Ethanol
- Formula: C2H6O
- Molecular weight: 46.0684
- IUPAC Standard InChIKey: LFQSCWFLJHTTHZ-UHFFFAOYSA-N
- CAS Registry Number: 64-17-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Ethyl alcohol; Alcohol; Alcohol anhydrous; Algrain; Anhydrol; Denatured ethanol; Ethyl hydrate; Ethyl hydroxide; Jaysol; Jaysol S; Methylcarbinol; SD Alchol 23-hydrogen; Tecsol; C2H5OH; Absolute ethanol; Cologne spirit; Fermentation alcohol; Grain alcohol; Molasses alcohol; Potato alcohol; Aethanol; Aethylalkohol; Alcohol, dehydrated; Alcool ethylique; Alcool etilico; Alkohol; Cologne spirits; Denatured alcohol CD-10; Denatured alcohol CD-5; Denatured alcohol CD-5a; Denatured alcohol SD-1; Denatured alcohol SD-13a; Denatured alcohol SD-17; Denatured alcohol SD-23a; Denatured alcohol SD-28; Denatured alcohol SD-3a; Denatured alcohol SD-30; Denatured alcohol SD-39b; Denatured alcohol SD-39c; Denatured alcohol SD-40m; Etanolo; Ethanol 200 proof; Ethyl alc; Etylowy alkohol; EtOH; NCI-C03134; Spirits of wine; Spirt; Alkoholu etylowego; Ethyl alcohol anhydrous; SD alcohol 23-hydrogen; UN 1170; Tecsol C; Alcare Hand Degermer; Absolute alcohol; Denatured alcohol; Ethanol, silent spirit; Ethylol; Punctilious ethyl alcohol; SD 3A
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Phase change data
- Reaction thermochemistry data: reactions 1 to 50, reactions 51 to 77
- Henry's Law data
- Ion clustering data
- IR Spectrum
- Mass spectrum (electron ionization)
- Gas Chromatography
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -56.0 ± 0.5 | kcal/mol | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -326.56 ± 0.1 | kcal/mol | Cm | Rossini, 1932 | Flame Calorimetry; Corresponding ΔfHºgas = -66.491 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
8.872 | 50. | Thermodynamics Research Center, 1997 | p=1 bar. Recommended entropies and heat capacities are in close agreement with other statistically calculated values [ Zhuravlev E.Z., 1959, Chermin H.A.G., 1961, Green J.H.S., 1961, Green J.H.S., 1961, 2, Chao J., 1986, Gurvich, Veyts, et al., 1989]. Please also see Chao J., 1986, 2.; GT |
9.967 | 100. | ||
11.22 | 150. | ||
12.43 | 200. | ||
14.69 | 273.15 | ||
15.59 ± 0.033 | 298.15 | ||
15.65 | 300. | ||
19.41 | 400. | ||
22.89 | 500. | ||
25.870 | 600. | ||
28.401 | 700. | ||
30.574 | 800. | ||
32.459 | 900. | ||
34.101 | 1000. | ||
35.535 | 1100. | ||
36.788 | 1200. | ||
37.880 | 1300. | ||
38.838 | 1400. | ||
39.677 | 1500. | ||
41.35 | 1750. | ||
42.59 | 2000. | ||
43.50 | 2250. | ||
44.19 | 2500. | ||
44.7 | 2750. | ||
45.2 | 3000. |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
12.28 ± 0.12 | 200. | Stromsoe E., 1970 | Experimental data [ Bennewitz K., 1938, Eucken A., 1948, Barrow G.M., 1952, Sinke G.C., 1953, Halford J.O., 1957] are collected in ref. [ Green J.H.S., 1961]. Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.09 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Green J.H.S., 1961, Counsell J.F., 1970.; GT |
14.89 ± 0.13 | 279. | ||
14.84 ± 0.10 | 280. | ||
17.48 | 350.01 | ||
18.09 ± 0.26 | 356.55 | ||
17.82 | 360.00 | ||
18.26 ± 0.26 | 361.75 | ||
18.05 | 367.9 | ||
18.16 | 370.01 | ||
18.58 ± 0.26 | 371.85 | ||
18.51 | 380.00 | ||
19.07 ± 0.26 | 387.25 | ||
19.12 ± 0.26 | 388.85 | ||
19.22 | 400.08 | ||
19.60 | 410.16 | ||
19.93 | 422. | ||
20.10 | 425.09 | ||
20.54 ± 0.26 | 433.25 | ||
21.03 | 437. | ||
20.86 ± 0.26 | 443.35 | ||
20.95 | 450.08 | ||
21.78 | 475.12 | ||
21.80 | 476. | ||
22.04 ± 0.26 | 480.45 | ||
23.76 ± 0.26 | 534.35 | ||
24.22 ± 0.26 | 548.75 | ||
24.97 ± 0.26 | 572.25 | ||
