Diphenylmethane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas39.4 ± 0.53kcal/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfgas38.79 ± 0.55kcal/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfgas39.39 ± 0.38kcal/molCcbSteele, Chirico, et al., 1995ALS
Δfgas37.43kcal/molN/AParks and Mosley, 1950Value computed using ΔfHliquid° value of 88.9 kj/mol from Parks and Mosley, 1950 and ΔvapH° value of 67.7 kj/mol from Steele, Chirico, et al., 1995.; DRB
Quantity Value Units Method Reference Comment
gas104.cal/mol*KN/AMarcus Y., 1986This value calculated from published spectroscopic and structural data is in close agreement with estimations by a method of increments (440-451 J/mol*K [85MAR/LOE, Dorofeeva O.V., 1997]). Value obtained from calorimetric data (508.5 J/mol*K [85MAR/LOE]) authors do not regard as reliable. Results of statistical thermodynamics calculation [ Puranik P.G., 1962] are likely to be erroneous (S(300 K)=319 J/mol*K).; GT

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid23.2 ± 0.53kcal/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfliquid23.2 ± 0.33kcal/molCcbSteele, Chirico, et al., 1995ALS
Δfliquid21.25kcal/molCcbParks and Mosley, 1950see Parks, West, et al., 1946; ALS
Quantity Value Units Method Reference Comment
Δcliquid-1655.6 ± 0.33kcal/molCcbSteele, Chirico, et al., 1995Corresponding Δfliquid = 23.1 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-1653.83 ± 0.32kcal/molCcbParks and Mosley, 1950see Parks, West, et al., 1946; Corresponding Δfliquid = 21.28 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
Δfsolid17.9 ± 0.53kcal/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfsolid27.3kcal/molCcbSchmidlin, 1906ALS
Quantity Value Units Method Reference Comment
Δcsolid-1595.kcal/molCcbSerijan and Wise, 1951Corresponding Δfsolid = -38. kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid-1656.6kcal/molCcbWise, Serijan, et al., 1951Corresponding Δfsolid = 24.0 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid-1656.20 ± 0.20kcal/molCcbCoops, Mulder, et al., 1946Reanalyzed by Cox and Pilcher, 1970, Original value = -1655.6 ± 0.2 kcal/mol; Corresponding Δfsolid = 23.65 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid-1659.9kcal/molCcbSchmidlin, 1906Corresponding Δfsolid = 27.3 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
solid,1 bar57.19cal/mol*KN/AHuffman, Parks, et al., 1930Extrapolation below 90 K, 77.86 J/mol*K.; DH

