Heptane
- Formula: C7H16
- Molecular weight: 100.2019
- IUPAC Standard InChIKey: IMNFDUFMRHMDMM-UHFFFAOYSA-N
- CAS Registry Number: 142-82-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: n-Heptane; Dipropylmethane; Heptyl hydride; Skellysolve C; n-C7H16; Eptani; Heptan; Heptanen; Gettysolve-C; NSC 62784
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -187.8 ± 0.79 | kJ/mol | Ccb | Prosen and Rossini, 1945 | ALS |
ΔfH°gas | -189.3 | kJ/mol | N/A | Davies and Gilbert, 1941 | Value computed using ΔfHliquid° value of -225.9±1.3 kj/mol from Davies and Gilbert, 1941 and ΔvapH° value of 36.6 kj/mol from Prosen and Rossini, 1945.; DRB |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
127.65 | 200. | Scott D.W., 1974 | Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, 2, Scott D.W., 1974]. This approach gives a better agreement with experimental data than the statistical thermodynamics calculation [ Pitzer K.S., 1944, Pitzer K.S., 1946].; GT |
154.64 | 273.15 | ||
165.2 ± 0.3 | 298.15 | ||
165.98 | 300. | ||
210.66 | 400. | ||
252.09 | 500. | ||
287.44 | 600. | ||
317.15 | 700. | ||
342.25 | 800. | ||
363.59 | 900. | ||
381.58 | 1000. | ||
397.06 | 1100. | ||
410.45 | 1200. | ||
422.58 | 1300. | ||
435.14 | 1400. | ||
443.50 | 1500. |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
191.50 ± 0.19 | 357.10 | Waddington G., 1947 | GT |
198.78 ± 0.20 | 373.15 | ||
210.75 ± 0.21 | 400.40 | ||
225.31 ± 0.23 | 434.35 | ||
238.49 ± 0.24 | 466.10 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
(solution) + (solution) = C14H21MnO2 (solution) + (solution)
By formula: C8H5MnO3 (solution) + C7H16 (solution) = C14H21MnO2 (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 196. ± 7. | kJ/mol | AVG | N/A | Average of 18 values; Individual data points |
(solution) + (solution) = C12H16CrO5 (solution) + (solution)
By formula: C6CrO6 (solution) + C7H16 (solution) = C12H16CrO5 (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 113. ± 3. | kJ/mol | AVG | N/A | Average of 13 values; Individual data points |
C12H16CrO5 (solution) = (solution) + C5CrO5 (solution)
By formula: C12H16CrO5 (solution) = C7H16 (solution) + C5CrO5 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40.2 | kJ/mol | N/A | Morse, Parker, et al., 1989 | solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Cr-CO bond in Cr(CO)6, 154.0 kJ/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Cr(CO)6(solution) + n-C7H16(solution) = Cr(CO)5(n-C7H16)(solution) + CO(solution), 113.8 kJ/mol Morse, Parker, et al., 1989; MS |
ΔrH° | 41. | kJ/mol | N/A | Yang, Vaida, et al., 1988 | solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Cr-CO bond in Cr(CO)6, 154.0 kJ/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Cr(CO)6(solution) + n-C7H16(solution) = Cr(CO)5(n-C7H16)(solution) + CO(solution), 112.9 kJ/mol Yang, Peters, et al., 1986; MS |
By formula: H2 + C7H14 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -125. ± 2. | kJ/mol | AVG | N/A | Average of 6 values; Individual data points |
C12H16MoO5 (solution) = C5MoO5 (solution) + (solution)
By formula: C12H16MoO5 (solution) = C5MoO5 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36.4 | kJ/mol | N/A | Morse, Parker, et al., 1989 | solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Mo-CO bond in Mo(CO)6, 169.5 kJ/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Mo(CO)6(solution) + n-C7H16(solution) = Mo(CO)5(n-C7H16)(solution) + CO(solution), 133.1 kJ/mol Morse, Parker, et al., 1989; MS |
C12H16O5W (solution) = C5O5W (solution) + (solution)
