Ammonia

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas-10.98 ± 0.084kcal/molReviewCox, Wagman, et al., 1984CODATA Review value
Δfgas-10.97kcal/molReviewChase, 1998Data last reviewed in June, 1977
Quantity Value Units Method Reference Comment
gas,1 bar46.07 ± 0.01cal/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar46.073cal/mol*KReviewChase, 1998Data last reviewed in June, 1977

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1400.1400. to 6000.
A 4.77907112.43410
B 11.895604.418741
C -3.674950-0.899887
D 0.4591700.059403
E 0.045214-2.977532
F -12.74060-20.44430
G 48.7234953.49001
H -10.96990-10.96990
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in June, 1977 Data last reviewed in June, 1977

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to H3N+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.070 ± 0.020eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)204.0kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity195.7kcal/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
10.02PIQi, Sheng, et al., 1995T = 0K; LL
10.07 ± 0.01PIPECORuede, Troxler, et al., 1993LL
10.186TEReiser, Habenicht, et al., 1993LL
10.069 ± 0.002PILocht, Hottmann, et al., 1992LL
10.072 ± 0.010PILocht, Leyh, et al., 1991LL
10.2985 ± 0.0001TEHabenicht, 1989LL
10.45EIBaldwin, Loudon, et al., 1977LLK
10.2PEDebies and Rabalais, 1975LLK
10.18 ± 0.09PEAue, Webb, et al., 1975LLK
10.2EIMorrison and Traeger, 1973LLK
10.15PEPotts and Price, 1972LLK
10.18 ± 0.01PEWeiss and Lawrence, 1970RDSH
14.94 ± 0.03PEWeiss and Lawrence, 1970RDSH
10.14PEBranton, Frost, et al., 1969RDSH
14.92PEBranton, Frost, et al., 1969RDSH
10.16 ± 0.02PIPotapov, 1968RDSH
10.17PIChupka and Russell, 1968RDSH
10.162 ± 0.008PIDibeler, Walker, et al., 1966RDSH
10.166SWatanabe and Sood, 1965RDSH
10.16PEAl-Joboury and Turner, 1964RDSH
15.02PEAl-Joboury and Turner, 1964RDSH
10.15 ± 0.01PIWatanabe and Mottl, 1957RDSH
10.82PEBaumgartel, Jochims, et al., 1989Vertical value; LL
10.8PEBieri, Asbrink, et al., 1982Vertical value; LBLHLM
10.85PEKimura, Katsumata, et al., 1981Vertical value; LLK
11.3PECampbell, Liesegang, et al., 1979Vertical value; LLK
10.85PEDaamen and Oskam, 1978Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
H+18.57H2NPIQi, Sheng, et al., 1995LL
HN+28. ± 1.5H2/2HEIMuller and Schulz, 1990LL
HN+16.9 ± 0.1H2EILocht, Servais, et al., 1988LL
HN+17.2H2EIMorrison and Traeger, 1973LLK
NH+17.1 ± 0.1H2EIReed and Snedden, 1959RDSH
H2N+15.75HPIQi, Sheng, et al., 1995LL
H2N+15.60 ± 0.02HPIPECORuede, Troxler, et al., 1993LL
H2N+15.75HPILocht, Hottmann, et al., 1992LL
H2N+15.76 ± 0.05HPILocht, Servais, et al., 1988LL
H2N+15.76 ± 0.05HEILocht, Servais, et al., 1988LL
H2N+15.5HPIPECOPowis, 1981LLK
H2N+15.87 ± 0.13HDERPowis, 1981LLK
H2N+15.768 ± 0.004HPIMcCulloh, 1976LLK
H2N+15.0HEIMorrison and Traeger, 1973LLK
NH2+15.73 ± 0.02HPIDibeler, Walker, et al., 1966RDSH
NH2+16.0 ± 0.1HEIFoner and Hudson, 1958RDSH
N+≤22.5H2+HEIMorrison and Traeger, 1973LLK
N+22.6 ± 0.1H2+HEIReed and Snedden, 1959RDSH