Constant pressure heat capacity of solid

Cp,solid (cal/mol*K) Temperature (K) Reference Comment
63.60303.Duff and Everett, 1956T = 303 to 353 K.; DH
66.90300.Kurbatov, 1950T = 29 to 254°C.; DH
55.81298.5Smith and Andrews, 1931T = 102 to 322 K. Value is unsmoothed experimental datum.; DH
53.49282.5Huffman, Parks, et al., 1930T = 89 to 312 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil535. ± 4.KAVGN/AAverage of 51 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus299. ± 2.KAVGN/AAverage of 83 out of 85 values; Individual data points
Quantity Value Units Method Reference Comment
Tc780. ± 60.KAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Pc27. ± 3.atmN/ATsonopoulos and Ambrose, 1995 
Pc26.75atmN/AWieczorek and Kobayashi, 1980Uncertainty assigned by TRC = 2.96 atm; TRC
Pc59.0000atmN/AGlaser and Ruland, 1957Uncertainty assigned by TRC = 3.0000 atm; TRC
Pc28.2000atmN/AGuye and Mallet, 1902Uncertainty assigned by TRC = 0.99995 atm; TRC
Pc28.2000atmN/AGuye and Mallet, 1902Uncertainty assigned by TRC = 0.99995 atm; TRC
Quantity Value Units Method Reference Comment
Vc0.563l/molN/ATsonopoulos and Ambrose, 1995 
Quantity Value Units Method Reference Comment
ρc1.8 ± 0.3mol/lN/ATsonopoulos and Ambrose, 1995 
ρc1.780mol/lN/AStephenson, 1992Uncertainty assigned by TRC = 0.12 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap16. ± 2.kcal/molAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Δsub20.8 ± 0.2kcal/molReviewRoux, Temprado, et al., 2008There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB
Δsub20.9 ± 0.2kcal/molN/AVerevkin, 1999AC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
15.3 ± 0.02340.IP,EBChirico and Steele, 2005Based on data from 330. to 588. K.; AC
14.6 ± 0.02380.IP,EBChirico and Steele, 2005Based on data from 330. to 588. K.; AC
13.8 ± 0.02420.IP,EBChirico and Steele, 2005Based on data from 330. to 588. K.; AC
13.1 ± 0.02460.IP,EBChirico and Steele, 2005Based on data from 330. to 588. K.; AC
12.4 ± 0.05500.IP,EBChirico and Steele, 2005Based on data from 330. to 588. K.; AC
11.7 ± 0.07540.IP,EBChirico and Steele, 2005Based on data from 330. to 588. K.; AC
15.9 ± 0.1323.GSVerevkin, 1999Based on data from 303. to 343. K.; AC
14.8368.N/ASohda, Okazaki, et al., 1990Based on data from 353. to 433. K.; AC
15.2363.N/ASasse, N'guimbi, et al., 1989Based on data from 303. to 402. K.; AC
17.3310.AStephenson and Malanowski, 1987Based on data from 295. to 383. K.; AC
13.6438.AStephenson and Malanowski, 1987Based on data from 423. to 583. K.; AC
13.3445.N/AWieczorek and Kobayashi, 1981AC
11.7535.N/AWieczorek and Kobayashi, 1981AC
13.0505.N/ACrafts, 1915Based on data from 490. to 555. K. See also Boublik, Fried, et al., 1984.; AC

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
21.2 ± 0.2284.GSVerevkin, 1999Based on data from 273. to 295. K.; AC
17.1286.EMSasse, N'guimbi, et al., 1989Based on data from 273. to 298. K.; AC
19.9 ± 0.79286.HSAChickos, Annunziata, et al., 1986Based on data from 276. to 295. K.; AC
19.71 ± 0.15299.8VAihara, 1959crystal phase; ALS
15.3278. to 299.N/ABloink, Pausacker, et al., 1951See also Jones, 1960.; AC
17.2 ± 0.2297.N/AWolf and Weghofer, 1938AC
17.2 ± 0.2297.VWolf and Weghofer, 1938, 2ALS

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Method Reference Comment
4.543298.4N/AChirico and Steele, 2005AC
4.441298.3ACDomalski and Hearing, 1996AC
4.4381298.3N/AHuffman, Parks, et al., 1930DH
4.5531299.4N/AEykman, 1889DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
14.90298.3Domalski and Hearing, 1996CAL
14.88298.3Huffman, Parks, et al., 1930DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C13H11- + Hydrogen cation = Diphenylmethane

By formula: C13H11- + H+ = C13H12

Quantity Value Units Method Reference Comment
Δr363.6 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr361.3 ± 2.3kcal/molG+TSCumming and Kebarle, 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr358.2 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr355.9 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; B

Chlorine anion + Diphenylmethane = (Chlorine anion • Diphenylmethane)

By formula: Cl- + C13H12 = (Cl- • C13H12)

Quantity Value Units Method Reference Comment
Δr7.40kcal/molTDEqFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
7.4300.PHPMSFrench, Ikuta, et al., 1982gas phase; M

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
Proton affinity (review)191.7kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity183.9kcal/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
<0.156 ± 0.043ECDWojnarovits and Foldiak, 1981EA is an upper limit: Chen and Wentworth, 1989. G3MP2B3 calculations indicate an EA of ca. -0.3 eV, anion unbound.; B

Ionization energy determinations

IE (eV) Method Reference Comment
9.4EITerlouw, Heerma, et al., 1974LLK
8.7 ± 0.1EIBohlmann, Koppel, et al., 1974LLK
8.55 ± 0.03PIPotapov, Kardash, et al., 1972LLK
9.00 ± 0.05EIPignataro, Mancini, et al., 1972LLK
8.67 ± 0.05PEDistefano, Pignataro, et al., 1976Vertical value; LLK
8.8PEEaton and Traylor, 1974Vertical value; LLK
8.80 ± 0.02PEMaier and Turner, 1973Vertical value; LLK
9.1PEPignataro, Mancini, et al., 1971Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C7H7+11.5 ± 0.1C6H5EIInnorta, Torroni, et al., 1973LLK
C13H9+14.9 ± 0.1H2+HEIRapp, Staab, et al., 1970RDSH
C13H11+11.2 ± 0.1HEIBohlmann, Koppel, et al., 1974LLK

