1985, 325, 61-73, https://doi.org/10.1016/S0021-9673(00)96008-4 . [all data]

Winskowski, 1983
Winskowski, J., Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren, Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041 . [all data]

Goebel, 1982
Goebel, K.-J., Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe, J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5 . [all data]

Haken, Nguyen, et al., 1979
Haken, J.K.; Nguyen, A.; Wainwright, M.S., Application of linear extrathermodynamic relationships to alcohols, aldehydes, ketones, amd ethoxy alcohols, J. Chromatogr., 1979, 179, 1, 75-85, https://doi.org/10.1016/S0021-9673(00)80658-5 . [all data]

Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S., Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]

Riedo, Fritz, et al., 1976
Riedo, F.; Fritz, D.; Tarján, G.; Kováts, E.Sz., A tailor-made C87 hydrocarbon as a possible non-polar standard stationary phase for gas chromatography, J. Chromatogr., 1976, 126, 63-83, https://doi.org/10.1016/S0021-9673(01)84063-2 . [all data]

Pías and Gascó, 1975
Pías, J.B.; Gascó, L., GC Retention Data of Alcohols and Benzoyl Derivatives of Alcohols, J. Chromatogr. - Chrom. Data, 1975, d14-d16. [all data]

Golovnya and Garbuzov, 1974
Golovnya, R.V.; Garbuzov, V.G., Effect of heteroatom in aliphatic sulfur- and oxygen-containing compounds on the values of the retention indices in gas chromatography, Izv. Akad. Nauk SSSR Ser. Khim., 1974, 7, 1519-1521. [all data]

Wagaman and Smith, 1971
Wagaman, K.L.; Smith, T.G., Use of hydrocarbons as carrier gases in GLC, J. Chromatogr. Sci., 1971, 9, 4, 241-244, https://doi.org/10.1093/chromsci/9.4.241 . [all data]

Mira and Sanchez, 1970
Mira, J.M.; Sanchez, L.G., Polarity of the Gas Chromatographic Stationary Phases and Retention Indices of Aliphatic Esters, Ketones and Alcohols, Anal. Chim. Acta., 1970, 50, 2, 315-321, https://doi.org/10.1016/0003-2670(70)80071-X . [all data]

Zarazir, Chovin, et al., 1970
Zarazir, D.; Chovin, P.; Guiochon, G., Identification of hydroxylic compounds and their derivatives by gas chromatography, Chromatographia, 1970, 3, 4, 180-195, https://doi.org/10.1007/BF02269018 . [all data]

Rohrschneider, 1966
Rohrschneider, L., Eine methode zur charakterisierung von gaschromatographischen trennflüssigkeiten, J. Chromatogr., 1966, 22, 6-22, https://doi.org/10.1016/S0021-9673(01)97064-5 . [all data]

von Kováts, 1958
von Kováts, E., 206. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone, Helv. Chim. Acta, 1958, 41, 7, 1915-1932, https://doi.org/10.1002/hlca.19580410703 . [all data]

Rembold, Wallner, et al., 1989
Rembold, H.; Wallner, P.; Nitz, S.; Kollmannsberger, H.; Drawert, F., Volatile components of chickpea (Cicer arietinum L.) seed, J. Agric. Food Chem., 1989, 37, 3, 659-662, https://doi.org/10.1021/jf00087a018 . [all data]

Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory, Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]

Castello, Vezzani, et al., 1991
Castello, G.; Vezzani, S.; Gerbino, T., Gas chromatographic separation and automatic identification of complex mixtures of organic solvents in indrustrial wates, J. Chromatogr., 1991, 585, 2, 273-280, https://doi.org/10.1016/0021-9673(91)85088-W . [all data]

Kevei and Kozma, 1976
Kevei, E.; Kozma, E., Gaschromatographische Untersuchungsmethoden zur Aromaprüfung in gekochtem Schweinefleisch (M. semimembranosus), Nahrung, 1976, 20, 3, 243-252, https://doi.org/10.1002/food.19760200303 . [all data]

Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L., Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases, Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]

Bonastre and Grenier, 1968
Bonastre, J.; Grenier, P., Contribution à l'étude de la polarité des phases stationnaires en chromatographie gaz-liquide. III. Calcul des coefficients d'activité relatifs et des indices de rétention de quelques alcools aliphatiques, Bull. Soc. Chim. Fr., 1968, 1, 118-125. [all data]

