Iodine
- Formula: I2
- Molecular weight: 253.80894
- IUPAC Standard InChIKey: PNDPGZBMCMUPRI-UHFFFAOYSA-N
- CAS Registry Number: 7553-56-2
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: I2; Eranol; Iode; Iodine-127; Iodio; Iosan Superdip; Jod; Jood; Molecular iodine; Tincture iodine; Vistarin; Iodine crystals; Iodine sublimed; Diiodine; Diatomic iodine
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1 to 50
+ = I3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 136. ± 10. | kJ/mol | N/A | Taylor, Asmis, et al., 1999 | gas phase; B |
ΔrH° | 126. ± 5.9 | kJ/mol | CIDT | Do, Klein, et al., 1997 | gas phase; B |
ΔrH° | 356.1 | kJ/mol | Ther | Finch, Gates, et al., 1977 | gas phase; This value is far more bound than expected from other studies; B |
ΔrH° | 136.4 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; FeF3-(t); ; ΔS(EA)=2.8; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 94.14 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; FeF3-(t); ; ΔS(EA)=2.8; B |
By formula: C10Mn2O10 (cr) + I2 (cr) = 2C5IMnO5 (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -185.0 ± 8.7 | kJ/mol | PC | Harel and Adamson, 1986 | The reaction enthalpy was calculated from the enthalpy of the same reaction in cyclohexane, -187.9 ± 8.4 kJ/mol Harel and Adamson, 1986, and from the solution enthalpies of Mn2(CO)10(cr), 36.0 ± 2.1 kJ/mol, I2(cr), 20.5 ± 0.4 kJ/mol, and Mn(CO)5(I)(cr), 26.8 ± 0.5 kJ/mol Harel and Adamson, 1986. The latter value refers to the solution in benzene and is therefore taken as an approximation; MS |
By formula: C10O10Re2 (cr) + I2 (cr) = 2C5IO5Re (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -172. ± 18. | kJ/mol | PC | Harel and Adamson, 1986 | The reaction enthalpy was calculated from the enthalpy of the same reaction in cyclohexane, -157. ± 16. kJ/mol, and from the solution enthalpies of Re2(CO)10(cr), 34.3 ± 2.1 kJ/mol, I2(cr), 20.5 ± 0.4 kJ/mol, and Re(CO)5(I)(cr), 34.7 ± 4.2 kJ/mol Harel and Adamson, 1986; MS |
By formula: HI + C3H5I = C3H6 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -33.3 ± 1.4 | kJ/mol | Eqk | Rodgers, Golden, et al., 1966 | gas phase; ALS |
ΔrH° | -39.7 ± 4.2 | kJ/mol | Eqk | Rodgers, Golden, et al., 1966 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -34.9 ± 0.96 kJ/mol; At 527 K; ALS |
By formula: HI + CH3I = CH4 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -52.55 ± 0.54 | kJ/mol | Eqk | Golden, Walsh, et al., 1965 | gas phase; ALS |
ΔrH° | -53.0 ± 0.2 | kJ/mol | Eqk | Goy and Pritchard, 1965 | gas phase; ALS |
ΔrH° | -46.2 ± 5.6 | kJ/mol | Cm | Nichol and Ubbelohde, 1952 | gas phase; ALS |
C12H16Nb (cr) + 2 (cr) = C10H10I2Nb (cr) + 2 (l)
By formula: C12H16Nb (cr) + 2I2 (cr) = C10H10I2Nb (cr) + 2CH3I (l)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -242.3 ± 2.4 | kJ/mol | RSC | Diogo, Simoni, et al., 1993 | The difference between the enthalpies of formation of Nb(Cp)2(I)2 and Nb(Cp)2(Me)2 is calculated as -215.1 ± 2.6 kJ/mol; MS |
C20H26CoN5O4 (solution) + (solution) = C13H19CoIN5O4 (solution) + (solution)
By formula: C20H26CoN5O4 (solution) + I2 (solution) = C13H19CoIN5O4 (solution) + C7H7I (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -63.2 ± 3.8 | kJ/mol | RSC | Toscano, Seligson, et al., 1989 | solvent: Bromoform; The enthalpy of solution of Co(py)(dmg)2(Bz)(cr) was measured as 11.3 kJ/mol Toscano, Seligson, et al., 1989; MS |
C14H22CoN5O4 (solution) + (solution) = C13H19CoIN5O4 (solution) + (solution)