De-protonation reactions

C13H11- + Hydrogen cation = Diphenylmethane

By formula: C13H11- + H+ = C13H12

Quantity Value Units Method Reference Comment
Δr363.6 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr361.3 ± 2.3kcal/molG+TSCumming and Kebarle, 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr358.2 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr355.9 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Chemical Concepts
NIST MS number 152251

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-1200.1448.7Giumanini, Verardo, et al., 2001 
CapillarySE-30100.1414.6Tudor, 199740. m/0.35 mm/0.35 μm
CapillaryDB-1160.001423.5van Haelst, van der Wielen, et al., 199630. m/0.32 mm/0.25 μm, He
CapillaryDB-1170.001429.8van Haelst, van der Wielen, et al., 199630. m/0.32 mm/0.25 μm, He
CapillaryOV-101140.1412.4Gerasimenko, Kirilenko, et al., 1981N2; Column length: 50. m; Column diameter: 0.3 mm
CapillaryOV-101160.1429.4Gerasimenko, Kirilenko, et al., 1981N2; Column length: 50. m; Column diameter: 0.3 mm
PackedSE-30150.1415.Shlyakhov, Anvaer, et al., 1975 
PackedSE-30200.1449.Shlyakhov, Anvaer, et al., 1975 
PackedApiezon L150.1458.Shlyakhov, Anvaer, et al., 1975 

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax 20M1980.Toda, Mihara, et al., 19832. K/min; Column length: 50. m; Column diameter: 0.23 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M1984.Toda, Mihara, et al., 19832. K/min; Column length: 50. m; Column diameter: 0.23 mm; Tstart: 80. C; Tend: 200. C

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-11405.2Gautzsch and Zinn, 19968. K/min; Tstart: 35. C; Tend: 300. C
CapillarySE-541418.1Shapi and Hesso, 199025. m/0.32 mm/0.15 μm, He, 40. C @ 1. min, 5. K/min, 280. C @ 15. min

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCP-Sil5 CB MS1403.9Helmig, Bocquet, et al., 200460. m/0.32 mm/0.25 μm, He; Program: 40C(1min) => 25C/min => 120C => 2C/min => 190C => 25C/min => 250C (5min)
CapillaryDB-11380.1Helmig, Bocquet, et al., 200430. m/0.32 mm/0.1 μm, He; Program: 40C(5min) => 20C/min => 100C => 2C/min => 160C => 40C/min => 250C (5min)
CapillaryDB-11389.6Helmig, Bocquet, et al., 200430. m/0.32 mm/0.25 μm, He; Program: 40C(5min) => 20C/min => 100C => 2C/min => 160C => 40C/min => 250C (5min)

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-101120.1412.Nabivach and Gerasimenko, 1996 
CapillaryPolidimethyl siloxane130.1401.Nabivach and Gerasimenko, 1996 
CapillaryPolidimethyl siloxane130.1406.Nabivach and Gerasimenko, 1996 

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryUltra-11400.Elizalde-González, Hutfliess, et al., 199650. m/0.2 mm/0.33 μm, H2, 3. K/min, 300. C @ 35. min; Tstart: 60. C
CapillaryUltra-11393.Okumura, 199125. m/0.32 mm/0.25 μm, He, 3. K/min; Tstart: 80. C; Tend: 260. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-11424.Grigor'ev, Bozhko, et al., 2009Helium; Program: not specified
CapillaryDB-11380.1Helmig, Revermann, et al., 200330. m/0.32 mm/0.1 μm, He; Program: 40C (2min) => 20C/min => 80C => 3C/min => 145C => 45C/min => 225C (3min)
CapillaryDB-11416.Peng, 199630. m/0.53 mm/1.5 μm; Program: 40 0C (4 min) 8 0C/min -> 200 0C (1 min) 5 0C/min -> 280 0C (20 min)
CapillaryMethyl Silicone1403.Zenkevich, 1994Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.1461.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1994.Peng, 199630. m/0.53 mm/1.0 μm; Program: 40 0C (4 min) 4 0C/min -> 200 0C (20 min)
CapillaryDB-Wax1994.Peng, Yang, et al., 1991Program: not specified