Shimadzu, 2003
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 2), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Hierro, de la Hoz, et al., 2004
Hierro, E.; de la Hoz, L.; Ordóñez, J.A., Headspace volatile compounds from salted and occasionally smoked dried meats (cecinas) as affected by animal species, Food Chem., 2004, 85, 4, 649-657, https://doi.org/10.1016/j.foodchem.2003.07.001 . [all data]

Bruna, Hierro, et al., 2003
Bruna, J.M.; Hierro, E.M.; de la Hoz, L.; Mottram, D.S.; Fernández, M.; Ordóñez, J.A., Changes in selected biochemical and sensory parameters as affected by the superficial inoculation of Penicillium camemberti on dry fermented sausages, Int. J. Food Microbiol., 2003, 85, 1-2, 111-125, https://doi.org/10.1016/S0168-1605(02)00505-6 . [all data]

Censullo, Jones, et al., 2003
Censullo, A.C.; Jones, D.R.; Wills, M.T., Speciation of the volatile organic compounds (VOCs) in solventborne aerosol coatings by solid phase microextraction-gas chromatography, J. Coat. Technol., 2003, 75, 936, 47-53, https://doi.org/10.1007/BF02697922 . [all data]

Pino, Almora, et al., 2003
Pino, J.; Almora, K.; Marbot, R., Volatile components of papaya (Carica papaya L., maradol variety) fruit, Flavour Fragr. J., 2003, 18, 6, 492-496, https://doi.org/10.1002/ffj.1248 . [all data]

Xu, van Stee, et al., 2003
Xu, X.; van Stee, L.L.P.; Williams, J.; Beens, J.; Adahchour, M.; Vreuls, R.J.J.; Brinkman, U.A.Th.; Lelieveld, J., Comprehensive two-dimensional gas chromatography (GC×GC) measurements of volatile organic compounds in the atmosphere, Atmos. Chem. Phys., 2003, 3, 3, 665-682, https://doi.org/10.5194/acp-3-665-2003 . [all data]

Korhonen, 1984
Korhonen, I.O.O., Gas-Liquid Chromatographic Analyses. XXV. Branched-Chain C3-C5 Alkyl Esters of Halogenated Acetic Acids, J. Chromatogr., 1984, 288, 51-69, https://doi.org/10.1016/S0021-9673(01)93681-7 . [all data]

Bonaiti, Irlinger, et al., 2005
Bonaiti, C.; Irlinger, F.; Spinnler, H.E.; Engel, E., An iterative sensory procedure to select odor-active associations in complex consortia of microorganisms: application to the construction of a cheese model, J. Dairy Sci., 2005, 88, 5, 1671-1684, https://doi.org/10.3168/jds.S0022-0302(05)72839-3 . [all data]

Engel, Baty, et al., 2002
Engel, E.; Baty, C.; le Corre, D.; Souchon, I.; Martin, N., Flavor-active compounds potentially implicated in cooked cauliflower acceptance, J. Agric. Food Chem., 2002, 50, 22, 6459-6467, https://doi.org/10.1021/jf025579u . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Quijano, Linares, et al., 2007
Quijano, C.E.; Linares, D.; Pino, J.A., Changes in volatile compounds of fermented cereza agria [Phyllanthus acidus (L.) Skeels] fruit, Flavour Fragr. J., 2007, 22, 5, 392-394, https://doi.org/10.1002/ffj.1810 . [all data]

Malliaa, Fernandez-Garcia, et al., 2005
Malliaa, S.; Fernandez-Garcia, E.; Bosset, J.O., Comparison of purge and trap and solid phase microextraction techniques for studying the volatile aroma compounds of three European PDO hard cheeses, Int. Dairy J., 2005, 15, 6-9, 741-758, https://doi.org/10.1016/j.idairyj.2004.11.007 . [all data]

Ott, Fay, et al., 1997
Ott, A.; Fay, L.B.; Chaintreau, A., Determination and origin of the aroma impact compounds of yogurt flavor, J. Agric. Food Chem., 1997, 45, 3, 850-858, https://doi.org/10.1021/jf960508e . [all data]

Shimoda, Wu, et al., 1996
Shimoda, M.; Wu, Y.; Osajima, Y., Aroma compounds from aqueous solution of Haze (Rhus succedanea) honey determined by adsorptive column chromatography, J. Agric. Food Chem., 1996, 44, 12, 3913-3918, https://doi.org/10.1021/jf9601168 . [all data]

Shimoda, Shigematsu, et al., 1995
Shimoda, M.; Shigematsu, H.; Shiratsuchi, H.; Osajima, Y., Comparison of the odor concentrates by SDE and adsorptive column method from green tea infusion, J. Agric. Food Chem., 1995, 43, 6, 1616-1620, https://doi.org/10.1021/jf00054a037 . [all data]

