Glycerin
- Formula: C3H8O3
- Molecular weight: 92.0938
- IUPAC Standard InChIKey: PEDCQBHIVMGVHV-UHFFFAOYSA-N
- CAS Registry Number: 56-81-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: 1,2,3-Propanetriol; Glycerol; Glycerine; Glyceritol; Glycyl alcohol; Glyrol; Glysanin; Osmoglyn; Propanetriol; Trihydroxypropane; Synthetic glycerin; 90 Technical glycerin; Dagralax; Glycerin, anhydrous; Glycerin, synthetic; Ophthalgan; Synthetic glycerine; Vitrosupos; 1,2,3-Trihydroxypropane; 90 Technical glycerine; Clyzerin, wasserfrei; Grocolene; MOON; Star; Optim; Bulbold; Cristal; Emery 912; Incorporation factor; Pricerine 9091; Propane-1,2,3-triol; Emery 916; IFP; NSC 9230; Auralgan (Salt/Mix); Collyrium Fresh-Eye Drops (Salt/Mix)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -138.1 ± 0.26 | kcal/mol | Ccb | Bastos, Nilsson, et al., 1988 | Uc=-1653.1±0.4 kJ/mol; ALS |
ΔfH°gas | -137.9 | kcal/mol | N/A | Parks, West, et al., 1946 | Value computed using ΔfHliquid° value of -668.6±0.4 kj/mol from Parks, West, et al., 1946 and ΔvapH° value of 91.7 kj/mol from Bastos, Nilsson, et al., 1988.; DRB |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -160.0 ± 0.1 | kcal/mol | Ccb | Bastos, Nilsson, et al., 1988 | Uc=-1653.1±0.4 kJ/mol; ALS |
ΔfH°liquid | -159.80 ± 0.10 | kcal/mol | Ccb | Parks, West, et al., 1946 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -395.39 ± 0.1 | kcal/mol | Ccb | Bastos, Nilsson, et al., 1988 | Uc=-1653.1±0.4 kJ/mol; Corresponding ΔfHºliquid = -160.0 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -395.34 | kcal/mol | Cm | Parks and Manchester, 1952 | From heat of solution; Corresponding ΔfHºliquid = -160.07 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -395.63 ± 0.24 | kcal/mol | Ccb | Parks, West, et al., 1946 | Corresponding ΔfHºliquid = -159.78 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -397.97 | kcal/mol | Ccb | Emery and Benedict, 1911 | Corresponding ΔfHºliquid = -157.5 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 9.051 | cal/mol*K | N/A | Ahlberg, Blanchard, et al., 1937 | DH |
S°solid,1 bar | 10.12 | cal/mol*K | N/A | Ahlberg, Blanchard, et al., 1937 | glass phase; Value S-S0; zero point entropy calculated as 19.41 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
52.32 | 298.15 | Bastos, Nilsson, et al., 1988 | DH |
54.80 | 313.15 | Chen and Ge, 1982 | T = 20 to 60 K. Cp given as 2.49 kJ/kg*K at 40°C. Cp at 25°C estimated from graph to be ca. 2.43 kJ/kg*K or 223 J/mol*K.; DH |
52.39 | 293.15 | Atalla, El-Sharkawy, et al., 1981 | DH |
53.04 | 298.15 | Murthy and Subrahmanyam, 1977 | DH |
52.99 | 301.2 | Paz Andrade, Paz, et al., 1970 | T = 28, 40°C.; DH |
52.863 | 293.15 | Omel'chenko, 1962 | T = 273 to 523 K. A reexamination of the literature. Cp(liq) = 32.9 + 0.0761T - 0.0000269T2(T in K) cal/mol*K (0 to 250°C).; DH |
52.22 | 298. | Rabinovich and Nikolaev, 1962 | T = 10 to 55°C.; DH |
51.10 | 298. | Ernst, Watkins, et al., 1936 | DH |
49.69 | 298.1 | Parks, Kelley, et al., 1929 | Extrapolation below 90 K, 41.4 J/mol*K.; DH |
53.39 | 299.4 | Gibson and Giauque, 1923 | T = 70.2 to 299.4 K. Value is unsmoothed experimental datum. Cp also measured for glass.; DH |
53.99 | 289.7 | Simon, 1922 | T = 19 to 294 K. Value is unsmoothed experimental datum. Cp also measured for glass.; DH |
Constant pressure heat capacity of solid
Cp,solid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
11.90 | 86.92 | Ahlberg, Blanchard, et al., 1937 | T = 3 to 87 K. Value is unsmoothed experimental datum.; DH |
12.00 | 85.12 | Ahlberg, Blanchard, et al., 1937 | glass phase; T = 2.3 to 95 K. Value is unsmoothed experimental datum.; DH |
35.9 | 279. to 284. | Volmer and Marder, 1931 | T = 279 to 284 K. Cp measured for the solid phase is an average value over the temperature range.; DH |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Proton affinity (review) | 209.1 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 196. | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Proton affinity at 298K
Proton affinity (kcal/mol) | Reference | Comment |
---|---|---|
>200.9 | Bouchoux, Buisson, et al., 2003 | MM |
>199.8 | Bouchoux, Buisson, et al., 2003 | MM |
