Sulfuric Acid
- Formula: H2O4S
- Molecular weight: 98.078
- IUPAC Standard InChIKey: QAOWNCQODCNURD-UHFFFAOYSA-N
- CAS Registry Number: 7664-93-9
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: H2SO4; Dipping acid; Hydrogen sulfate; Oil of vitriol; Sulphuric acid; Acide sulfurique; Acido solforico; BOV; Matting acid; Nordhausen acid; Schwefelsaeureloesungen; Vitriol brown oil; Vitriol, oil of; Zwavelzuuroplossingen; O2S(OH)2; Battery acid; Electrolyte acid; Spirit of alum; Spirit of vitriol; Dihydrogen sulfate; Mattling acid; UN 1830 (Salt/Mix); UN 1832 (Salt/Mix); UN 2796 (Salt/Mix)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
MS - José A. Martinho Simões
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
HO4S- + =
By formula: HO4S- + H+ = H2O4S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1295. ± 23. | kJ/mol | D-EA | Wang, Nicholas, et al., 2000 | gas phase; Lit BDE seems too weak. This plus Viggiano, Henchman, et al., 1992 gives BDE=106; B |
ΔrH° | 1295. ± 11. | kJ/mol | G+TS | Viggiano, Henchman, et al., 1992 | gas phase; B |
ΔrH° | 1325.5 | kJ/mol | Latt | House Jr. and Kemper, 1987 | gas phase; From lattice energy of NH4HSO4, with new PA(NH3); B |
ΔrH° | <1319.6 | kJ/mol | G+TS | Vigiano, Perry, et al., 1980 | gas phase; I- + H2SO4 ->.; B |
ΔrH° | <1312. ± 8.4 | kJ/mol | EIAE | Adams, Smith, et al., 1986 | gas phase; From H2SO4 (AP 0eV); B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1265. ± 23. | kJ/mol | H-TS | Wang, Nicholas, et al., 2000 | gas phase; Lit BDE seems too weak. This plus Viggiano, Henchman, et al., 1992 gives BDE=106; B |
ΔrG° | 1265. ± 10. | kJ/mol | IMRB | Viggiano, Henchman, et al., 1992 | gas phase; B |
ΔrG° | <1288.7 | kJ/mol | IMRB | Vigiano, Perry, et al., 1980 | gas phase; I- + H2SO4 ->.; B |
ΔrG° | <1281. ± 9.6 | kJ/mol | H-TS | Adams, Smith, et al., 1986 | gas phase; From H2SO4 (AP 0eV); B |
C2H5NaO (cr) + 0.5( • 1100) (solution) = (solution) + 0.5 (solution)
By formula: C2H5NaO (cr) + 0.5(H2O4S • 1100H2O) (solution) = C2H6O (solution) + 0.5Na2O4S (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -118.4 ± 3.8 | kJ/mol | RSC | Blanchard, Joly, et al., 1974 | solvent: Sulphuric acid aqueous solution; The reaction enthalpy relies on -10.6 kJ/mol for the enthalpy of solution of EtOH(l) and on 9.97±0.04 for the enthalpy of solution of Na2SO4(cr) Blanchard, Joly, et al., 1974. A value of -490.8 ± 5.9 kJ/mol was derived in Blanchard, Joly, et al., 1974 for the enthalpy of formation. However, this value is affected by a calculation error. Also, the authors have not accounted for the acid dilution (this correction could not be made in the present database, due to lack of information). These problems were also noted in the data compilations Tel'noi and Rabinovich, 1980 and Wagman, Evans W.H., et al., 1982, where the values quoted for the enthalpy of formation, which rely on the experimental data reported in Blanchard, Joly, et al., 1974, are -410.0 ± 4.2 kJ/mol and -413.8 kJ/mol, respectively. See also comments in Liebman, Martinho Simões, et al., 1995; MS |
(HO4S- • 2) + HO3S = (HO4S- • HO3S • 2)
By formula: (HO4S- • 2H2O4S) + HO3S = (HO4S- • HO3S • 2H2O4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 87.9 | kJ/mol | ATM | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
ΔrH° | 75. | kJ/mol | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated, DG>, ΔrH>; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
ΔrS° | 100. | J/mol*K | N/A | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated, DG>, ΔrH>; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
61.9 | 250. | ATM | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
50. | 233. | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated, DG>, ΔrH>; M |
By formula: (HO4S- • 2H2O4S) + H2O4S = (HO4S- • 3H2O4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 87.0 | kJ/mol | ATM | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
ΔrH° | 82.8 | kJ/mol | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