Suárez and Duque, 1991
Suárez, M.; Duque, C., Volatile constituents of lulo (Salanum vestissimum D.) fruit, J. Agric. Food Chem., 1991, 39, 8, 1498-1500, https://doi.org/10.1021/jf00008a026 . [all data]

Fröhlich, Duque, et al., 1989
Fröhlich, O.; Duque, C.; Schreier, P., Volatile constituents of curuba (Passiflora mollissima) fruit, J. Agric. Food Chem., 1989, 37, 2, 421-425, https://doi.org/10.1021/jf00086a033 . [all data]

Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M., Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness, J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393 . [all data]

Radovic, Careri, et al., 2001
Radovic, B.S.; Careri, M.; Mangia, A.; Musci, M.; Gerboles, M.; Anklam, E., Analytical, nutritional, and clinical methods section. Contribution of dynamic headspace GC-MS analysis of aroma compounds to authenticity testing of honey, Food Chem., 2001, 72, 4, 511-520, https://doi.org/10.1016/S0308-8146(00)00263-6 . [all data]

Yasuhara, 1987
Yasuhara, A., Identification of Volatile Compounds in Poultry Manure by Gas Chromatography-Mass Spectrometry, J. Chromatogr., 1987, 387, 371-378, https://doi.org/10.1016/S0021-9673(01)94539-X . [all data]

Shimadzu, 2003, 2
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 3), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Dufka, Malinsky, et al., 1971
Dufka, O.; Malinsky, J.; Vladyka, J., Sorpcni materialy pro plynovou chromatographii - III, Chemicky promysl., 1971, 21/46, 9, 459-463. [all data]

Anderson, 1968
Anderson, D.G., USe of Kovats retention indices and response factors for the qualitative and quantitative analysis of coating solvents, J. Paint Technol., 1968, 40, 527, 549-557. [all data]

MHA, 9999
MHA, Directorate of ForensicScience., Forensic Toxicology, 9999. [all data]

Bramston-Cook, 2013
Bramston-Cook, R., Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]

Supelco, 2012
Supelco, CatalogNo. 24160-U, Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]

Vasta, Ratel, et al., 2007
Vasta, V.; Ratel, J.; Engel, E., Mass Spectrometry Analysis of Volatile Compounds in Raw Meat for the Authentication of the Feeding Background of Farm Animals, J. Agric. Food Chem., 2007, 55, 12, 4630-4639, https://doi.org/10.1021/jf063432n . [all data]

Leffingwell and Alford, 2005
Leffingwell, J.C.; Alford, E.D., Volatile constituents of Perique tobacco, Electron. J. Environ. Agric. Food Chem., 2005, 4, 2, 899-915. [all data]

van Loon, Linssen, et al., 2005
van Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Posthumus, M.A.; Voragen, A.G.J., Identification and olfactometry of French fries flavour extracted at mouth conditions, Food Chem., 2005, 90, 3, 417-425, https://doi.org/10.1016/j.foodchem.2004.05.005 . [all data]

García, Martín, et al., 2000
García, C.; Martín, A.; Timón, M.L.; Córdoba, J.J., Microbial populations and volatile compounds in the 'bone taint' spoilage of dry cured ham, Lett. Appl. Microbiol., 2000, 30, 1, 61-66, https://doi.org/10.1046/j.1472-765x.2000.00663.x . [all data]

Health Safety Executive, 2000
Health Safety Executive, MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]

Anker, Jurs, et al., 1990
Anker, L.S.; Jurs, P.C.; Edwards, P.A., Quantitative structure-retention relationship studies of odor-active aliphatic compounds with oxygen-containing functional groups, Anal. Chem., 1990, 62, 24, 2676-2684, https://doi.org/10.1021/ac00223a006 . [all data]

del Rosario, de Lumen, et al., 1984
del Rosario, R.; de Lumen, B.O.; Habu, T.; Flath, R.A.; Mon, T.R.; Teranishi, R., Comparison of headspace volatiles from winged beans and soybeans, J. Agric. Food Chem., 1984, 32, 5, 1011-1015, https://doi.org/10.1021/jf00125a015 . [all data]

Donetzhuber, Johansson, et al., 1976
Donetzhuber, A.; Johansson, K.; Sandstroem, C., Gas phase characterization of wood, pulp, and paper, Appl. Polymer Symp., 1976, 28, 889-901. [all data]