By formula: C14H22CoN5O4 (solution) + I2 (solution) = C13H19CoIN5O4 (solution) + CH3I (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -92.9 ± 2.5 | kJ/mol | RSC | Toscano, Seligson, et al., 1989 | solvent: Bromoform; The enthalpy of solution of Co(py)(dmg)2(Me)(cr) was measured as 10.9 kJ/mol Toscano, Seligson, et al., 1989; MS |
By formula: C5HMnO5 (l) + I2 (cr) = HI (g) + C5IMnO5 (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -108. ± 8. | kJ/mol | RSC | Connor, Zafarani-Moattar, et al., 1982 | The reaction enthalpy relies on -25. ± 5. kJ/mol for the enthalpy of solution of HI(g) in benzene Connor, Zafarani-Moattar, et al., 1982.; MS |
By formula: C2H4 + I2 = C2H4I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -48.1 ± 0.8 | kJ/mol | Eqk | Abrams and Davis, 1954 | gas phase; ALS |
ΔrH° | -56. ± 2. | kJ/mol | Eqk | Cutherbertson and Kistiakowsky, 1935 | gas phase; Heat of dissociation; ALS |
By formula: I2 + CClF3 = CF3I + ClI
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 72.3 ± 1.1 | kJ/mol | Eqk | Lord, Goy, et al., 1967 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 71.55 ± 0.71 kJ/mol; ALS |
By formula: HI + C6H11I = C6H12 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -32.6 ± 8.4 | kJ/mol | Cm | Brennan and Ubbelohde, 1956 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -28. ± 4.2 kJ/mol; ALS |
By formula: C2H3F3 + I2 = HI + C2H2F3I
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -64. ± 2. | kJ/mol | Eqk | Wu and Rodgers, 1974 | gas phase; Heat of formation Unpublished results by B.J. Zwolinski; ALS |
By formula: C2H2BrF3 + I2 = C2H2F3I + BrI
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28. ± 2. | kJ/mol | Eqk | Buckley, Ford, et al., 1980 | gas phase; GLC;hf298_gas[kcal/mol]=-166.8±1.1; Kolesov and Papina, 1983; ALS |
By formula: C2H6Hg (l) + 2I2 (cr) = 2CH3I (l) + HgI2 (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -184.5 ± 0.8 | kJ/mol | RSC | Hartley, Pritchard, et al., 1950 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS |
(solution) + (solution) = 2 (solution)
By formula: C10O10Re2 (solution) + I2 (solution) = 2C5IO5Re (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -157. ± 16. | kJ/mol | PC | Harel and Adamson, 1986 | solvent: Cyclohexane; Please also see Adamson, Vogler, et al., 1978.; MS |
(l) + 3 (cr) = GaI3 (cr) + 3 (l)
By formula: C3H9Ga (l) + 3I2 (cr) = GaI3 (cr) + 3CH3I (l)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -200.0 ± 8.4 | kJ/mol | RSC | Fowell and Mortimer, 1958 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS |
(l) + 2 (cr) = CH3GaI2 (cr) + 2 (l)
By formula: C3H9Ga (l) + 2I2 (cr) = CH3GaI2 (cr) + 2CH3I (l)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -158.6 ± 4.2 | kJ/mol | RSC | Fowell and Mortimer, 1958 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS |
(l) + (cr) = 2C3H9ISn (l)
By formula: C6H18Sn2 (l) + I2 (cr) = 2C3H9ISn (l)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -184.1 ± 2.9 | kJ/mol | RSC | Pedley, Skinner, et al., 1957 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS |
By formula: C4H8I2 = C4H8 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.2 ± 6.3 | kJ/mol | Cm | Cline and Kistiakowsky, 1937 | gas phase; Heat of formation derived by Cox and Pilcher, 1970; ALS |
(cr) + (solution) = (solution) + C8H5IO3W (solution)
By formula: C8H6O3W (cr) + I2 (solution) = HI (solution) + C8H5IO3W (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -67.4 ± 3.8 | kJ/mol | RSC | Landrum and Hoff, 1985 | solvent: Dichloromethane; MS |
C15H12MoO3 (solution) + (solution) = C8H5IMoO3 (solution) + (solution)
By formula: C15H12MoO3 (solution) + I2 (solution) = C8H5IMoO3 (solution) + C7H7I (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -120.5 ± 4.2 | kJ/mol | RSC | Nolan, de la Vega, et al., 1988 | solvent: Tetrahydrofuran; MS |