De-protonation reactions

H2N- + Hydrogen cation = Ammonia

By formula: H2N- + H+ = H3N

Quantity Value Units Method Reference Comment
Δr403.44 ± 0.28kcal/molD-EAWickham-Jones, Ervin, et al., 1989gas phase; B
Δr403.55 ± 0.80kcal/molG+TSMacKay, Hemsworth, et al., 1976gas phase; B
Δr402.30kcal/molN/ACheck, Faust, et al., 2001gas phase; HCrO3(t); ; ΔS(EA)=6.6; B
Quantity Value Units Method Reference Comment
Δr395.99 ± 0.38kcal/molH-TSWickham-Jones, Ervin, et al., 1989gas phase; B
Δr396.10 ± 0.70kcal/molIMREMacKay, Hemsworth, et al., 1976gas phase; B
Δr395.40kcal/molN/ACheck, Faust, et al., 2001gas phase; HCrO3(t); ; ΔS(EA)=6.6; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

(Silver ion (1+) • Ammonia) + Ammonia = (Silver ion (1+) • 2Ammonia)

By formula: (Ag+ • H3N) + H3N = (Ag+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr36.9kcal/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr32.7cal/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Silver ion (1+) • 2Ammonia) + Ammonia = (Silver ion (1+) • 3Ammonia)

By formula: (Ag+ • 2H3N) + H3N = (Ag+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr14.6kcal/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr24.6cal/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Silver ion (1+) • 3Ammonia) + Ammonia = (Silver ion (1+) • 4Ammonia)

By formula: (Ag+ • 3H3N) + H3N = (Ag+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr13.0kcal/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr30.0cal/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Silver ion (1+) • 4Ammonia) + Ammonia = (Silver ion (1+) • 5Ammonia)

By formula: (Ag+ • 4H3N) + H3N = (Ag+ • 5H3N)

Quantity Value Units Method Reference Comment
Δr12.8kcal/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr34.1cal/mol*KHPMSHolland and Castleman, 1982gas phase; M

Bismuth ion (1+) + Ammonia = (Bismuth ion (1+) • Ammonia)

By formula: Bi+ + H3N = (Bi+ • H3N)

Quantity Value Units Method Reference Comment
Δr35.5kcal/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr35.7cal/mol*KHPMSCastleman, 1978gas phase; M

(Bismuth ion (1+) • Ammonia) + Ammonia = (Bismuth ion (1+) • 2Ammonia)

By formula: (Bi+ • H3N) + H3N = (Bi+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr23.2kcal/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr33.0cal/mol*KHPMSCastleman, 1978gas phase; M

(Bismuth ion (1+) • 2Ammonia) + Ammonia = (Bismuth ion (1+) • 3Ammonia)

By formula: (Bi+ • 2H3N) + H3N = (Bi+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr13.4kcal/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr26.0cal/mol*KHPMSCastleman, 1978gas phase; M

Bromine anion + Ammonia = (Bromine anion • Ammonia)

By formula: Br- + H3N = (Br- • H3N)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr7.70 ± 0.10kcal/molTDAsEvans, Keesee, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr19.1cal/mol*KHPMSEvans, Keesee, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr2.00 ± 0.20kcal/molTDAsEvans, Keesee, et al., 1987gas phase; B

CH6N+ + Ammonia = (CH6N+ • Ammonia)

By formula: CH6N+ + H3N = (CH6N+ • H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr21.4kcal/molPHPMSYamdagni and Kebarle, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSYamdagni and Kebarle, 1974gas phase; M

C2H8N+ + Ammonia = (C2H8N+ • Ammonia)

By formula: C2H8N+ + H3N = (C2H8N+ • H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr20.6kcal/molPHPMSYamdagni and Kebarle, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr28.2cal/mol*KPHPMSYamdagni and Kebarle, 1974gas phase; M

C3H9Si+ + Ammonia = (C3H9Si+ • Ammonia)

By formula: C3H9Si+ + H3N = (C3H9Si+ • H3N)

Quantity Value Units Method Reference Comment
Δr46.5kcal/molPHPMSLi and Stone, 1990gas phase; switching reaction((CH3)3Si+)CH3COOC2H5; Wojtyniak and Stone, 1986; M

C3H9Sn+ + Ammonia = (C3H9Sn+ • Ammonia)

By formula: C3H9Sn+ + H3N = (C3H9Sn+ • H3N)

Quantity Value Units Method Reference Comment
Δr36.9kcal/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH/NH3, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr29.1cal/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH/NH3, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
21.6525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH/NH3, Entropy change calculated or estimated; M