25.58 ± 0.26 | 591.25 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -66.1 ± 0.5 | kcal/mol | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -326.86 ± 0.06 | kcal/mol | Ccb | Chao and Rossini, 1965 | see Rossini, 1934; Corresponding ΔfHºliquid = -66.19 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -326.71 ± 0.10 | kcal/mol | Ccb | Green, 1960 | Corresponding ΔfHºliquid = -66.34 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -327.65 | kcal/mol | Ccb | Parks, 1925 | Corresponding ΔfHºliquid = -65.40 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -327.041 | kcal/mol | Ccb | Richards and Davis, 1920 | At 291 K; Corresponding ΔfHºliquid = -66.006 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -327.10 | kcal/mol | Ccb | Emery and Benedict, 1911 | Corresponding ΔfHºliquid = -65.94 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 38.207 | cal/mol*K | N/A | Haida, Suga, et al., 1977 | DH |
S°liquid | 38.530 | cal/mol*K | N/A | Green J.H.S., 1961 | DH |
S°liquid | 38.41 | cal/mol*K | N/A | Kelley, 1929 | DH |
S°liquid | 42.30 | cal/mol*K | N/A | Parks, 1925 | Extrapolation below 90 K, 55.19 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
26.86 | 298.15 | Petrov, Peshekhodov, et al., 1989 | T = 258.15, 278.15, 298.15, 318.15 K.; DH |
26.656 | 298.15 | Andreoli-Ball, Patterson, et al., 1988 | DH |
26.855 | 298.15 | Ogawa and Murakami, 1986 | DH |
26.931 | 298.15 | Tanaka, Toyama, et al., 1986 | DH |
26.413 | 298.15 | Ogawa and Murakami, 1985 | DH |
27.70 | 298.15 | Stephens and Olson, 1984 | T = 266 to 318 K. Cp given as 0.6011 cal/g*K.; DH |
26.929 | 298.15 | Zegers and Somsen, 1984 | DH |
25.829 | 288.15 | Benson and D'Arcy, 1982 | DH |
27.187 | 298.15 | Villamanan, Casanova, et al., 1982 | DH |
26.804 | 298.15 | Brown and Ziegler, 1979 | T = 159 to 306 K. Results as equation only.; DH |
26.840 | 298.15 | Vesely, Zabransky, et al., 1979 | DH |
26.89 | 298.15 | Haida, Suga, et al., 1977 | T = 14 to 300 K. Also glass, supercooled liquid, metastable crystal.; DH |
26.840 | 298.15 | Vesely, Svoboda, et al., 1977 | T = 298 to 318 K.; DH |
26.848 | 298.15 | Fortier, Benson, et al., 1976 | DH |
26.7911 | 298.15 | Fortier and Benson, 1976 | DH |
26.723 | 298.15 | Pedersen, Kay, et al., 1975 | T = 298 to 348 K. Cp(liq) = 98.39 + 0.5368(T/K-273.25) J/mol*K (298 to 348 K).; DH |
28.30 | 313.2 | Paz Andrade, Paz, et al., 1970 | DH |
23.31 | 250. | Nikolaev, Rabinovich, et al., 1967 | T = 80 to 250 K.; DH |
26.7820 | 297.359 | Hwa and Ziegler, 1966 | T = 165 to 304 K. Unsmoothed experimental datum.; DH |
26.831 | 298. | Rabinovich and Nikolaev, 1962 | T = 15 to 55°C.; DH |
26.759 | 298.15 | Green J.H.S., 1961 | T = 16 to 350 K.; DH |
28.39 | 316. | Swietoslawski and Zielenkiewicz, 1960 | Mean value 21 to 66°C.; DH |
27.41 | 297.8 | Mazur, 1940 | T = 174 to 298 K. Unsmoothed experimental datum. Cp(liq) = 0.5437 + 0.001858t + 0.0000098t2 cal/g*K. Cp(298.15 K) = 114.9 J/mol*K, calculated from equation.; DH |
26.70 | 298. | Bykov, 1939 | DH |
24.69 | 298. | Ernst, Watkins, et al., 1936 | DH |
28.375 | 313.15 | Fiock, Ginnings, et al., 1931 | T = 40 to 110°C.; DH |
26.260 | 294.31 | Kelley, 1929 | T = 16 to 298 K. Value is unsmoothed experimental datum.; DH |
25.41 | 270. | Mitsukuri and Hara, 1929 | T = 190 to 270 K.; DH |
38.41 | 298.1 | Parks, Kelley, et al., 1929 | Extrapolation below 90 K, 38.9 J/mol*K. Revision of previous data.; DH |
27.10 | 298.0 | Parks, 1925 | T = 87 to 298 K. Value is unsmoothed experimental datum.; DH |
27.51 | 303. | Willams and Daniels, 1924 | T = 303 to 333 K. Equation only.; DH |
24.47 | 271.4 | Gibson, Parks, et al., 1920 | T = 85 to 271.4 K. Unsmoothed experimental datum. Data also given for the glassy state from 85.9 to 96.3 K.; DH |