Rotsatschakul, Visesanguan, et al., 2009
Rotsatschakul, P.; Visesanguan, W.; Smitinont, T.; Chaiseri, S., Changes in volatile compounds during fermentation of nham (Thai fermented sausage), Int. Food Res. J., 2009, 16, 391-414. [all data]

Chen and Feng, 2007
Chen, Y.; Feng, C., QSPR study on gas chromatography retention index of some organic pollutants, Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]

Kou, Zhang, et al., 2006
Kou, J.; Zhang, S.; Hu, Y.; Qiao, H.; Li, J., Stidy on the relationships between structures and gas chromatographic retention indices of alcohols, Comput. Appl. Chem. (Chinese), 2006, 23, 7, 651-654. [all data]

Blunden, Aneja, et al., 2005
Blunden, J.; Aneja, V.P.; Lonneman, W.A., Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina, Atm. Environ., 2005, 39, 36, 6707-6718, https://doi.org/10.1016/j.atmosenv.2005.03.053 . [all data]

Thierry, Maillard, et al., 2005
Thierry, A.; Maillard, M.-B.; Bonnarme, P.; Roussel, E., The addition of Propionibacterium freudenreichii to raclette cheese induces biochemical changes and enhances flavor development, J. Agric. Food Chem., 2005, 53, 10, 4157-4165, https://doi.org/10.1021/jf0481195 . [all data]

Fu and Wang, 2004
Fu, S.-P.; Wang, Y.-Q., Estimation and prediction of gas chromatographic retention indices of alcohols by molecular electronegativity-distance vector, J. Chongqing Univ., 2004, 27, 6, 106-109. [all data]

Vinogradov, 2004
Vinogradov, B.A., Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]

Spanier, Shahidi, et al., 2001
Spanier, A.M.; Shahidi, F.; Par; iment, T.H.; Mussinan, C., Food Flavors and Chemistry. Advances of the New Millenium, Royal Soc. Chem., 2001, 666. [all data]

Zenkevich, 1999
Zenkevich, I.G., New Application of the Retention Index Concept in Gas and High Performance Liquid Chromatography, Fresenius' J. Anal. Chem., 1999, 365, 4, 305-309, https://doi.org/10.1007/s002160051491 . [all data]

Zenkevich, 1998
Zenkevich, I.G., The Principle of Structural Analogy in the Calculation of Gas Chromatographic Retention Indices using Physico-Chemical Constants of Organic Compounds, Zh. Anal. Khim. (Rus.), 1998, 53, 1, 43-49. [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Zenkevich, Korolenko, et al., 1995
Zenkevich, I.G.; Korolenko, L.I.; Khralenkova, N.B., Desorption with solvent vapor as a method of sample preparation in the sorption preconcentration of organic-compounds from the air of a working area and from industrial-waste gases, J. Appl. Chem. USSR (Engl. Transl.), 1995, 50, 10, 937-944. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Binder, Flath, et al., 1989
Binder, R.G.; Flath, R.A.; Mon, T.R., Volatile components of bittermelon, J. Agric. Food Chem., 1989, 37, 2, 418-420, https://doi.org/10.1021/jf00086a032 . [all data]

Weller and Wolf, 1989
Weller, J.-P.; Wolf, M., Massenspektroskopie und Headspace-GC, Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]

Schultz, Flath, et al., 1988
Schultz, T.H.; Flath, R.A.; Stern, D.J.; Mon, T.R.; Teranishi, R.; McKenna Kruse, S.; Butlder, B.; Howard, W.E., Coyote estrous urine volatiles, J. Chem. Ecol., 1988, 14, 2, 701-712, https://doi.org/10.1007/BF01013917 . [all data]

Takeoka, Flath, et al., 1988
Takeoka, G.R.; Flath, R.A.; Güntert, M.; Jennings, W., Nectarine volatiles: vacuum steam distillation versus headspace sampling, J. Agric. Food Chem., 1988, 36, 3, 553-560, https://doi.org/10.1021/jf00081a037 . [all data]

Shibamoto, 1987
Shibamoto, T., Retention Indices in Essential Oil Analysis in Capillary Gas Chromatography in Essential Oil Analysis, Sandra, P.; Bicchi, C., ed(s)., Hutchig Verlag, Heidelberg, New York, 1987, 259-274. [all data]

Sun, Siepmann, et al., 2006
Sun, L.; Siepmann, J.I.; Klotz, W.L.; Schure, M.R., retention in gas-liquid chromatography with a polyethylene oxide stationary phase: molecular simulation and experiment, J. Chromatogr. A, 2006, 1126, 1-2, 373-380, https://doi.org/10.1016/j.chroma.2006.05.084 . [all data]