C8H6MoO3 (cr) + (solution) = C8H5IMoO3 (solution) + (solution)
By formula: C8H6MoO3 (cr) + I2 (solution) = C8H5IMoO3 (solution) + HI (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -75.3 ± 2.5 | kJ/mol | RSC | Landrum and Hoff, 1985 | solvent: Dichloromethane; MS |
C10MnO10Re (solution) + (solution) = (solution) + (solution)
By formula: C10MnO10Re (solution) + I2 (solution) = C5IO5Re (solution) + C5IMnO5 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -233. ± 13. | kJ/mol | PC | Harel and Adamson, 1986 | solvent: Cyclohexane; MS |
C8H5MoNaO3 (solution) + (cr) = C8H5IMoO3 (solution) + (cr)
By formula: C8H5MoNaO3 (solution) + I2 (cr) = C8H5IMoO3 (solution) + INa (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -133.1 ± 5.4 | kJ/mol | RSC | Nolan, López de la Vega, et al., 1986 | solvent: Tetrahydrofuran; MS |
By formula: C2F4I2 = C2F4 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69. ± 2. | kJ/mol | Eqk | Wu, Pickard, et al., 1975 | gas phase; Spectrophotometery at 298.15°K; ALS |
By formula: 2C3H8S + I2 = 2HI + C6H14S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -124.9 | kJ/mol | Cm | Sunner, 1955 | liquid phase; solvent: Ethanol/water(90/10); ALS |
By formula: 2C5H12S + I2 = 2HI + C10H22S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -124.9 | kJ/mol | Cm | Sunner, 1955 | liquid phase; solvent: Ethanol/water(90/10); ALS |
By formula: C4H10S2 + I2 = 2HI + C4H8S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -123.2 | kJ/mol | Cm | Sunner, 1955 | liquid phase; solvent: Ethanol/water(90/10); ALS |
By formula: C8H16O2S2 + I2 = 2HI + C8H14O2S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -109.6 | kJ/mol | Cm | Sunner, 1955 | liquid phase; solvent: Ethanol/water(90/10); ALS |
C22H36Zr (solution) + 2 (solution) = C20H30I2Zr (solution) + 2 (solution)
By formula: C22H36Zr (solution) + 2I2 (solution) = C20H30I2Zr (solution) + 2CH3I (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -292.9 ± 2.5 | kJ/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
By formula: C3H8S2 + I2 = 2HI + C3H6S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -107.7 | kJ/mol | Cm | Sunner, 1955 | liquid phase; solvent: Ethanol/water(90/10); ALS |
C12H16Zr (solution) + 2 (solution) = C10H10I2Zr (solution) + 2 (solution)
By formula: C12H16Zr (solution) + 2I2 (solution) = C10H10I2Zr (solution) + 2CH3I (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -291.2 ± 2.5 | kJ/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
C22H30O2Zr (solution) + (solution) = C20H30I2Zr (solution) + 2 (solution)
By formula: C22H30O2Zr (solution) + I2 (solution) = C20H30I2Zr (solution) + 2CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -191.6 ± 1.7 | kJ/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
C22H36Hf (solution) + 2 (solution) = C20H30HfI2 (solution) + 2 (solution)
By formula: C22H36Hf (solution) + 2I2 (solution) = C20H30HfI2 (solution) + 2CH3I (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -265.3 ± 3.3 | kJ/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
C37H30ClIrO3P2S (solution) + (solution) = C37H30ClI2IrOP2 (solution) + (solution)
By formula: C37H30ClIrO3P2S (solution) + I2 (solution) = C37H30ClI2IrOP2 (solution) + O2S (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -102.9 ± 0.4 | kJ/mol | RSC | Drago, Nozari, et al., 1979 | solvent: Benzene; MS |
By formula: HI + C7H7I = C7H8 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -33. ± 4.6 | kJ/mol | Cm | Graham, Nichol, et al., 1955 | liquid phase; solvent: p-Xylene; ALS |