By formula: C12H16O5W (solution) = C5O5W (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56.1 | kJ/mol | N/A | Morse, Parker, et al., 1989 | solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of W-CO bond in W(CO)6, 192.5 kJ/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction W(CO)6(solution) + n-C7H16(solution) = W(CO)5(n-C7H16)(solution) + CO(solution), 136.4 kJ/mol Morse, Parker, et al., 1989; MS |
(solution) + (solution) = C12H16MoO5 (solution) + (solution)
By formula: C6MoO6 (solution) + C7H16 (solution) = C12H16MoO5 (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 135. ± 12. | kJ/mol | PAC | Johnson, Popov, et al., 1991 | solvent: Heptane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation.; MS |
ΔrH° | 133.1 ± 5.4 | kJ/mol | PAC | Morse, Parker, et al., 1989 | solvent: Heptane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation; MS |
By formula: H2 + C7H14 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -118.5 ± 0.3 | kJ/mol | Chyd | Rogers and Dejroongruang, 1988 | liquid phase; solvent: Hydrocarbone; ALS |
ΔrH° | -117.2 ± 2.8 | kJ/mol | Chyd | Rogers and Siddiqui, 1975 | liquid phase; solvent: n-Hexane; ALS |
By formula: C7H16 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -0.59 ± 0.96 | kJ/mol | Ccb | Prosen and Rossini, 1941 | liquid phase; Heat of Isomerization; ALS |
ΔrH° | -2.2 ± 1.1 | kJ/mol | Ccb | Prosen and Rossini, 1941 | gas phase; Heat of Isomerization; ALS |
By formula: C7H16 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -14.3 ± 1.2 | kJ/mol | Ccb | Prosen and Rossini, 1941 | liquid phase; Heat of Isomerization; ALS |
ΔrH° | -18.6 ± 1.3 | kJ/mol | Ccb | Prosen and Rossini, 1941 | gas phase; Heat of Isomerization; ALS |
By formula: C7H16 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -9.1 ± 1.1 | kJ/mol | Ccb | Prosen and Rossini, 1941 | liquid phase; Heat of Isomerization; ALS |
ΔrH° | -11.7 ± 1.3 | kJ/mol | Ccb | Prosen and Rossini, 1941 | gas phase; Heat of Isomerization; ALS |
By formula: C7H16 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -10.6 ± 0.67 | kJ/mol | Ccb | Prosen and Rossini, 1941 | liquid phase; Heat of Isomerization; ALS |
ΔrH° | -14.2 ± 0.92 | kJ/mol | Ccb | Prosen and Rossini, 1941 | gas phase; Heat of Isomerization; ALS |
By formula: C7H16 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -10.2 ± 0.63 | kJ/mol | Ccb | Prosen and Rossini, 1941 | liquid phase; Heat of Isomerization; ALS |
ΔrH° | -13.6 ± 0.88 | kJ/mol | Ccb | Prosen and Rossini, 1941 | gas phase; Heat of Isomerization; ALS |
By formula: C7H16 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -12.6 ± 0.92 | kJ/mol | Ccb | Prosen and Rossini, 1941 | liquid phase; Heat of Isomerization; ALS |
ΔrH° | -17.4 ± 1.1 | kJ/mol | Ccb | Prosen and Rossini, 1941 | gas phase; Heat of Isomerization; ALS |
(solution) + (solution) = C12H16O5W (solution) + (solution)
By formula: C6O6W (solution) + C7H16 (solution) = C12H16O5W (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 136.4 ± 1.7 | kJ/mol | PAC | Morse, Parker, et al., 1989 | solvent: Heptane; The reaction enthalpy relies on 0.72 for the quantum yield of CO dissociation; MS |
(solution) + (solution) = C15H22CrO2 (solution) + (solution)
By formula: C9H6CrO3 (solution) + C7H16 (solution) = C15H22CrO2 (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 137.2 ± 1.3 | kJ/mol | PAC | Burkey, 1990 | solvent: Heptane; The reaction enthalpy relies on 0.72 for the quantum yield of CO dissociation; MS |
(solution) + (solution) = C15H21O3V (solution) + (solution)
By formula: C9H5O4V (solution) + C7H16 (solution) = C15H21O3V (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 107. ± 13. | kJ/mol | PAC | Johnson, Popov, et al., 1991 | solvent: Heptane; The reaction enthalpy relies on 0.80 for the quantum yield of CO dissociation.; MS |