ΔrS° | 100. | J/mol*K | N/A | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
61.1 | 250. | ATM | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
59. | 233. | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
(HO4S- • • 3) + = (HO4S- • 2 • 3)
By formula: (HO4S- • H2O • 3H2O4S) + H2O = (HO4S- • 2H2O • 3H2O4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.4 | kJ/mol | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
30. | 233. | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
(H2O4S- • ) + HO3S = (H2O4S- • HO3S • )
By formula: (H2O4S- • H2O4S) + HO3S = (H2O4S- • HO3S • H2O4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 92.5 | kJ/mol | ATM | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
66.5 | 250. | ATM | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
By formula: (HO4S- • 2H2O4S) + HNO3 = (HO4S- • HNO3 • 2H2O4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66.5 | kJ/mol | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
43.1 | 233. | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
By formula: (HO4S- • 3H2O4S) + HNO3 = (HO4S- • HNO3 • 3H2O4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70.7 | kJ/mol | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
46.4 | 233. | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
By formula: (HO4S- • 2H2O4S) + H2O = (HO4S- • H2O • 2H2O4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.6 | kJ/mol | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
26. | 233. | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
By formula: (HO4S- • 3H2O4S) + H2O = (HO4S- • H2O • 3H2O4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 57.7 | kJ/mol | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
33. | 233. | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
By formula: (HO4S- • 4H2O4S) + H2O = (HO4S- • H2O • 4H2O4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 58.2 | kJ/mol | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
34. | 233. | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
By formula: (HO4S- • H2O4S) + H2O4S = (HO4S- • 2H2O4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 92.0 | kJ/mol | ATM | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
66.1 | 250. | ATM | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
By formula: (HO4S- • 3H2O4S) + H2O4S = (HO4S- • 4H2O4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 77.4 | kJ/mol | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
54. | 233. | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
By formula: (HO4S- • 4H2O4S) + H2O4S = (HO4S- • 5H2O4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 79.1 | kJ/mol | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
54. | 233. | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
C2H5LiO (cr) + 0.5( • 1100) (solution) = 0.5Li2O4S (solution) + (solution)
By formula: C2H5LiO (cr) + 0.5(H2O4S • 1100H2O) (solution) = 0.5Li2O4S (solution) + C2H6O (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -113.6 ± 1.3 | kJ/mol | RSC | Blanchard, Joly, et al., 1974 | solvent: Sulphuric acid aqueous solution; The reaction enthalpy relies on -10.6 kJ/mol for the enthalpy of solution of EtOH(l) and on -17.5±0.3 for the enthalpy of solution of Li2SO4(cr) Blanchard, Joly, et al., 1974.; MS |
C2H5KO (cr) + 0.5( • 1100) (solution) = (solution) + 0.5K2O4S (solution)
By formula: C2H5KO (cr) + 0.5(H2O4S • 1100H2O) (solution) = C2H6O (solution) + 0.5K2O4S (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -132.3 ± 2.9 | kJ/mol | RSC | Blanchard, Joly, et al., 1974 | solvent: Sulphuric acid aqueous solution; The reaction enthalpy relies on -10.6 kJ/mol for the enthalpy of solution of EtOH(l) and on 35.1±0.1 for the enthalpy of solution of K2SO4(cr) Blanchard, Joly, et al., 1974.; MS |
(l) + ( • 100) (solution) = 2 (g) + ( • 100) (solution)