26.79 | 298. | von Reis, 1881 | T = 288 to 346 K.; DH |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C2H6O+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.48 ± 0.07 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 185.6 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 178. | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Proton affinity at 298K
Proton affinity (kcal/mol) | Reference | Comment |
---|---|---|
186.3 ± 0.2 | Tabrizchi and Shooshtari, 2003 | T = 403-453K; Authors report only relative PAs. Absolute values are referenced here to PA(CH3COOC2H5) = 835.7 kJ/mol as listed in Hunter and Lias, 1998, although average PA(CH3COOC2H5) from the literature sources in Hunter and Lias, 1998 is 831.0 kJ/mol; MM |
Ionization energy determinations
Appearance energy determinations
De-protonation reactions
C2H5O- + =
By formula: C2H5O- + H+ = C2H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 379.2 ± 1.0 | kcal/mol | D-EA | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrH° | 378.0 ± 2.0 | kcal/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 377.4 ± 2.1 | kcal/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 379.10 ± 0.10 | kcal/mol | CIDT | DeTuri and Ervin, 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 372.6 ± 1.1 | kcal/mol | H-TS | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrG° | 371.4 ± 2.1 | kcal/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 370.8 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
Anion protonation reactions
C2H5O- + =
By formula: C2H5O- + H+ = C2H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 379.2 ± 1.0 | kcal/mol | D-EA | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrH° | 378.0 ± 2.0 | kcal/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 377.4 ± 2.1 | kcal/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 379.10 ± 0.10 | kcal/mol | CIDT | DeTuri and Ervin, 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 372.6 ± 1.1 | kcal/mol | H-TS | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrG° | 371.4 ± 2.1 | kcal/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 370.8 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Rossini, 1932
Rossini, F.D.,
The heats of combustion of methyl and ethyl alcohols,
J. Res. NBS, 1932, 8, 119-139. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Zhuravlev E.Z., 1959
Zhuravlev E.Z.,
Isotopic effect on thermodynamic functions of some organic deuterocompounds in the ideal gas state,
Tr. Khim. i Khim. Tekhnol., 1959, 2, 475-485. [all data]
Chermin H.A.G., 1961
Chermin H.A.G.,
Thermo data for petrochemicals. Part 28. Gaseous normal alcohols. The important thermo properties are presented for all the gaseous normal alcohols from methanol through n-decanol,
Petrol. Refiner, 1961, 40 (4), 127-130. [all data]
Green J.H.S., 1961
Green J.H.S.,
Thermodynamic properties of organic oxygen compounds. Part 5. Ethyl alcohol,
Trans. Faraday Soc., 1961, 57, 2132-2137. [all data]
Green J.H.S., 1961, 2
Green J.H.S.,
Thermodynamic properties of the normal alcohols C1-C12,
J. Appl. Chem., 1961, 11, 397-404. [all data]
Chao J., 1986
Chao J.,
Ideal gas thermodynamic properties of simple alkanols,
Int. J. Thermophys., 1986, 7, 431-442. [all data]
Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.,
Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]
Chao J., 1986, 2
Chao J.,
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties,
J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]
Stromsoe E., 1970
Stromsoe E.,
Heat capacity of alcohol vapors at atmospheric pressure,
J. Chem. Eng. Data, 1970, 15, 286-290. [all data]