By formula: H2 + 2CH3I = 2CH4 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -126. ± 3. | kJ/mol | Chyd | Carson, Carter, et al., 1961 | liquid phase; solvent: Ether; ALS |
C20H32Zr (solution) + (solution) = C20H30I2Zr (solution) + (g)
By formula: C20H32Zr (solution) + I2 (solution) = C20H30I2Zr (solution) + H2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -309.2 ± 3.3 | kJ/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
C20H32Hf (solution) + (solution) = C20H30HfI2 (solution) + (g)
By formula: C20H32Hf (solution) + I2 (solution) = C20H30HfI2 (solution) + H2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -296.6 ± 2.9 | kJ/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
C16H10O6W2 (cr) + (solution) = 2C8H5IO3W (solution)
By formula: C16H10O6W2 (cr) + I2 (solution) = 2C8H5IO3W (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -146.4 ± 3.8 | kJ/mol | RSC | Landrum and Hoff, 1985 | solvent: Dichloromethane; MS |
C16H10Mo2O6 (cr) + (solution) = 2C8H5IMoO3 (solution)
By formula: C16H10Mo2O6 (cr) + I2 (solution) = 2C8H5IMoO3 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -133.1 ± 4.2 | kJ/mol | RSC | Landrum and Hoff, 1985 | solvent: Dichloromethane; MS |
(solution) + (solution) = 2 (solution)
By formula: C10Mn2O10 (solution) + I2 (solution) = 2C5IMnO5 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -187.9 ± 8.4 | kJ/mol | PC | Harel and Adamson, 1986 | solvent: Cyclohexane; MS |
By formula: I- + I2 = (I- • I2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 100. | kJ/mol | N/A | Downs and Adams, 1973 | gas phase; from ΔrH(f); M |
By formula: H2 + 2C2H5I = 2C2H6 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -88.7 ± 3.3 | kJ/mol | Chyd | Ashcroft, Carson, et al., 1965 | liquid phase; ALS |
2 + = C6H14Hg + 2
By formula: 2C3H7I + HgI2 = C6H14Hg + 2I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 242.3 ± 1.9 | kJ/mol | Cm | Mortimer, Pritchard, et al., 1952 | liquid phase; ALS |
2 + = C6H14Hg + 2
By formula: 2C3H7I + HgI2 = C6H14Hg + 2I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 215.7 ± 2.4 | kJ/mol | Cm | Mortimer, Pritchard, et al., 1952 | liquid phase; ALS |
By formula: HI + CH3IS = CH4S + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -12.0 ± 2.3 | kJ/mol | Eqk | Shum and Benson, 1983 | gas phase; ALS |
By formula: C3H6O + I2 = HI + C3H5IO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.6 ± 5.0 | kJ/mol | Eqk | Solly, Golden, et al., 1970 | gas phase; ALS |
By formula: I2 + CBrF3 = CF3I + BrI
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40.0 ± 0.1 | kJ/mol | Eqk | Lord, Goy, et al., 1967 | gas phase; ALS |
Henry's Law data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
3.0 | 4400. | R | N/A | |
1.1 | C | N/A | missing citation quote a paper as the source that gives only the solubility but not the Henry's law constant. | |
3.3 | 4800. | T | N/A | |
3.1 | 4600. | R | N/A |
Gas phase ion energetics data
Go To: Top, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
View reactions leading to I2+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.3074 ± 0.0002 | eV | N/A | N/A | L |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
2.5240 ± 0.0050 | LPES | Zanni, Taylor, et al., 1997 | B |
2.52 ± 0.10 | NBIE | Auerbach, Baeda, et al., 1973 | B |
2.42 ± 0.20 | Endo | Hughes, Lifschitz, et al., 1973 | B |
2.58 ± 0.10 | Endo | Chupka, Berkowitz, et al., 1971 | B |
2.60 ± 0.10 | EIAE | DeCorpo and Franklin, 1971 | From CHI3; B |
2.40 ± 0.10 | NBIE | Moutinho, Aten, et al., 1971 | B |
2.33004 | ECD | Ayala, Wentworth, et al., 1981 | Vertical Detachment Energy: 1.7 eV; B |