Lee's RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5247.0Wang, Hou, et al., 200730. m/0.30 mm/0.25 μm, Helium, 50. C @ 5. min, 5. K/min, 200. C @ 15. min
CapillaryHP-5241.6Shao, Wang, et al., 200630. m/0.3 mm/0.25 μm, He, 50. C @ 5. min, 5. K/min, 200. C @ 15. min
CapillaryHP-5249.09Marynowski, Pieta, et al., 200460. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 35. C; Tend: 300. C
CapillaryHP-5249.09Marynowski, Pieta, et al., 200460. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 35. C; Tend: 300. C
CapillaryHP-5245.77Piao, Chu, et al., 199930. m/0.25 mm/0.25 μm, 50. C @ 2. min, 4. K/min, 280. C @ 20. min
CapillaryBPX-5243.4Schwarzbauer, Franke, et al., 199950. m/0.25 mm/0.25 μm, He, 50. C @ 3. min, 3. K/min; Tend: 300. C
CapillaryCP Sil 8 CB245.6Bundt, Herbel, et al., 199150. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 80. C; Tend: 300. C
CapillarySE-54245.56Guillén, Blanco, et al., 198920. m/0.22 mm/0.20 μm, He, 4. K/min; Tstart: 50. C; Tend: 300. C
CapillarySE-52243.35Lee, Vassilaros, et al., 197912. m/0.3 mm/0.34 μm, He, 2. K/min; Tstart: 50. C; Tend: 250. C

Lee's RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCP Sil 8 CB245.6Bundt, Herbel, et al., 199150. m/0.25 mm/0.25 μm, He; Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Steele, Chirico, et al., 1995
Steele, W.V.; Chirico, R.D.; Smith, N.K., The standard enthalpies of formation of 2-methylbiphenyl and diphenylmethane, J. Chem. Thermodyn., 1995, 27, 671-678. [all data]

Parks and Mosley, 1950
Parks, G.S.; Mosley, J.R., Redetermination of the heat of combustion of diphenylmethane, J. Am. Chem. Soc., 1950, 72, 1850. [all data]

Marcus Y., 1986
Marcus Y., Entropies of tetrahedral M-phenyl species, J. Chem. Soc., Faraday Trans. 1, 1986, 82, 993-1006. [all data]

Dorofeeva O.V., 1997
Dorofeeva O.V., Unpublished results. Thermocenter of Russian Academy of Science, Moscow, 1997. [all data]

Puranik P.G., 1962
Puranik P.G., Vibrational spectra, potential constants, and thermodynamic properties of diphenylmethane, Proc. Indian Acad. Sci., 1962, A56, 233-238. [all data]

Parks, West, et al., 1946
Parks, G.S.; West, T.J.; Naylor, B.F.; Fujii, P.S.; McClaine, L.A., Thermal data on organic compounds. XXIII. Modern combustion data for fourteen hydrocarbons and five polyhydroxy alcohols, J. Am. Chem. Soc., 1946, 68, 2524-2527. [all data]

Schmidlin, 1906
Schmidlin, M.J., Recherches chimiques et thermochimiques sur la constitution des rosanilines, Ann. Chim. Phys., 1906, 1, 195-256. [all data]

Serijan and Wise, 1951
Serijan, K.T.; Wise, P.H., Dicyclic hydrocarbons. III. Diphenyl- and dicyclohexylalkanes through C15, J. Am. Chem. Soc., 1951, 73, 4766-4769. [all data]

Wise, Serijan, et al., 1951
Wise, C.H.; Serijan, K.T.; Goodman, I.A., NACA Technical Report 1003, NACA Technical Report 1003, 1951, 1-10. [all data]

Coops, Mulder, et al., 1946
Coops, J.; Mulder, D.; Dienske, J.W.; Smittenberg, J., The heats of combustion of a number of hydrocarbons, Rec. Trav. Chim. Pays/Bas, 1946, 65, 128. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Daniels, A.C., Thermal data on organic compounds. VII. The heat capacities, entropies and free energies of twelve aromatic hydrocarbons, J. Am. Chem. Soc., 1930, 52, 1547-1558. [all data]