Bennewitz K., 1938
Bennewitz K.,
Molar heats of vapor organic compounds,
Z. Phys. Chem. (Leipzig), 1938, B39, 126-144. [all data]
Eucken A., 1948
Eucken A.,
Rotational hindrance in ether and alcohol molecules on the basis of heat capacity determinations,
Z. Elektrochem., 1948, 52, 195-204. [all data]
Barrow G.M., 1952
Barrow G.M.,
Heat capacity, gas imperfection, infrared spectra, and internal rotation barriers of ethyl alcohol,
J. Chem. Phys., 1952, 20, 1739-1744. [all data]
Sinke G.C., 1953
Sinke G.C.,
The heat capacity of organic vapors. VIII. Data for some aliphatic alcohols using an improved flow calorimeter requiring only 25 ml of sample,
J. Am. Chem. Soc., 1953, 75, 1815-1818. [all data]
Halford J.O., 1957
Halford J.O.,
Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity,
J. Phys. Chem., 1957, 61, 1536-1539. [all data]
Counsell J.F., 1970
Counsell J.F.,
Thermodynamic properties of organic oxygen compounds. 24. Vapor heat capacities and enthalpies of vaporization of ethanol, 2-methyl-1-propanol, and 1-pentanol,
J. Chem. Thermodyn., 1970, 2, 367-372. [all data]
Chao and Rossini, 1965
Chao, J.; Rossini, F.D.,
Heats of combustion, formation, and isomerization of nineteen alkanols,
J. Chem. Eng. Data, 1965, 10, 374-379. [all data]
Rossini, 1934
Rossini, F.D.,
Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages,
J. Res. NBS, 1934, 13, 189-197. [all data]
Green, 1960
Green, J.H.S.,
Revision of the values of the heats of formation of normal alcohols,
Chem. Ind. (London), 1960, 1215-1216. [all data]
Parks, 1925
Parks, G.S.,
Thermal data on organic compounds I. The heat capacities and free energies of methyl, ethyl and normal-butyl alcohols,
J. Am. Chem. Soc., 1925, 47, 338-345. [all data]
Richards and Davis, 1920
Richards, T.W.; Davis, H.S.,
The heats of combustion of benzene, toluene, aliphatic alcohols, cyclohexanol, and other carbon compounds,
J. Am. Chem. Soc., 1920, 42, 1599-1617. [all data]
Emery and Benedict, 1911
Emery, A.G.; Benedict, F.G.,
The heat of combustion of compounds of physiological importance,
Am. J. Physiol., 1911, 28, 301-307. [all data]
Haida, Suga, et al., 1977
Haida, O.; Suga, H.; Seki, S.,
Calorimetric study of the glassy state. XII. Plural glass-transition phenomena of ethanol,
J. Chem. Thermodynam., 1977, 9, 1133-1148. [all data]
Kelley, 1929
Kelley, K.K.,
The heat capacities of ethyl and hexyl alcohols from 16°K to 298°K and the corresponding entropies and free energies,
J. Am. Chem. Soc., 1929, 51, 779-786. [all data]
Petrov, Peshekhodov, et al., 1989
Petrov, A.N.; Peshekhodov, P.B.; Al'per, G.A.,
Heat capacity of non-aqueous solutions of non-electrolyts with N,N-dimethylformamide as a base, Sbornik Nauch. Trud., Termodin. Rast. neelect., Ivanovo,
Inst. nevod. rast., 1989, Akad. [all data]
Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M.,
Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc.,
Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]
Ogawa and Murakami, 1986
Ogawa, H.; Murakami, S.,
Excess isobaric heat capacities for water + alkanol mixtures at 298.15 K,
Thermochim. Acta, 1986, 109, 145-154. [all data]
Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S.,
Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K,
J. Chem. Thermodynam., 1986, 18, 63-73. [all data]
Ogawa and Murakami, 1985
Ogawa, H.; Murakami, S.,
Flow microcalorimeter for heat capacities of solutions,
Thermochim. Acta, 1985, 88, 255-260. [all data]
Stephens and Olson, 1984
Stephens, M.; Olson, J.D.,
Measurement of excess heat capacities by differential scanning calorimetry,
Thermochim. Acta, 1984, 76, 79-85. [all data]
Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G.,
Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol),
J. Chem. Thermodynam., 1984, 16, 225-235. [all data]
Benson and D'Arcy, 1982
Benson, G.C.; D'Arcy, P.J.,
Excess isobaric heat capacities of water - n-alcohol mixtures,
J. Chem. Eng. Data, 1982, 27, 439-442. [all data]
Villamanan, Casanova, et al., 1982
Villamanan, M.A.; Casanova, C.; Roux-Desgranges, G.; Grolier, J.-P.E.,
Thermochemical behavior of mixtures of n-alcohol + aliphatic ether: heat capacities and volumes at 298.15 K,
Thermochim. Acta, 1982, 52, 279-283. [all data]
Brown and Ziegler, 1979
Brown, G.N., Jr.; Ziegler, W.T.,
Temperature dependence of excess thermodynamic properties of ethanol + n-heptane and 2-propanol + n-heptane solutions,
J. Chem. Eng. Data, 1979, 24, 319-330. [all data]
Vesely, Zabransky, et al., 1979
Vesely, F.; Zabransky, M.; Svoboda, V.; Pick, J.,
The use of mixing calorimeter for measuring heat capacities of liquids,
Coll. Czech. Chem. Commun., 1979, 44, 3529-3532. [all data]
Vesely, Svoboda, et al., 1977
Vesely, F.; Svoboda, V.; Pick, J.,
Heat capacities of some organic liquids determined with the mixing calorimeter,
1st Czech. Conf. Calorimetry (Lect. Short Commun.), 1977, C9-1-C9-4. [all data]
Fortier, Benson, et al., 1976
Fortier, J.-L.; Benson, G.C.; Picker, P.,
Heat capacities of some organic liquids determined with the Picker flow calorimeter,
J. Chem. Thermodynam., 1976, 8, 289-299. [all data]
Fortier and Benson, 1976
Fortier, J.-L.; Benson, G.C.,
Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter,
J. Chem. Thermodynam., 1976, 8, 411-423. [all data]
Pedersen, Kay, et al., 1975
Pedersen, M.J.; Kay, W.B.; Hershey, H.C.,
Excess enthalpies, heat capacities, and excess heat capacities as a function of temperature in liquid mixtures of ethanol + toluene, ethanol + hexamethyldisiloxane, and hexamethyldisiloxane + toluene,
J. Chem. Thermodynam., 1975, 7, 1107-1118. [all data]
Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E.,
Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos,
An. Quim., 1970, 66, 961-967. [all data]
Nikolaev, Rabinovich, et al., 1967
Nikolaev, P.N.; Rabinovich, I.B.; Lebedev, B.V.,
Specific heat of H- and D-ethyl alcohol in the interval 80-250K,
Zhur. Fiz. Khim., 1967, 41, 1294-1299. [all data]
Hwa and Ziegler, 1966
Hwa, S.C.P.; Ziegler, W.T.,
Temperature dependence of excess thermodynamic properties of ethanol-methylcyclohexane and ethanol-toluene systems,
J. Phys. Chem., 1966, 70(8), 2572-2593. [all data]
Rabinovich and Nikolaev, 1962
Rabinovich, I.B.; Nikolaev, P.N.,
Isotopic effect in the specific heat of some deutero compounds,
Dokl. Akad. Nauk, 1962, SSSR 142, 1335-1338. [all data]
Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A.,
Mean specific heat in homologous series of binary and ternary positive azeotropes,
Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]
Mazur, 1940
Mazur, V.J.,
On the specific heat of ethyl alcohol,
Acta Phys. Polon., 1940, 8, 6-11. [all data]
Bykov, 1939
Bykov, V.T.,
Heat of mixing of liquids,
Zhur. Fiz. Khim., 1939, 13, 1013-1019. [all data]
Ernst, Watkins, et al., 1936
Ernst, R.C.; Watkins, C.H.; Ruwe, H.H.,
The physical properties of the ternary system ethyl alcohol-glycerin-water,
J. Phys. Chem., 1936, 40, 627-635. [all data]
Fiock, Ginnings, et al., 1931
Fiock, E.F.; Ginnings, D.C.; Holton, W.B.,
Calorimetric determinations of thermal properties of methyl alcohol, ethyl alcohol, and benzene,
J. Res., 1931, NBS 6, 881-900. [all data]
Mitsukuri and Hara, 1929
Mitsukuri, S.; Hara, K.,
Specific heats of acetone, methyl-, ethyl-, and n-propyl-alcohols at low temperatures,