1.722 ± 0.050 | NBIE | Hubers, Kleyn, et al., 1976 | Stated electron affinity is the Vertical Detachment Energy; B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.3074 ± 0.0002 | TE | Cockett, Donovan, et al., 1996 | LL |
9.3074 ± 0.0002 | TE | Cockett, Goode, et al., 1995 | LL |
9.33 | PE | Carlson, Gerard, et al., 1988 | LL |
9.29 ± 0.05 | PI | Grade and Rosinger, 1985 | LBLHLM |
9.3 ± 0.2 | EI | Grade and Rosinger, 1985 | LBLHLM |
9.3 ± 0.2 | EI | Grade and Rosinger, 1984 | LBLHLM |
9.3 ± 0.2 | EI | Grade, Rosinger, et al., 1984 | LBLHLM |
9.3 ± 0.05 | EI | Hoareau, Cabaud, et al., 1981 | LLK |
9.5 | EI | Pittermann and Weil, 1980 | LLK |
9.311 ± 0.002 | PE | Higginson, Lloyd, et al., 1973 | LLK |
9.22 ± 0.01 | PE | Potts and Price, 1971 | LLK |
~9.37 | PI | Dibeler, Walker, et al., 1971 | LLK |
9.3995 ± 0.0012 | S | Venkateswarlu, 1970 | RDSH |
9.331 | PI | Myer and Samson, 1970 | RDSH |
9.356 | PE | Kimura, Katsumata, et al., 1981 | Vertical value; LLK |
9.34 | PE | Cornford, Frost, et al., 1971 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
I+ | 8.8 ± 0.2 | I- | EI | Grade and Rosinger, 1985 | LBLHLM |
I+ | 11.94 ± 0.15 | I | PI | Grade and Rosinger, 1985 | LBLHLM |
I+ | 8.83 ± 0.07 | I- | PI | Grade and Rosinger, 1985 | LBLHLM |
I+ | 8.9 ± 0.2 | I- | EI | Grade and Rosinger, 1984 | LBLHLM |
I+ | 8.8 ± 0.2 | I- | EI | Grade, Rosinger, et al., 1984 | LBLHLM |
I+ | 13.0 | I | EI | Pittermann and Weil, 1980 | LLK |
I+ | 8.922 ± 0.013 | I- | PI | Myer and Samson, 1970 | RDSH |
I+ | 8.95 ± 0.02 | I- | PI | Morrison, Hurzeler, et al., 1960 | RDSH |
I+ | 8.83 ± 0.02 | I- | PI | Watanabe, 1957 | RDSH |
References
Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Taylor, Asmis, et al., 1999
Taylor, T.R.; Asmis, K.R.; Zanni, M.T.; Neumark, D.M.,
Characterization of the I-3 radical by anion photoelectron spectroscopy,
J. Chem. Phys., 1999, 110, 16, 7607-7609, https://doi.org/10.1063/1.478672
. [all data]
Do, Klein, et al., 1997
Do, K.; Klein, T.P.; Pommerening, C.A.; Sunderlin, L.S.,
A New Flowing Afterglow-Guided Ion Beam Tandem Mass Spectrometer. Applications to the Thermochemistry of Polyiodide Ions,
J. Am. Soc. Mass Spectrom., 1997, 8, 7, 688, https://doi.org/10.1016/S1044-0305(97)00116-5
. [all data]
Finch, Gates, et al., 1977
Finch, A.; Gates, P.N.; Peake, S.J.,
Thermochemistry of polyhalides. III. Cesium and rubidium tetrachloroiodates,
J. Inorg. Nucl. Chem., 1977, 39, 2135. [all data]
Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S.,
Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements,
J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l
. [all data]
Harel and Adamson, 1986
Harel, Y.; Adamson, A.W.,
J. Phys. Chem., 1986, 90, 6693. [all data]
Rodgers, Golden, et al., 1966
Rodgers, A.S.; Golden, D.M.; Benson, S.W.,
The thermochemistry of the gas phase equilibrium I2 + C3H6 = C3H5I + HI,
J. Am. Chem. Soc., 1966, 88, 3194-3196. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Golden, Walsh, et al., 1965
Golden, D.M.; Walsh, R.; Benson, S.W.,
The thermochemistry of the gas phase equilibrium I2 + CH4 «=» CH3I + HI and the heat of formation of the methyl radical,
J. Am. Chem. Soc., 1965, 87, 4053-4057. [all data]
Goy and Pritchard, 1965
Goy, C.A.; Pritchard, H.O.,
Kinetics and thermodynamics of the reaction between iodine and methane and the heat of formation of methyl iodide,
J. Phys. Chem., 1965, 69, 3040-3041. [all data]
Nichol and Ubbelohde, 1952
Nichol, R.J.; Ubbelohde, A.R.,
A thermochemical evaluation of bond strengths in some carbon compounds. part II. Bond strengths based on the reaction CH3I + HI = CH4 + I2,
J. Am. Chem. Soc., 1952, 415-421. [all data]
Diogo, Simoni, et al., 1993
Diogo, H.P.; Simoni, J.A.; Minas da Piedade, M.E.; Dias, A.R.; Martinho Simões, J.A.,