C12H16CrO5 (solution) + (solution) = (solution) + C10H5CrNO5 (solution)
By formula: C12H16CrO5 (solution) + C4H4N2 (solution) = C7H16 (solution) + C10H5CrNO5 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -84.1 ± 1.7 | kJ/mol | PAC | Yang, Vaida, et al., 1988 | solvent: Heptane; MS |
By formula: H2 + C7H14 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -114.1 ± 0.5 | kJ/mol | Chyd | Rogers and Dejroongruang, 1988 | liquid phase; solvent: Hydrocarbone; ALS |
By formula: H2 + C7H14 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -114.7 ± 0.3 | kJ/mol | Chyd | Rogers and Dejroongruang, 1988 | liquid phase; solvent: Hydrocarbone; ALS |
C14H21MnO2 (solution) + (solution) = C11H13MnO3 (solution) + (solution)
By formula: C14H21MnO2 (solution) + C4H8O (solution) = C11H13MnO3 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -67.4 ± 5.9 | kJ/mol | PAC | Klassen, Selke, et al., 1990 | solvent: Heptane; MS |
By formula: H2 + C7H14 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -115.6 ± 0.4 | kJ/mol | Chyd | Rogers and Dejroongruang, 1988 | liquid phase; solvent: Hydrocarbone; ALS |
C12H16CrO5 (solution) + (solution) = C9H8CrO6 (solution) + (solution)
By formula: C12H16CrO5 (solution) + C4H8O (solution) = C9H8CrO6 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -51.9 ± 5.0 | kJ/mol | PAC | Yang, Peters, et al., 1986 | solvent: Heptane; MS |
C12H16CrO5 (solution) + (solution) = (solution) + C8H6CrO6 (solution)
By formula: C12H16CrO5 (solution) + C3H6O (solution) = C7H16 (solution) + C8H6CrO6 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -56.5 ± 5.0 | kJ/mol | PAC | Yang, Peters, et al., 1986 | solvent: Heptane; MS |
C12H16CrO5 (solution) + (solution) = C17H27CrNO5 (solution) + (solution)
By formula: C12H16CrO5 (solution) + C12H27N (solution) = C17H27CrNO5 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -51.0 ± 5.0 | kJ/mol | PAC | Yang, Peters, et al., 1986 | solvent: Heptane; MS |
C12H16CrO5 (solution) + (solution) = C11H12CrO5 (solution) + (solution)
By formula: C12H16CrO5 (solution) + C6H12 (solution) = C11H12CrO5 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -51.0 ± 5.0 | kJ/mol | PAC | Yang, Peters, et al., 1986 | solvent: Heptane; MS |
C14H21MnO2 (solution) + (solution) = C10H11MnO3 (solution) + (solution)
By formula: C14H21MnO2 (solution) + C3H6O (solution) = C10H11MnO3 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -72.8 ± 4.2 | kJ/mol | PAC | Klassen, Selke, et al., 1990 | solvent: Heptane; MS |
C14H21MnO2 (solution) + (solution) = C8H7Cl2MnO2 (solution) + (solution)
By formula: C14H21MnO2 (solution) + CH2Cl2 (solution) = C8H7Cl2MnO2 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -37.7 ± 4.2 | kJ/mol | PAC | Yang and Yang, 1992 | solvent: Heptane; MS |
C14H21MnO2 (solution) + (solution) = C8H7Br2MnO2 (solution) + (solution)
By formula: C14H21MnO2 (solution) + CH2Br2 (solution) = C8H7Br2MnO2 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -51.0 ± 5.0 | kJ/mol | PAC | Yang and Yang, 1992 | solvent: Heptane; MS |
C12H16CrO5 (solution) + (solution) = C7H5CrO6 (solution) + (solution)
By formula: C12H16CrO5 (solution) + C2H6O (solution) = C7H5CrO6 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -57.7 ± 5.0 | kJ/mol | PAC | Yang, Peters, et al., 1986 | solvent: Heptane; MS |
C12H16CrO5 (solution) + (solution) = C8H6CrNO5 (solution) + (solution)
By formula: C12H16CrO5 (solution) + C2H3N (solution) = C8H6CrNO5 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -76.1 ± 5.0 | kJ/mol | PAC | Yang, Peters, et al., 1986 | solvent: Heptane; MS |