Duff and Everett, 1956
Duff, G.M.; Everett, D.H., The heat capacity of the system benzene + diphenylmethane, Trans. Faraday Soc., 1956, 52, 753-763. [all data]

Kurbatov, 1950
Kurbatov, V.Ya., Specific heats of liquids. III. Specific heat of hydrocarbons with several noncondensed rings, Zhur. Obshch. Khim., 1950, 20, 1139-1144. [all data]

Smith and Andrews, 1931
Smith, R.H.; Andrews, D.H., Thermal energy studies. I. Phenyl derivatives of methane, ethane and some related compounds. J. Am. Chem. Soc., 1931, 53, 3644-3660. [all data]

Tsonopoulos and Ambrose, 1995
Tsonopoulos, C.; Ambrose, D., Vapor-Liquid Critical Properties of Elements and Compounds. 3. Aromatic Hydrocarbons, J. Chem. Eng. Data, 1995, 40, 547-558. [all data]

Wieczorek and Kobayashi, 1980
Wieczorek, S.A.; Kobayashi, R., Vapor pressure measurements of diphenylmethane, thianaphthene, and bicyclohexyl at elevated temperatures, J. Chem. Eng. Data, 1980, 25, 302. [all data]

Glaser and Ruland, 1957
Glaser, F.; Ruland, H., Untersuchungsen über dampfdruckkurven und kritische daten einiger technisch wichtiger organischer substanzen, Chem. Ing. Techn., 1957, 29, 772. [all data]

Guye and Mallet, 1902
Guye, P.A.; Mallet, E., Measurement of Critical Constants, Arch. Sci. Phys. Nat., 1902, 13, 274-296. [all data]

Stephenson, 1992
Stephenson, R.M., Mutual solubilities: water-ketones, water-ethers, and water-gasoline- alcohols, J. Chem. Eng. Data, 1992, 37, 80-95. [all data]

Verevkin, 1999
Verevkin, Sergey P., Thermochemical Properties of Diphenylalkanes, J. Chem. Eng. Data, 1999, 44, 2, 175-179, https://doi.org/10.1021/je980200e . [all data]

Chirico and Steele, 2005
Chirico, Robert D.; Steele, William V., Thermodynamic Properties of Diphenylmethane «8224», J. Chem. Eng. Data, 2005, 50, 3, 1052-1059, https://doi.org/10.1021/je050034s . [all data]

Sohda, Okazaki, et al., 1990
Sohda, M.; Okazaki, M.; Iwai, Y.; Arai, Y.; Sakoguchi, A.; Ueoka, R.; Kato, Y., Vapor pressures of cyclohexylbenzene and diphenylmethane, The Journal of Chemical Thermodynamics, 1990, 22, 6, 607-608, https://doi.org/10.1016/0021-9614(90)90152-G . [all data]

Sasse, N'guimbi, et al., 1989
Sasse, K.; N'guimbi, J.; Jose, J.; Merlin, J.C., Tension de vapeur d'hydrocarbures polyaromatiques dans le domaine 10-3--10 Torr, Thermochimica Acta, 1989, 146, 53-61, https://doi.org/10.1016/0040-6031(89)87075-3 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Wieczorek and Kobayashi, 1981
Wieczorek, Stefan A.; Kobayashi, Riki, Vapor-pressure measurements of 1-methylnaphthalene, 2-methylnaphthalene, and 9,10-dihydrophenanthrene at elevated temperatures, J. Chem. Eng. Data, 1981, 26, 1, 8-11, https://doi.org/10.1021/je00023a005 . [all data]

Crafts, 1915
Crafts, J.M., J. Chim. Phys. Phys.-Chim. Biol., 1915, 13, 105. [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Chickos, Annunziata, et al., 1986
Chickos, J.S.; Annunziata, R.; Ladon, L.H.; Hyman, A.S.; Liebman, J.F., Estimating heats of sublimation of hydrocarbons. A semiempirical approach, J. Org. Chem., 1986, 51, 4311-4314. [all data]