J. Am. Chem. Soc., 1993, 115, 2764. [all data]
Toscano, Seligson, et al., 1989
Toscano, P.J.; Seligson, A.L.; Curran, M.T.; Skrobutt, A.T.; Sonnenberger, D.C.,
Inorg. Chem., 1989, 28, 166; ibid. 1989. [all data]
Connor, Zafarani-Moattar, et al., 1982
Connor, J.A.; Zafarani-Moattar, M.T.; Bickerton, J.; El-Saied, N.I.; Suradi, S.; Carson, R.; Al Takkhin, G.; Skinner, H.A.,
Organomet., 1982, 1, 1166. [all data]
Abrams and Davis, 1954
Abrams, A.; Davis, T.W.,
Use of radioactive iodine to determine equilibrium constants in ethylene-iodine-1,2-diiodoethane systems,
J. Am. Chem. Soc., 1954, 76, 5993-59. [all data]
Cutherbertson and Kistiakowsky, 1935
Cutherbertson, G.R.; Kistiakowsky, G.B.,
The thermal equilibrium between ethylene iodide, ethylene and iodine,
J. Chem. Phys., 1935, 3, 631-634. [all data]
Lord, Goy, et al., 1967
Lord, A.; Goy, C.A.; Pritchard, H.O.,
The heats of formation of trifluoromethyl chloride and bromide,
J. Phys. Chem., 1967, 71, 2705-2707. [all data]
Brennan and Ubbelohde, 1956
Brennan, D.; Ubbelohde, A.R.,
A thermochemical evaluation of bond strengths in some carbon compounds. Part IV. Bond-strength differences based on the reaction: RI + HI = RH + I2, where R = p-methoxyphenyl and cyclohexyl,
J. Chem. Soc., 1956, 3011-3016. [all data]
Wu and Rodgers, 1974
Wu, E.; Rodgers, A.S.,
Thermochemistry of gas-phase equilibrium CF3CH3 + I2 = CF3CH2I + HI. The carbon-hydrogen bond dissociation energy in 1,1,1-trifluoroethane and the heat of formation of the 2,2,2-trifluoroethyl radical,
J. Phys. Chem., 1974, 78, 2315-2317. [all data]
Buckley, Ford, et al., 1980
Buckley, G.S.; Ford, W.G.F.; Rodgers, A.S.,
The thermochemistry of the gas phase reaction: CF3CH2Br + I2 = CF3CH2I + IBr. Polarity effects in thermochemistry,
Thermochim. Acta, 1980, 42, 349-355. [all data]
Kolesov and Papina, 1983
Kolesov, V.P.; Papina, T.S.,
Thermochemistry of Haloethanes,
Russ. Chem. Rev., 1983, 52, 425. [all data]
Hartley, Pritchard, et al., 1950
Hartley, K.; Pritchard, H.O.; Skinner, H.A.,
Thermochemistry of metallic alkyls. III.?mercury dimethyl and mercury methyl halides,
Trans. Faraday Soc., 1950, 46, 1019, https://doi.org/10.1039/tf9504601019
. [all data]
Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J.,
Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]
Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds
in Academic Press, New York, 1970. [all data]
Adamson, Vogler, et al., 1978
Adamson, A.W.; Vogler, A.; Kunkely, H.; Wachter, R.,
J. Am. Chem. Soc., 1978, 100, 1298. [all data]
Fowell and Mortimer, 1958
Fowell, P.A.; Mortimer, C.T.,
J. Chem. Soc., 1958, 3734.. [all data]
Pedley, Skinner, et al., 1957
Pedley, J.B.; Skinner, H.A.; Chernick, C.L.,
Thermochemistry of metallic alkyls. Part 8.?Tin tetramethyl, and hexamethyl distannane,
Trans. Faraday Soc., 1957, 53, 1612, https://doi.org/10.1039/tf9575301612
. [all data]
Cline and Kistiakowsky, 1937
Cline, J.E.; Kistiakowsky, G.B.,
The gaseous equilibrium of 1,2-diiodobutane, butene-1 and iodine,
J. Chem. Phys., 1937, 5, 990. [all data]
Landrum and Hoff, 1985
Landrum, J.T.; Hoff, C.D.,
J. Organometal. Chem., 1985, 282, 215. [all data]
Nolan, de la Vega, et al., 1988
Nolan, S.P.; de la Vega, R.L.; Mukerjee, S.L.; Gonzalez, A.A.; Zhang, K.; Hoff, C.,
Polyhedron, 1988, 7, 1491. [all data]
Nolan, López de la Vega, et al., 1986
Nolan, S.P.; López de la Vega, R.; Hoff, C.D.,
J. Organometal. Chem., 1986, 315, 187. [all data]
Wu, Pickard, et al., 1975
Wu, E.C.; Pickard, J.M.; Rodgers, A.S.,
Thermochemistry of the gas-phase reaction tetrafluoroethylene + iodine = 1,2-diiodoperfluoroethane. Heat of formation of 1,2-diiodoperfluoroethane and of iodoperfluoroethane,