Hayata, Sakamoto, et al., 2002
Hayata, Y.; Sakamoto, T.; Kozuka, H.; Sakamoto, K.; Osajima, Y., Analysis of aromatic volatile compounds in 'Miyabi' melon (Cucumis melo L.) using the Porapak Q column, J. Jpn. Soc. Hortic. Sci., 2002, 71, 4, 517-525, https://doi.org/10.2503/jjshs.71.517 . [all data]

Qian and Reineccius, 2002
Qian, M.; Reineccius, G., Identification of aroma compounds in Parmigiano-Reggiano cheese by gas chromatography/olfactometry, J. Dairy Sci., 2002, 85, 6, 1362-1369, https://doi.org/10.3168/jds.S0022-0302(02)74202-1 . [all data]

Suhardi, Suzuki, et al., 2002
Suhardi, S.; Suzuki, M.; Yoshida, K.; Muto, T.; Fujita, A.; Watanbe, N., Changes in the volatile compounds and in the chemical and physical properties of snake fruit (Salacca edulis Reinw) Cv. Pondoh during maturation, J. Agric. Food Chem., 2002, 50, 26, 7627-7633, https://doi.org/10.1021/jf020620e . [all data]

Chyau and Mau, 1999
Chyau, C.-C.; Mau, J.-L., Release of volatile compounds from microwave heating of garlic juice with 2,4-decadienals, Food Chem., 1999, 64, 4, 531-535, https://doi.org/10.1016/S0308-8146(98)00162-9 . [all data]

Vernin, Metzger, et al., 1988
Vernin, G.; Metzger, J.; Obretenov, T.; Suon, K.-N.; Fraisse, D., GC/MS (EI,PCI,SIM)-data bank analysis of volatile compounds arising from thermal degradation of glucose-valine amadori intermediates in Flavors and Fragrances: A World Perspective. Proceedings of the 10th International Congress of Essential Oils, Fragrances and Flavors, Lawrence,B.M.; Mookherjee,B.D.; Willis,B.J., ed(s)., Elsevier, New York, 1988, 999-1028. [all data]

Gyawali and Kim, 2012
Gyawali, R.; Kim, K.-S., Bioactive volatile compounds of three medicinal plants from Nepal, Kathmandu Univ. J. Sci., Engineering and Technol., 2012, 8, 1, 51-62. [all data]

Welke, Manfroi, et al., 2012
Welke, J.E.; Manfroi, V.; Zanus, M.; Lazarotto, M.; Zini, C.A., Characterization of the volatile profile of Brazilian merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection, J. Chromatogr. A, 2012, 1226, 124-139, https://doi.org/10.1016/j.chroma.2012.01.002 . [all data]

Kadar, Juan-Borras, et al., 2010
Kadar, M.; Juan-Borras, M.; Hellebrandova, M.; Domenech, E.; Escriche, I., Volatile fraction composition of Acacia (Robinia pseudoacacia) honey from Romania, Spain, and Check Republic, Bull. USAMV Agriculture, 2010, 67, 2, 259-265. [all data]

Berard, Bianchi, et al., 2007
Berard, J.; Bianchi, F.; Careri, M.; Chatel, A.; Mangia, A.; Musci, M., Characterization of the volatile fraction and of free fatty acids of Fontina Valle d'Aosta, a protected designation of origin Italian cheese, Food Chem., 2007, 105, 1, 293-300, https://doi.org/10.1016/j.foodchem.2006.11.041 . [all data]

Mattheis, Fan, et al., 2005
Mattheis, J.P.; Fan, X.; Argenta, L.C., Interactive Responses of Gala Apple Fruit Volatile Production to Controlled Atmosphere Storage and Chemical Inhibition of Ethylene Action, J. Agric. Food Chem., 2005, 53, 11, 4510-4516, https://doi.org/10.1021/jf050121o . [all data]

Kim. J.H., Ahn, et al., 2004
Kim. J.H.; Ahn, H.J.; Yook, H.S.; Kim, K.S.; Rhee, M.S.; Ryu, G.H.; Byun, M.W., Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce, Radiation Phys. Chem., 2004, 69, 2, 179-187, https://doi.org/10.1016/S0969-806X(03)00400-6 . [all data]

Mattheis, Buchanan, et al., 1992
Mattheis, J.P.; Buchanan, D.A.; Fellman, J.K., Volatile compounds emitted by sweet cherries (Prunus avium Cv. Bing) during fruit development and ripening, J. Agric. Food Chem., 1992, 40, 3, 471-474, https://doi.org/10.1021/jf00015a022 . [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References