Aihara, 1959
Aihara, A., Estimation of the energy of hydrogen bonds formed in crystals. I. Sublimation pressures of some organic molecular crystals and the additivity of lattice energy, Bull. Chem. Soc. Jpn., 1959, 32, 1242. [all data]

Bloink, Pausacker, et al., 1951
Bloink, G.J.; Pausacker, K.H.; Jones, A.S.; Lee, W.A.; Peacocke, A.R.; Bright, Norman F.H.; Moffatt, J.S.; Wilkinson, J.H., Notes, J. Chem. Soc., 1951, 622, https://doi.org/10.1039/jr9510000622 . [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Wolf and Weghofer, 1938
Wolf, K.L.; Weghofer, H.Z., Z. Phys. Chem. Abt. B, 1938, 39, 194. [all data]

Wolf and Weghofer, 1938, 2
Wolf, K.L.; Weghofer, H., Uber sublimationswarmen, Z. Phys. Chem., 1938, 39, 194-208. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Eykman, 1889
Eykman, J.F., Zur kryoskopischen Molekulargewichtsbestimmung, Z. Physik. Chem., 1889, 4, 497-519. [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Wojnarovits and Foldiak, 1981
Wojnarovits, L.; Foldiak, G., Electron capture detection of aromatic hydrocarbons, J. Chromatogr. Sci., 1981, 206, 511. [all data]

Chen and Wentworth, 1989
Chen, E.C.M.; Wentworth, W.E., Experimental Determination of Electron Affinities of Organic Molecules, Mol. Cryst. Liq. Cryst., 1989, 171, 271. [all data]

Terlouw, Heerma, et al., 1974
Terlouw, J.K.; Heerma, W.; Frintrop, P.C.M.; Dijkstra, G.; Meinema, H.A., Electron-impact induced fragmentation of some heterocyclic-tin compounds, J. Organomet. Chem., 1974, 64, 205. [all data]

Bohlmann, Koppel, et al., 1974
Bohlmann, F.; Koppel, C.; Muller, B.; Schwarz, H.; Weyerstahl, P., Massenspektrometrische Untersuchung isomerer Kohlenwasserstoffe: Struktur und Bildungsenthalpie stabiler (C13H11+) Ionen, Tetrahedron, 1974, 30, 1011. [all data]

Potapov, Kardash, et al., 1972
Potapov, V.K.; Kardash, I.E.; Sorokin, V.V.; Sokolov, S.A.; Evlasheva, T.I., Photoionization of heteroaromatic compounds, Khim. Vys. Energ., 1972, 6, 392. [all data]

Pignataro, Mancini, et al., 1972
Pignataro, S.; Mancini, V.; Innorta, G.; Distefano, G., Ionization energies and ring orbital interaction in diarylmethanes and diaryleth, Z. Naturforsch., 1972, 27, 534. [all data]

Distefano, Pignataro, et al., 1976
Distefano, G.; Pignataro, S.; Szepes, L.; Borossay, J., Photoelectron spectroscopy study of the triphenyl derivatives of the group IV elements, J. Organomet. Chem., 1976, 104, 173. [all data]

Eaton and Traylor, 1974
Eaton, D.F.; Traylor, T.G., Distortional stabilization in phenyl participations, J. Am. Chem. Soc., 1974, 96, 7109. [all data]

Maier and Turner, 1973
Maier, J.P.; Turner, D.W., Steric inhibition of resonance studied by molecular photoelectron spectroscopy. Part 2. Phenylethylenes, J. Chem. Soc. Faraday Trans. 2, 1973, 69, 196. [all data]

Pignataro, Mancini, et al., 1971
Pignataro, S.; Mancini, V.; Ridyard, J.N.A.; Lempka, H.J., Photoelectron energy spectra of molecules having classically non-conjugated π-systems, Chem. Commun., 1971, 142. [all data]

Innorta, Torroni, et al., 1973
Innorta, G.; Torroni, S.; Pignataro, S.; Mancini, V., The activation energy as guiding factor in the fragmentation of substituted diphenylmethanes, Org. Mass Spectrom., 1973, 7, 1399. [all data]