J. Phys. Chem., 1975, 79, 1078-1081. [all data]
Sunner, 1955
Sunner, S.,
Strain in 6,8-thioctic acid,
Nature (London), 1955, 176, 217. [all data]
Schock and Marks, 1988
Schock, L.E.; Marks, T.J.,
J. Am. Chem. Soc., 1988, 110, 7701. [all data]
Drago, Nozari, et al., 1979
Drago, R.S.; Nozari, M.S.; Klinger, R.J.; Chamberlain, C.S.,
Inorg. Chem., 1979, 18, 1254. [all data]
Graham, Nichol, et al., 1955
Graham, W.S.; Nichol, R.J.; Ubbelohde, A.R.,
A thermochemical evaluation of bond strengths in some carbon compounds. Part III. Bond strengths based on the reactions: (a) Ph·CH2I + HI=Ph·CH3 + I2 and (b) PhI + HI=PhH + I2,
J. Chem. Soc., 1955, 115-121. [all data]
Carson, Carter, et al., 1961
Carson, A.S.; Carter, W.; Pedley, J.B.,
The thermochemistry of reductions caused by lithium aluminium hydride I. The C-I bond dissociation energy in CH3I,
Proc. Roy. Soc. London A, 1961, 260, 550-557. [all data]
Downs and Adams, 1973
Downs, A.J.; Adams, G.J.,
Comprehensive Inorganic Chemistry, J. C. Bailar, H. J. Emeleus, R. Nyholm and A. F. Trotman - Dickerson, ed(s)., Pergamon Press, New York, 1973, 1543. [all data]
Ashcroft, Carson, et al., 1965
Ashcroft, S.J.; Carson, A.S.; Carter, W.; Laye, P.G.,
Thermochemistry of reductions caused by lithium aluminium hydride. Part 3.- The C-halogen bond dissociation energies in ethyl iodine and ethyl bromide,
Trans. Faraday Soc., 1965, 61, 225-229. [all data]
Mortimer, Pritchard, et al., 1952
Mortimer, C.T.; Pritchard, H.O.; Skinner, H.A.,
Thermochemistry of metallic alkyls. Part V - Mercury di-propyl and mercury di-isopropyl,
Trans. Faraday Soc., 1952, 48, 220-229. [all data]
Shum and Benson, 1983
Shum, L.G.S.; Benson, S.W.,
Thermochemnistry and kinetics of the reaction of methyl mercaptan with iodine,
Int. J. Chem. Kinet., 1983, 15, 433-453. [all data]
Solly, Golden, et al., 1970
Solly, R.K.; Golden, D.M.; Benson, S.W.,
Thermochemical properties of iodoacetone. Intramolecular electrostatic interactions in polar molecules,
J. Am. Chem. Soc., 1970, 92, 4653-4656. [all data]
Zanni, Taylor, et al., 1997
Zanni, M.T.; Taylor, T.R.; Greenblatt, J.; Soep, B.; Neumark, D.M.,
Characterization of the I2- Anion Ground State Using Conventional and Femtosecond Photoelectron Spectroscopy,
J. Chem. Phys., 1997, 107, 19, 7613, https://doi.org/10.1063/1.475110
. [all data]
Auerbach, Baeda, et al., 1973
Auerbach, J.; Baeda, A.P.M.; Los, D.J.,
Fragmentation of Negative Ions Formed in Collisions of Alkali Atoms and Halogen Molecules,
Physica, 1973, 64, 1, 134, https://doi.org/10.1016/0031-8914(73)90119-5
. [all data]
Hughes, Lifschitz, et al., 1973
Hughes, B.M.; Lifschitz, C.; Tiernan, T.O.,
Electron affinities from endothermic negative-ion charge-transfer reactions. III. NO, NO2, S2, CS2, Cl2, Br2, I2, and C2H,
J. Chem. Phys., 1973, 59, 3162. [all data]
Chupka, Berkowitz, et al., 1971
Chupka, W.A.; Berkowitz, J.; Gutman, D.,
Electron Affinities of Halogen Diatomic Molecules as Determined by Endoergic Charge Exchange,
J. Chem. Phys., 1971, 55, 6, 2724, https://doi.org/10.1063/1.1676487
. [all data]
DeCorpo and Franklin, 1971
DeCorpo, J.J.; Franklin, J.L.,
Electron affinities of the halogen molecules by dissociative electron attachment,
J. Chem. Phys., 1971, 54, 1885. [all data]
Moutinho, Aten, et al., 1971
Moutinho, A.M.C.; Aten, J.A.; Los, J.,
Temperature dependence of the total cross section for chemi-ionization in ackali halide-galogen collisions,
Physica, 1971, 53, 471. [all data]
Ayala, Wentworth, et al., 1981
Ayala, J.A.; Wentworth, W.E.; Chen, E.C.M.,
Electron attachment to halogens,
J. Phys. Chem., 1981, 85, 768. [all data]