By formula: C7H12 + 2H2 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -272.4 ± 1.3 | kJ/mol | Chyd | Rogers, Dagdagan, et al., 1979 | liquid phase; solvent: Hexane; ALS |
By formula: 2H2 + C7H12 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -270.4 ± 1.5 | kJ/mol | Chyd | Rogers, Dagdagan, et al., 1979 | liquid phase; solvent: Hexane; ALS |
By formula: 2H2 + C7H12 = C7H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -291.4 ± 1.6 | kJ/mol | Chyd | Rogers, Dagdagan, et al., 1979 | liquid phase; solvent: Hexane; ALS |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.93 ± 0.10 | eV | N/A | N/A | L |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.15 | EST | Luo and Pacey, 1992 | LL |
9.93 ± 0.10 | EVAL | Lias, 1982 | LBLHLM |
9.83 ± 0.15 | EQ | Mautner(Meot-Ner), Sieck, et al., 1981 | LLK |
9.91 | EQ | Lias, Ausloos, et al., 1976 | LLK |
9.90 ± 0.05 | PI | Brehm, 1966 | RDSH |
10.16 | PE | Turner and Al-Joboury, 1964 | RDSH |
10.08 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
CH3+ | 27.9 ± 0.2 | ? | EI | Olmsted, Street, et al., 1964 | RDSH |
C2H5+ | 12.89 | ? | EI | Potzinger and Bunau, 1969 | RDSH |
C3H5+ | 12.7 ± 0.1 | ? | PI | Brehm, 1966 | RDSH |
C3H6+ | 10.7 ± 0.1 | C4H10 | PI | Brehm, 1966 | RDSH |
C3H6+ | 10.97 ± 0.08 | C4H10 | PI | Steiner, Giese, et al., 1961 | RDSH |
C3H7+ | 11.58 | ? | EI | Potzinger and Bunau, 1969 | RDSH |
C3H7+ | 11.05 ± 0.05 | ? | PI | Brehm, 1966 | RDSH |
C4H7+ | 11.5 ± 0.1 | ? | PI | Brehm, 1966 | RDSH |
C4H8+ | 10.56 ± 0.05 | C3H8 | PI | Brehm, 1966 | RDSH |
C4H8+ | 10.97 ± 0.03 | C3H8 | PI | Steiner, Giese, et al., 1961 | RDSH |
C4H9+ | 10.72 | C3H7 | EI | Potzinger and Bunau, 1969 | RDSH |
C4H9+ | 10.56 ± 0.05 | C3H7 | PI | Brehm, 1966 | RDSH |
C4H9+ | 11.19 ± 0.07 | C3H7 | PI | Steiner, Giese, et al., 1961 | RDSH |
C5H10+ | 10.33 | C2H6 | EI | Lewis and Hamill, 1970 | RDSH |
C5H10+ | 10.40 ± 0.05 | C2H6 | PI | Brehm, 1966 | RDSH |
C5H10+ | 11.035 ± 0.025 | C2H6 | PI | Steiner, Giese, et al., 1961 | RDSH |
C5H11+ | 10.66 | C2H5 | EI | Potzinger and Bunau, 1969 | RDSH |
C5H11+ | 10.43 ± 0.05 | C2H5 | PI | Brehm, 1966 | RDSH |
C5H11+ | 10.96 ± 0.085 | C2H5 | PI | Steiner, Giese, et al., 1961 | RDSH |
C6H12+ | 11.145 ± 0.035 | CH4 | PI | Steiner, Giese, et al., 1961 | RDSH |
C6H13+ | 10.7 ± 0.1 | CH3 | PI | Brehm, 1966 | RDSH |
C6H13+ | 10.93 ± 0.11 | CH3 | PI | Steiner, Giese, et al., 1961 | RDSH |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | D.HENNEBERG, MAX-PLANCK INSTITUTE, MULHEIM, WEST GERMANY |
NIST MS number | 61276 |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D.,
Heats of combustion and formation of the paraffin hydrocarbons at 25° C,
J. Res. NBS, 1945, 263-267. [all data]
Davies and Gilbert, 1941
Davies, G.F.; Gilbert, E.C.,
Heats of combustion and formation of the nine isomeric heptanes in the liquid state,
J. Am. Chem. Soc., 1941, 63, 2730-2732. [all data]
Scott D.W., 1974
Scott D.W.,
Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]
Scott D.W., 1974, 2
Scott D.W.,
Correlation of the chemical thermodynamic properties of alkane hydrocarbons,
J. Chem. Phys., 1974, 60, 3144-3165. [all data]
Pitzer K.S., 1944
Pitzer K.S.,
Thermodynamics of gaseous paraffins. Specific heat and related properties,
Ind. Eng. Chem., 1944, 36, 829-831. [all data]
Pitzer K.S., 1946
Pitzer K.S.,
The entropies and related properties of branched paraffin hydrocarbons,
Chem. Rev., 1946, 39, 435-447. [all data]
Waddington G., 1947
Waddington G.,
An improved flow calorimeter. Experimental vapor heat capacities and heats of vaporization of n-heptane and 2,2,3-trimethylbutane,
J. Am. Chem. Soc., 1947, 69, 22-30. [all data]
Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J.,
Organometallics, 1989, 8, 2471. [all data]
Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P.,
Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6,
J. Am. Chem. Soc., 1984, 106, 3905. [all data]
Yang, Vaida, et al., 1988
Yang, G.K.; Vaida, V.; Peters, K.S.,
Polyhedron, 1988, 7, 1619. [all data]
Yang, Peters, et al., 1986
Yang, G.K.; Peters, K.S.; Vaida, V.,
Chem. Phys. Lett., 1986, 125, 566. [all data]
Johnson, Popov, et al., 1991
Johnson, F.P.A.; Popov, V.K.; George, M.W.; Bagratashvili, V.N.; Poliakoff, M.; Turner, J.J.,
Mendeleev Commun., 1991, 145.. [all data]
Rogers and Dejroongruang, 1988
Rogers, D.W.; Dejroongruang, K.,
Enthalpies of hydrogenation of the n-heptenes and the methylhexenes,
J. Chem. Thermodyn., 1988, 20, 675-680. [all data]
Rogers and Siddiqui, 1975
Rogers, D.W.; Siddiqui, N.A.,
Heats of hydrogenation of large molecules. I. Esters of unsaturated fatty acids,
J. Phys. Chem., 1975, 79, 574-577. [all data]
Prosen and Rossini, 1941
Prosen, E.J.R.; Rossini, F.D.,
Heats of isomerization of the nine heptanes,
J. Res. NBS, 1941, 27, 519-528. [all data]
Burkey, 1990
Burkey, T.J.,
J. Am. Chem. Soc., 1990, 112, 8329. [all data]
Klassen, Selke, et al., 1990
Klassen, J.K.; Selke, M.; Sorensen, A.A.; Yang, G.K.,
J. Am. Chem. Soc., 1990, 112, 1267. [all data]
Yang and Yang, 1992
Yang, P.-F.; Yang, K.G.,
J. Am. Chem. Soc., 1992, 114, 6937. [all data]
Rogers, Dagdagan, et al., 1979
Rogers, D.W.; Dagdagan, O.A.; Allinger, N.L.,
Heats of hydrogenation and formation of linear alkynes and a molecular mechanics interpretation,
J. Am. Chem. Soc., 1979, 101, 671-676. [all data]
Luo and Pacey, 1992
Luo, Y.-R.; Pacey, P.D.,
Effects of alkyl substitution on ionization energies of alkanes and haloalkanes and on heats of formation of their molecular cations. Part 2. Alkanes and chloro-, bromo- and iodoalkanes,
Int. J. Mass Spectrom. Ion Processes, 1992, 112, 63. [all data]
Lias, 1982
Lias, S.G.,
Thermochemical information from ion-molecule rate constants,
Ion Cyclotron Reson. Spectrom. 1982, 1982, 409. [all data]
Mautner(Meot-Ner), Sieck, et al., 1981
Mautner(Meot-Ner), M.; Sieck, L.W.; Ausloos, P.,
Ionization of normal alkanes: Enthalpy, entropy, structural, and isotope effects,
J. Am. Chem. Soc., 1981, 103, 5342. [all data]
Lias, Ausloos, et al., 1976
Lias, S.G.; Ausloos, P.; Horvath, Z.,
Charge transfer reactions in alkane and cycloalkane systems. Estimated ionization potentials,
Int. J. Chem. Kinet., 1976, 8, 725. [all data]
Brehm, 1966
Brehm, B.,
Massenspektrometrische Untersuchung der Photoionisation von Molekulen,
Z. Naturforsch., 1966, 21a, 196. [all data]
Turner and Al-Joboury, 1964
Turner, D.W.; Al-Joboury, M.I.,
Molecular photoelectron spectroscopy,
Bull. Soc. Chim. Belges, 1964, 73, 428. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Olmsted, Street, et al., 1964
Olmsted, J., III; Street, K., Jr.; Newton, A.S.,
Excess-kinetic-energy ions in organic mass spectra,
J. Chem. Phys., 1964, 40, 2114. [all data]
Potzinger and Bunau, 1969
Potzinger, P.; Bunau, G.v.,
Empirische Beruksichtigung von Uberschussenergien bei der Auftrittspotentialbestimmung,
Ber. Bunsen-Ges. Phys. Chem., 1969, 73, 466. [all data]
Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G.,
Photoionization of alkanes. Dissociation of excited molecular ions,
J. Chem. Phys., 1961, 34, 189. [all data]
Lewis and Hamill, 1970
Lewis, D.; Hamill, W.H.,
Excited states of neutral molecular fragments from appearance potentials by electron impact in a mass spectrometer,
J. Chem. Phys., 1970, 52, 6348. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas IE (evaluated) Recommended ionization energy ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.