>202.8 ± 0.29 | Bouchoux, Buisson, et al., 2003 | MM |
Gas basicity at 298K
Gas basicity (review) (kcal/mol) | Reference | Comment |
---|---|---|
193.6 | Bouchoux, Buisson, et al., 2003 | MM |
192.5 | Bouchoux, Buisson, et al., 2003 | MM |
195.7 ± 0.1 | Bouchoux, Buisson, et al., 2003 | MM |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Bastos, Nilsson, et al., 1988
Bastos, M.; Nilsson, S-O.; Ribeiro Da Silva, M.D.M.C.; Ribeiro Da Silva, M.A.V.; Wadso, I.,
Thermodynamic properties of glycerol enthalpies of combustion and vaporization and the heat capacity at 298.15 K. Enthalpies of solution in water at 288.15, 298.15, and 308.15 K,
J. Chem. Thermodyn., 1988, 20, 1353-1359. [all data]
Parks, West, et al., 1946
Parks, G.S.; West, T.J.; Naylor, B.F.; Fujii, P.S.; McClaine, L.A.,
Thermal data on organic compounds. XXIII. Modern combustion data for fourteen hydrocarbons and five polyhydroxy alcohols,
J. Am. Chem. Soc., 1946, 68, 2524-2527. [all data]
Parks and Manchester, 1952
Parks, G.S.; Manchester, K.E.,
The heats of solution of erythritol, mannitol and dulcitol; combustion values for liquid polyhydroxy alcohols,
J. Am. Chem. Soc., 1952, 74, 3435-34. [all data]
Emery and Benedict, 1911
Emery, A.G.; Benedict, F.G.,
The heat of combustion of compounds of physiological importance,
Am. J. Physiol., 1911, 28, 301-307. [all data]
Ahlberg, Blanchard, et al., 1937
Ahlberg, J.E.; Blanchard, E.R.; Lundberg, W.O.,
The heat capacities of benzene, methyl alcohol and glycerol at very low temperatures,
J. Chem. Phys., 1937, 5, 537-551. [all data]
Chen and Ge, 1982
Chen, Z.S.; Ge, X.S.,
A multifunctional apparatus for the simultaneous measurement of the specific heat, thermal conductivity and heat of fusion of materials undergoing phase transformations, Proc. Symp. Thermophys. Prop.,
8th, 1982, (2), 115-121. [all data]
Atalla, El-Sharkawy, et al., 1981
Atalla, S.R.; El-Sharkawy, A.A.; Gasser, F.A.,
Measurement of thermal properties of liquids with an AC heated-wire technique,
Inter. J. Thermophys., 1981, 2(2), 155-162. [all data]
Murthy and Subrahmanyam, 1977
Murthy, N.M.; Subrahmanyam, S.V.,
Behaviour of excess heat capacity of aqueous non-electrolytes,
Indian J. Pure Appl. Phys., 1977, 15, 485-489. [all data]
Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E.,
Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos,
An. Quim., 1970, 66, 961-967. [all data]
Omel'chenko, 1962
Omel'chenko, F.S.,
On the heat capacity of glycerol, Izv. Vysshikh. Uchebn. Zaved.,
Pishchevaya Tekhnol., 1962, (3), 97-98. [all data]
Rabinovich and Nikolaev, 1962
Rabinovich, I.B.; Nikolaev, P.N.,
Isotopic effect in the specific heat of some deutero compounds,
Dokl. Akad. Nauk, 1962, SSSR 142, 1335-1338. [all data]
Ernst, Watkins, et al., 1936
Ernst, R.C.; Watkins, C.H.; Ruwe, H.H.,
The physical properties of the ternary system ethyl alcohol-glycerin-water,
J. Phys. Chem., 1936, 40, 627-635. [all data]
Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M.,
Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds,
J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]
Gibson and Giauque, 1923
Gibson, G.E.; Giauque, W.F.,
The third law of thermodynamics. Evidence from the specific heats of glycerol that the entropy of a glass exceeds that of a crystal at the absolute zero,
J. Am. Chem. Soc., 1923, 45, 93-104. [all data]
Simon, 1922
Simon, F.,
Untersuchungen über die spezifische Wärme bei tiefen Temperaturen,
Ann. Physik. [4], 1922, 68, 241-280. [all data]
Volmer and Marder, 1931
Volmer, M.; Marder, M.,
Zur theorie der linearen kristallistionsgeschwindigkeit unterkuhlter schmelzen und unterkuhlter fester modifikationen,
Z. Physik. Chem., 1931, 154A, 97-112. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Bouchoux, Buisson, et al., 2003
Bouchoux, G.; Buisson, D.A.; Bourcier, S.; Sablier, M.,
Application of the kinetic method to bifunctional bases. ESI tandem quadrupole experiments,
Int. J. Mass Spectrom., 2003, 228, 1035. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid Cp,solid Constant pressure heat capacity of solid S°solid,1 bar Entropy of solid at standard conditions (1 bar) ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.