By formula: C2H6Zn (l) + (H2O4S • 100H2O) (solution) = 2CH4 (g) + (O4SZn • 100H2O) (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -341.8 ± 0.8 | kJ/mol | RSC | Carson, Hartley, et al., 1949 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970.; MS |
(l) + ( • 100) (solution) = 2 (g) + ( • 100) (solution)
By formula: C4H10Zn (l) + (H2O4S • 100H2O) (solution) = 2C2H6 (g) + (O4SZn • 100H2O) (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -354.4 ± 4.2 | kJ/mol | RSC | Carson, Hartley, et al., 1949 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970.; MS |
+ = C12H26O3S +
By formula: C12H26 + H2O4S = C12H26O3S + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 290. ± 17. | kJ/mol | Cm | Roth and Rist-Schumacher, 1944 | liquid phase; ALS |
By formula: C3H6 + H2O4S = isopropyl hydrogen sulphate
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -38. ± 0.8 | kJ/mol | Eqk | Entelis, Korovina, et al., 1960 | liquid phase; ALS |
Henry's Law data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
1.×10+11 | M | N/A | Value derived from partial pressure of H2SO4 over a concentrated solution. This can only be considered an order-of-magnitude approximation. The solubility at lower aqueous-phase concentrations should be larger. | |
5.×10+14 | M | N/A | Value derived from partial pressure of H2SO4 over a concentrated solution. This can only be considered an order-of-magnitude approximation. The solubility at lower aqueous-phase concentrations should be larger. |
Gas phase ion energetics data
Go To: Top, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Proton affinity (review) | 699.4 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 666.9 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°(+) ion | 500. ± 20. | kJ/mol | N/A | N/A |
Gas basicity at 298K
Gas basicity (review) (kJ/mol) | Reference | Comment |
---|---|---|
683. ± 5. | Do, Klein, et al., 1998 | T = T(eff) = 800 - 1250K; H2S; H2CO. ΔGB values from kinetic bracketing were extrapolated to 298 K. ΔSp from ab initio rot. and vib. constants; MM |
≥680. | Do, Klein, et al., 1998 | MM |
Protonation entropy at 298K
Protonation entropy (J/mol*K) | Reference | Comment |
---|---|---|
4.9 | Do, Klein, et al., 1998 | T = T(eff) = 800 - 1250K; H2S; H2CO. ΔGB values from kinetic bracketing were extrapolated to 298 K. ΔSp from ab initio rot. and vib. constants; MM |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
12.40 ± 0.05 | EI | Snow and Thomas, 1990 | LL |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
HSO3+ | 13.9 ± 0.1 | HO | EI | Snow and Thomas, 1990 | LL |
H2O+ | 13.2 ± 0.2 | SO3 | EI | Snow and Thomas, 1990 | LL |
SO2+ | 15.97 ± 0.15 | H2O2 | EI | Snow and Thomas, 1990 | LL |
SO3+ | 13.8 ± 0.2 | H2O | EI | Snow and Thomas, 1990 | LL |
De-protonation reactions
HO4S- + =
By formula: HO4S- + H+ = H2O4S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1295. ± 23. | kJ/mol | D-EA | Wang, Nicholas, et al., 2000 | gas phase; Lit BDE seems too weak. This plus Viggiano, Henchman, et al., 1992 gives BDE=106; B |
ΔrH° | 1295. ± 11. | kJ/mol | G+TS | Viggiano, Henchman, et al., 1992 | gas phase; B |
ΔrH° | 1325.5 | kJ/mol | Latt | House Jr. and Kemper, 1987 | gas phase; From lattice energy of NH4HSO4, with new PA(NH3); B |
ΔrH° | <1319.6 | kJ/mol | G+TS | Vigiano, Perry, et al., 1980 | gas phase; I- + H2SO4 ->.; B |
ΔrH° | <1312. ± 8.4 | kJ/mol | EIAE | Adams, Smith, et al., 1986 | gas phase; From H2SO4 (AP 0eV); B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1265. ± 23. | kJ/mol | H-TS | Wang, Nicholas, et al., 2000 | gas phase; Lit BDE seems too weak. This plus Viggiano, Henchman, et al., 1992 gives BDE=106; B |
ΔrG° | 1265. ± 10. | kJ/mol | IMRB | Viggiano, Henchman, et al., 1992 | gas phase; B |
ΔrG° | <1288.7 | kJ/mol | IMRB | Vigiano, Perry, et al., 1980 | gas phase; I- + H2SO4 ->.; B |
ΔrG° | <1281. ± 9.6 | kJ/mol | H-TS | Adams, Smith, et al., 1986 | gas phase; From H2SO4 (AP 0eV); B |
Mass spectrum (electron ionization)
Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Chemical Concepts |
NIST MS number | 152491 |