Rapp, Staab, et al., 1970
Rapp, U.; Staab, H.A.; Wunsche, C., Skelettumlagerungen unter Elektronenbeschuss-IV: zur Struktur der C13H9- und C12H9N-Ionen bei Benzylidenaminobenztriazolen, Org. Mass Spectrom., 1970, 3, 45. [all data]

Giumanini, Verardo, et al., 2001
Giumanini, A.G.; Verardo, G.; Soják, L.; Kubinec, R.; Perjéssy, A., Identification of mononitro and dinitro isomers of diphenylmethane by GC-FT-IR and GC-MS techniques, Ind. Eng. Chem. Res., 2001, 40, 6, 1449-1453, https://doi.org/10.1021/ie000667u . [all data]

Tudor, 1997
Tudor, E., Temperature dependence of the retention index for perfumery compounds on a SE-30 glass capillary column. I. Linear equations, J. Chromatogr. A, 1997, 779, 1-2, 287-297, https://doi.org/10.1016/S0021-9673(97)00453-6 . [all data]

van Haelst, van der Wielen, et al., 1996
van Haelst, Anniek G.; van der Wielen, Frans W.M.; Govers, Harrie A.J., Gas chromatographic determination of liquid vapour pressure and heat of vaporization of tetrachlorobenzyltoluenes, Journal of Chromatography A, 1996, 727, 2, 265-273, https://doi.org/10.1016/0021-9673(95)01146-3 . [all data]

Gerasimenko, Kirilenko, et al., 1981
Gerasimenko, V.A.; Kirilenko, A.V.; Nabivach, V.M., Capillary gas chromatography of aromatic compounds found in coal tar fractions, J. Chromatogr., 1981, 208, 1, 9-16, https://doi.org/10.1016/S0021-9673(00)87953-4 . [all data]

Shlyakhov, Anvaer, et al., 1975
Shlyakhov, A.F.; Anvaer, B.I.; Zolotareva, O.V.; Romina, N.N.; Novikova, N.V.; Koreshkova, R.I., On the possibility of group indentification of hydrocarbons by gas chromatography from temperature coefficients of retention indices, Zh. Anal. Khim., 1975, 30, 788-792. [all data]

Toda, Mihara, et al., 1983
Toda, H.; Mihara, S.; Umano, K.; Shibamoto, T., Photochemical studies on jasmin oil, J. Agric. Food Chem., 1983, 31, 3, 554-558, https://doi.org/10.1021/jf00117a022 . [all data]

Gautzsch and Zinn, 1996
Gautzsch, R.; Zinn, P., Use of incremental models to estimate the retention indexes of aromatic compounds, Chromatographia, 1996, 43, 3/4, 163-176, https://doi.org/10.1007/BF02292946 . [all data]

Shapi and Hesso, 1990
Shapi, M.M.; Hesso, A., Thermal decomposition of polystyrene volatile compounds from large-scale pyrolysis, J. Anal. Appl. Pyrolysis, 1990, 18, 2, 143-161, https://doi.org/10.1016/0165-2370(90)80004-8 . [all data]

Helmig, Bocquet, et al., 2004
Helmig, D.; Bocquet, F.; Pollmann, J.; Revermann, T., Analytical techniques for sesquiterpene emission rate studies in vegetation enclosure experiments, Atmos. Environ., 2004, 38, 4, 557-572, https://doi.org/10.1016/j.atmosenv.2003.10.012 . [all data]

Nabivach and Gerasimenko, 1996
Nabivach, V.M.; Gerasimenko, V.A., Gas chromatographic retention characteristics of bicyclic aromatic hydrocarbons, Coke and Chemistry (Rus), 1996, 6, 27-31. [all data]

Elizalde-González, Hutfliess, et al., 1996
Elizalde-González, M.P.; Hutfliess, M.; Hedden, K., Retention index system, adsorption characteristics, and sructure correlations of polycyclic aromatic hydrocarbons in fuels, J. Hi. Res. Chromatogr., 1996, 19, 6, 345-352, https://doi.org/10.1002/jhrc.1240190608 . [all data]

Okumura, 1991
Okumura, T., retention indices of environmental chemicals on methyl silicone capillary column, Journal of Environmental Chemistry (Japan), 1991, 1, 2, 333-358, https://doi.org/10.5985/jec.1.333 . [all data]