Hubers, Kleyn, et al., 1976
Hubers, M.M.; Kleyn, A.W.; Los, J.,
Ion pair formation in alkali-halogen collisions at high velocities,
Chem. Phys., 1976, 17, 303. [all data]
Cockett, Donovan, et al., 1996
Cockett, M.C.R.; Donovan, R.J.; Lawley, K.P.,
Zero kinetic energy pulsed field ionization (ZEKE-PFI) spectroscopy of electronically and vibrationally excited states of I2+: The A 2Π3/2,u state and a new electronic state, the a 4σ-u state,
J. Chem. Phys., 1996, 105, 3347. [all data]
Cockett, Goode, et al., 1995
Cockett, M.C.R.; Goode, J.G.; Lawley, K.P.; Donovan, R.J.,
Zero kinetic energy photoelectron spectroscopy of Rydberg excited molecular iodine,
J. Chem. Phys., 1995, 102, 5226. [all data]
Carlson, Gerard, et al., 1988
Carlson, T.A.; Gerard, P.; Pullen, B.P.; Grimm, F.A.,
Autoionization from the ione-pair orbitals of molecules containing iodine,
J. Chem. Phys., 1988, 89, 1464. [all data]
Grade and Rosinger, 1985
Grade, M.; Rosinger, W.,
Correlation of electronic structures and stabilities of gaseous FeI2, Fe2I2 and Fe2I4 molecules, solid [FeI2], and iodine adsorbed on [Fe],
Surf. Sci., 1985, 156, 920. [all data]
Grade and Rosinger, 1984
Grade, M.; Rosinger, W.,
A mass spectrometric investigation of iron(II)-iodide,
Ber. Bunsen-Ges. Phys. Chem., 1984, 88, 767. [all data]
Grade, Rosinger, et al., 1984
Grade, M.; Rosinger, W.; Dowben, P.A.,
Core and valence electron binding energies of FeI2 and stabilities of gas phase species,
Ber. Bunsen-Ges. Phys. Chem., 1984, 88, 65. [all data]
Hoareau, Cabaud, et al., 1981
Hoareau, A.; Cabaud, B.; Melinon, P.,
Time-of-flight mass spectroscopy of supersonic beam of metallic vapours: Intensities and appearance potentials of Mx aggregates,
Surf. Sci., 1981, 106, 195. [all data]
Pittermann and Weil, 1980
Pittermann, U.; Weil, K.G.,
Massenspektrometrische Untersuchungen an Silberhalogeniden V: Verdampfung von Silberiodid,
Ber. Bunsen-Ges. Phys. Chem., 1980, 84, 542. [all data]
Higginson, Lloyd, et al., 1973
Higginson, B.R.; Lloyd, D.R.; Roberts, P.J.,
Variable temperature photoelectron spectroscopy. The adiabatic ionization potential of the iodine molecule,
Chem. Phys. Lett., 1973, 19, 480. [all data]
Potts and Price, 1971
Potts, A.W.; Price, W.C.,
Photoelectron spectra of the halogens and mixed halides ICI and lBr,
J. Chem. Soc. Faraday Trans., 1971, 67, 1242. [all data]
Dibeler, Walker, et al., 1971
Dibeler, V.H.; Walker, J.A.; McCulloh, K.E.; Rosenstock, H.M.,
Effect of hot bands on the ionization threshold of some diatomic halogen molecules,
Intern. J. Mass Spectrom. Ion Phys., 1971, 7, 209. [all data]
Venkateswarlu, 1970
Venkateswarlu, P.,
Vacuum ultraviolet spectrum of the iodine molecule,
Can. J. Phys., 1970, 48, 1055. [all data]
Myer and Samson, 1970
Myer, J.A.; Samson, J.A.R.,
Absorption cross section and photoionization yield of I2 between 1050 and 2200 A,
J. Chem. Phys., 1970, 52, 716. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Cornford, Frost, et al., 1971
Cornford, A.B.; Frost, D.C.; McDowell, C.A.; Ragle, J.L.; Stenhouse, I.A.,
Photoelectron spectra of the halogens,
J. Chem. Phys., 1971, 54, 2651. [all data]
Morrison, Hurzeler, et al., 1960
Morrison, J.D.; Hurzeler, H.; Inghram, M.G.; Stanton, H.E.,
Threshold law for the probability of excitation of molecules by photon impact. A study of the photoionization efficiencies of Br2, I2, HI, and CH3I,
J. Chem. Phys., 1960, 33, 821. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Notes
Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy EA Electron affinity IE (evaluated) Recommended ionization energy d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.