Bull. Chem. Soc. Japan, 1929, 4, 77-81. [all data]
Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M.,
Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds,
J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]
Willams and Daniels, 1924
Willams, J.W.; Daniels, F.,
The specific heats of certain organic liquids at elevated temperatures,
J. Am. Chem. Soc., 1924, 46, 903-917. [all data]
Gibson, Parks, et al., 1920
Gibson, G.E.; Parks, G.S.; Latimer, W.M.,
Entropy changes at low temperatures. II. Ethyl and propyl alcohols and their equal molal mixture,
J. Am. Chem. Soc., 1920, 42, 1542-1550. [all data]
von Reis, 1881
von Reis, M.A.,
Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht,
Ann. Physik [3], 1881, 13, 447-464. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Tabrizchi and Shooshtari, 2003
Tabrizchi, M.; Shooshtari, S.,
Proton affinity measurements using ion mobility spectrometry,
J. Chem. Thermodynamics, 2003, 35, 863. [all data]
Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P.,
Ionization energies of homologous organic compounds and correlation with molecular size,
Org. Mass Spectrom., 1991, 26, 537. [all data]
Ohno, Imai, et al., 1985
Ohno, K.; Imai, K.; Harada, Y.,
Variations in reactivity of lone-pair electrons due to intramolecular hydrogen bonding as observed by penning ionization electron spectroscopy,
J. Am. Chem. Soc., 1985, 107, 8078. [all data]
Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A.,
Low energy, low temperature mass spectra,
Org. Mass Spectrom., 1984, 19, 379. [all data]
Ohno, Imai, et al., 1983
Ohno, K.; Imai, K.; Matsumoto, S.; Harada, Y.,
Penning ionization electron spectroscopy of C2H5X (X = NH2, OH, H, Cl, I) relative reactivity of orbital localizing on functional groups upon electrophilic attack by metastable helium atoms,
J. Phys. Chem., 1983, 87, 4346. [all data]
Mishchanchuk, Pokrovskii, et al., 1982
Mishchanchuk, B.G.; Pokrovskii, V.A.; Shabel'nikov, V.P.; Korol, E.N.,
Mass spectrometric study of energy characteristics of methanol and ethanol ions during ionization by a strong electric field,
Teor. Eksp. Khim., 1982, 18, 307. [all data]
Von Niessen, Bieri, et al., 1980
Von Niessen, W.; Bieri, G.; Asbrink, L.,
30.4 nm He(II) photoelectron spectra of organic molecules. Part III. Oxo-compounds (C,H,O),
J. Electron Spectrosc. Relat. Phenom., 1980, 21, 175. [all data]
Potapov and Sorokin, 1972
Potapov, V.K.; Sorokin, V.V.,
Kinetic energies of products of dissociative photoionization of molecules. I. Aliphatic ketones and alcohols,
Khim. Vys. Energ., 1972, 6, 387. [all data]
Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J.,
The effect of alkyl substitution on ionisation potential,
J. Chem. Soc., 1971, (B), 790. [all data]
Baker, Betteridge, et al., 1971
Baker, A.D.; Betteridge, D.; Kemp, N.R.; Kirby, R.E.,
Application of photoelectron spectrometry to pesticide analysis. II.Photoelectron spectra of hydroxy-, and halo-alkanes and halohydrins,
Anal. Chem., 1971, 43, 375. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Refaey and Chupka, 1968
Refaey, K.M.A.; Chupka, W.A.,
Photoionization of the lower aliphatic alcohols with mass analysis,
J. Chem. Phys., 1968, 48, 5205. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Utsunomiya, Kobayashi, et al., 1980
Utsunomiya, C.; Kobayashi, T.; Nagakura, S.,
Photoelectron angular distribution measurements for some aliphatic alcohols, amines, halides,
Bull. Chem. Soc. Jpn., 1980, 53, 1216. [all data]
Hoppilliard and Solgadi, 1980
Hoppilliard, Y.; Solgadi, D.,
Conformational analysis of 2-haloethanols and 2-methoxyethylhalides in a photoelectron spectrometer,
Tetrahedron, 1980, 36, 377. [all data]
Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G.,
Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules,
J. Am. Chem. Soc., 1977, 99, 3980. [all data]
Peel and Willett, 1975
Peel, J.B.; Willett, G.D.,
Photoelectron spectroscopic studies of the higher alcohols,
Aust. J. Chem., 1975, 28, 2357. [all data]
Vovna, Lopatin, et al., 1974
Vovna, V.I.; Lopatin, S.N.; Pettsold, R.; Vilesov, F.I.; Akopyan, M.E.,
Photoelectron spectra of a number of substitution products of thiophosphoryl chloride,
Opt. Spectrosc., 1974, 36, 99. [all data]
Schweig and Thiel, 1974
Schweig, A.; Thiel, W.,
Photoionization cross sections: He I- and He II-photoelectron spectra of homologous oxygen and sulphur compounds,
Mol. Phys., 1974, 27, 265. [all data]
Robin and Kuebler, 1973
Robin, M.B.; Kuebler, N.A.,
Excited electronic states of the simple alcohols,
J. Electron Spectrosc. Relat. Phenom., 1973, 1, 13. [all data]
Katsumata, Iwai, et al., 1973
Katsumata, S.; Iwai, T.; Kimura, K.,
Photoelectron spectra and sum rule consideration. Higher alkyl amines and alcohols,
Bull. Chem. Soc. Jpn., 1973, 46, 3391. [all data]
Stepanov, Perov, et al., 1988
Stepanov, A.N.; Perov, A.A.; Kabanov, S.P.; Simonov, A.P.,
Formation of long-lived, highly excited atoms during dissociative excitation of CH3CN, CH3CH2OH, CH3COOH, HCOOH, and C4H4S molecules on electron impact,
Russ. J. Phys. Chem., 1988, 22, 81. [all data]
Haney and Franklin, 1969
Haney, M.A.; Franklin, J.L.,
Excess energies in mass spectra of some oxygen-containing organic compounds,
J. Chem. Soc. Faraday Trans., 1969, 65, 1794. [all data]
Selim and Helal, 1981
Selim, E.T.M.; Helal, A.I.,
Heat of formation of CH2=OH+ fragment ion,
Indian J. Pure Appl. Phys., 1981, 19, 977. [all data]
Lossing, 1977
Lossing, F.P.,
Heats of formation of some isomeric [CnH2n+1]+ ions. Substitutional effects on ion stability,
J. Am. Chem. Soc., 1977, 99, 7526. [all data]
Friedman, Long, et al., 1957
Friedman, L.; Long, F.A.; Wolfsberg, M.,
Study of the mass spectra of the lower aliphatic alcohols,
J. Chem. Phys., 1957, 27, 613. [all data]
Holmes, Terlouw, et al., 1976
Holmes, J.L.; Terlouw, J.K.; Lossing, F.P.,
The thermochemistry of C2H4O+ ions,
J. Phys. Chem., 1976, 80, 2860. [all data]
Solka and Russell, 1974
Solka, B.H.; Russell, M.E.,
Energetics of formation of some structural isomers of gaseous C2H5O+ C2H6N+ ions,
J. Phys. Chem., 1974, 78, 1268. [all data]
Ruscic and Berkowitz, 1994
Ruscic, B.; Berkowitz, J.,
The heats of formation of some C2H5O+ isomers, relevant bond energies in ethanol and PA(CH3CHO),
J. Chem. Phys., 1994, 101, 10936. [all data]
Lewis and Hamill, 1970
Lewis, D.; Hamill, W.H.,
Excited states of neutral molecular fragments from appearance potentials by electron impact in a mass spectrometer,
J. Chem. Phys., 1970, 52, 6348. [all data]
Niwa, Nishimura, et al., 1982
Niwa, Y.; Nishimura, T.; Tsuchiya, T.,
Ionic dissociation of ethanol studied by photoelectron-photoion coincidence spectroscopy,
Int. J. Mass Spectrom. Ion Processes, 1982, 42, 91. [all data]
Haney and Franklin, 1969, 2
Haney, M.A.; Franklin, J.L.,
Heats of formation of H3O+, H3S+, and NH4+ by electron impact,
J. Chem. Phys., 1969, 50, 2028. [all data]
Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C.,
Vibronic structure of alkoxy radicals via photoelectron spectroscopy,
J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767
. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M.,
Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols,
J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy S°liquid Entropy of liquid at standard conditions ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.