References
Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Wang, Nicholas, et al., 2000
Wang, X.B.; Nicholas, J.B.; Wang, L.S.,
Photoelectron spectroscopy and theoretical calculations of SO4- and HSO4-: Confirmation of high electron affinities of SO4 and HSO4,
J. Phys. Chem. A, 2000, 104, 3, 504-508, https://doi.org/10.1021/jp992726r
. [all data]
Viggiano, Henchman, et al., 1992
Viggiano, A.A.; Henchman, M.J.; Dale, F.; Deakyne, C.A.; Paulson, J.F.,
Gas-Phase Reactions of Weak Bronsted Bases I-, PO3-, HSO4-, FSO3-, and CF3SO3- with Strong Bronsted Acids H2SO4, FSO3H, and CF3SO3H - A Quantitative Study,
J. Am. Chem. Soc., 1992, 114, 11, 4299, https://doi.org/10.1021/ja00037a039
. [all data]
House Jr. and Kemper, 1987
House Jr.; Kemper, K.A.,
Proton Affinities of Sulfate and Bisulfate Ions,
J. Thermal Anal., 1987, 32, 6, 1855, https://doi.org/10.1007/BF01913977
. [all data]
Vigiano, Perry, et al., 1980
Vigiano, A.A.; Perry, R.A.; Albritton, D.L.; Ferguson, E.E.; Fehsenfeld, F.C.,
The role of H2SO4 in stratospheric negative ion chemistry,
J. Geophys. Res., 1980, 85, 4551. [all data]
Adams, Smith, et al., 1986
Adams, N.G.; Smith, D.; Viggiano, A.A.; Paulson, J.F.; Henchman, M.J.,
Dissociative attachment reactions of electron with strong acid molecules,
J. Chem. Phys., 1986, 84, 6728. [all data]
Blanchard, Joly, et al., 1974
Blanchard, J.M.; Joly, R.D.; Lettoffe, J.M.; Perachon, G.; Thourey, J.,
J. Chim. Phys. Phys.-Chim. Biol., 1974, 71, 472. [all data]
Tel'noi and Rabinovich, 1980
Tel'noi, V.I.; Rabinovich, I.B.,
Russ. Chem. Rev., 1980, 49, 603. [all data]
Wagman, Evans W.H., et al., 1982
Wagman, D.D.; Evans W.H.; Parker, V.B.; Schumm, R.H.; Halow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L.,
The NBS Tables of Chemical Thermodynamic Properties; J. Phys. Chem. Ref. Data, 1982, 11, Suppl. 2. [all data]
Liebman, Martinho Simões, et al., 1995
Liebman, J.F.; Martinho Simões, J.A.; Slayden, S.W.,
In Lithium Chemistry: A Theoretical and Experimental Overview Wiley: New York, Sapse, A.-M.; Schleyer, P. von Ragué, ed(s)., 1995. [all data]
Arnold and Qiu, 1984
Arnold, F.; Qiu, S.,
Upper Stratosphere Negative Ion Composition Measurements and Infrared Trace Gas Abundances,
Planet. Space Sci., 1984, 32, 2, 169, https://doi.org/10.1016/0032-0633(84)90151-X
. [all data]
Arnold, Viggiano, et al., 1982
Arnold, F.; Viggiano, A.A.; Schlager, H.,
Implications for Trace Gases and Aerosols of Large Negative Ions Clusters in the Stratosphere,
Nature, 1982, 297, 5865, 371, https://doi.org/10.1038/297371a0
. [all data]
Carson, Hartley, et al., 1949
Carson, A.S.; Hartley, K.; Skinner, H.A.,
Thermochemistry of metal alkyls. Part II.?The bond dissociation energies of some Zn?C and Cd?C bonds, and of Et?I.,
Trans. Faraday Soc., 1949, 45, 1159, https://doi.org/10.1039/tf9494501159
. [all data]
Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J.,
Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds
in Academic Press, New York, 1970. [all data]
Roth and Rist-Schumacher, 1944
Roth, W.A.; Rist-Schumacher, E.,
Beitrag zur thermochemie der sulfonsauren und saurechlorid,
Z. Electrochem., 1944, 50, 7-9. [all data]
Entelis, Korovina, et al., 1960
Entelis, S.G.; Korovina, G.V.; Chirkov, N.M.,
The thermodynamics of propylene absorption by the H2SO4-H20 system,
Dokl. Akad. Nauk SSSR, 1960, 134, 856-859. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Do, Klein, et al., 1998
Do, K.; Klein, T.P.; Pommering, C.A.; Bachrach, S.M.; Sunderlin, L.S.,
The gas-phase basicity of sulfuric acid,
J. Am. Chem. Soc., 1998, 120, 6093. [all data]
Snow and Thomas, 1990
Snow, K.B.; Thomas, T.F.,
Mass spectrum, ionization potential, and appearance potentials for fragment ions of sulfuric acid vapor,
Int. J. Mass Spectrom. Ion Processes, 1990, 96, 49. [all data]
Notes
Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References
- Symbols used in this document:
AE Appearance energy T Temperature d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.