Grigor'ev, Bozhko, et al., 2009
Grigor'ev, A.M.; Bozhko, E.S.; Rudakova, L.V., Use of correlation between retention indices on low-polarity phases for screening comp-lex mixtures by gas chromatography-mass spectrometry, Rus. J. Anal. Chem., 2009, 64, 2, 140-143, https://doi.org/10.1134/S1061934809020087 . [all data]

Helmig, Revermann, et al., 2003
Helmig, D.; Revermann, T.; Pollmann, J.; Kaltschmidt, O.; Hernández, A.J.; Bocquet, F.; David, D., Calibration system and analytical considerations for quantitative sesquiterpene measurements in air, J. Chromatogr. A, 2003, 1002, 1-2, 193-211, https://doi.org/10.1016/S0021-9673(03)00619-8 . [all data]

Peng, 1996
Peng, C.T., Gas chromatographic identification of aromatic hydrocarbons in Liquid Scintillation Spectrometry, Cook, G.T.; Harkness, D.D.; MacKenzie, A.B.; Miller, B.F.; Scott, E.M., ed(s)., 1996, 221-232. [all data]

Zenkevich, 1994
Zenkevich, I.G., Contemporary State of Informational Maintenance for Gas Chromatographic Identification of Chlorinated Polycyclic Aromatic Compounds, Zh. Ecol. Khim., 1994, 3, 2, 111-119. [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]

Wang, Hou, et al., 2007
Wang, G.; Hou, Z.; Sun, Y.; Liu, Y.; Xie, B.; Liu, S., Investigation of pyrolysis behavior of fenoxycarb using PY-GC-MS assisted with chemometric methods, Chem. Anal., 2007, 52, 141-156. [all data]

Shao, Wang, et al., 2006
Shao, X.; Wang, G.; Sun, Y.; Zhang, R.; Xie, K.; Liu, H., Determination and Characterization of the Pyrolysis Products of Isoprocarb by GC-MS, J. Chromatogr. Sci., 2006, 44, 3, 141-147, https://doi.org/10.1093/chromsci/44.3.141 . [all data]

Marynowski, Pieta, et al., 2004
Marynowski, L.; Pieta, M.; Janeczek, J., Composition and source of polycyclic aromatic compounds in deposited dust from selected sites around the Upper Silesia, Poland, Geol. Q., 2004, 48, 2, 169-180. [all data]

Piao, Chu, et al., 1999
Piao, M.; Chu, S.; Zheng, M.; Xu, X., Characterization of the combustion products of polyethylene, Chemosphere, 1999, 39, 9, 1497-1512, https://doi.org/10.1016/S0045-6535(99)00054-5 . [all data]

Schwarzbauer, Franke, et al., 1999
Schwarzbauer, J.; Franke, S.; Francke, W., Chlorinated di- and triphenylmethanes in sediments of the Mulde and Elbe rivers. Part IV of organic compounds as contaminants of the Elbe river and its tributaries, Fresenius J. Anal. Chem., 1999, 365, 6, 529-536, https://doi.org/10.1007/s002160051517 . [all data]

Bundt, Herbel, et al., 1991
Bundt, J.; Herbel, W.; Steinhart, H.; Franke, S.; Francke, W., Structure-type separation of diesel fuels by solid phase extraction and identification of the two- and three-ring aromatics by capillary GC-mass spectrometry, J. Hi. Res. Chromatogr., 1991, 14, 2, 91-98, https://doi.org/10.1002/jhrc.1240140205 . [all data]

Guillén, Blanco, et al., 1989
Guillén, M.D.; Blanco, J.; Bermejo, J.; Blanco, C.G., Temperature programmed retention indices of some PAHs on Capillary columns coated with OV-1701 and SE-54, J. Hi. Res. Chromatogr., 1989, 12, 8, 552-554, https://doi.org/10.1002/jhrc.1240120816 . [all data]

Lee, Vassilaros, et al., 1979
Lee, M.L.; Vassilaros, D.L.; White, C.M.; Novotny, M., Retention Indices for Programmed-Temperature Capillary-Column Gas Chromatography of Polycyclic Aromatic Hydrocarbons, Anal. Chem., 1979, 51, 6, 768-773, https://doi.org/10.1021/ac50042a043 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References