C4H9+ + Ammonia = (C4H9+ • Ammonia)

By formula: C4H9+ + H3N = (C4H9+ • H3N)

Quantity Value Units Method Reference Comment
Δr46.8kcal/molPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; forms t-C4H9NH3+; M
Δr45.3kcal/molPHPMSSzulejko and McMahon, 1991gas phase; forms t-C4H9NH3+; M
Δr46.5kcal/molPHPMSMeot-Ner (Mautner) and Sieck, 1990gas phase; forms t-C4H9NH3+; M
Quantity Value Units Method Reference Comment
Δr43.7cal/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; forms t-C4H9NH3+; M
Δr47.3cal/mol*KPHPMSSzulejko and McMahon, 1991gas phase; forms t-C4H9NH3+; M
Δr44.0cal/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1990gas phase; forms t-C4H9NH3+; M

C5H10NO2+ + Ammonia = (C5H10NO2+ • Ammonia)

By formula: C5H10NO2+ + H3N = (C5H10NO2+ • H3N)

Quantity Value Units Method Reference Comment
Δr20.6kcal/molPHPMSMeot-Ner and Field, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr28.9cal/mol*KPHPMSMeot-Ner and Field, 1974gas phase; M

C5H12NO2+ + Ammonia = (C5H12NO2+ • Ammonia)

By formula: C5H12NO2+ + H3N = (C5H12NO2+ • H3N)

Quantity Value Units Method Reference Comment
Δr20.9kcal/molPHPMSMeot-Ner and Field, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr28.8cal/mol*KPHPMSMeot-Ner and Field, 1974gas phase; M

C6H15O3+ + Ammonia = (C6H15O3+ • Ammonia)

By formula: C6H15O3+ + H3N = (C6H15O3+ • H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr30.4kcal/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr27.9cal/mol*KPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M

Chlorine anion + Ammonia = (Chlorine anion • Ammonia)

By formula: Cl- + H3N = (Cl- • H3N)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr<7.30 ± 0.40kcal/molN/ATschurl and Boesl, 2008gas phase; B
Δr8.20 ± 0.10kcal/molTDAsEvans, Keesee, et al., 1987gas phase; B,M
Δr8.9 ± 1.2kcal/molN/AMarkovich, Chesnovsky, et al., 1993gas phase; B
Δr10.5 ± 4.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr15.4cal/mol*KHPMSEvans, Keesee, et al., 1987gas phase; M
Δr19.9cal/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)CH3F, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M
Quantity Value Units Method Reference Comment
Δr3.60 ± 0.20kcal/molTDAsEvans, Keesee, et al., 1987gas phase; B
Δr4.5 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M

Cobalt ion (1+) + Ammonia = (Cobalt ion (1+) • Ammonia)

By formula: Co+ + H3N = (Co+ • H3N)

Quantity Value Units Method Reference Comment
Δr52.1 ± 3.6kcal/molCIDTWalter and Armentrout, 1998RCD
Δr58.8kcal/molCIDMarinelli and Squires, 1989gas phase; M

(Cobalt ion (1+) • Ammonia) + Ammonia = (Cobalt ion (1+) • 2Ammonia)

By formula: (Co+ • H3N) + H3N = (Co+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr59.3 ± 3.1kcal/molCIDTWalter and Armentrout, 1998RCD
Δr61.1kcal/molCIDMarinelli and Squires, 1989gas phase; M

(Cobalt ion (1+) • 2Ammonia) + Ammonia = (Cobalt ion (1+) • 3Ammonia)

By formula: (Co+ • 2H3N) + H3N = (Co+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr15.3 ± 1.4kcal/molCIDTWalter and Armentrout, 1998RCD

(Cobalt ion (1+) • 3Ammonia) + Ammonia = (Cobalt ion (1+) • 4Ammonia)

By formula: (Co+ • 3H3N) + H3N = (Co+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr11.7 ± 1.4kcal/molCIDTWalter and Armentrout, 1998RCD

Chromium ion (1+) + Ammonia = (Chromium ion (1+) • Ammonia)

By formula: Cr+ + H3N = (Cr+ • H3N)

Quantity Value Units Method Reference Comment
Δr43.5 ± 2.4kcal/molCIDTWalter and Armentrout, 1998RCD
Δr37.4kcal/molCIDMarinelli and Squires, 1989gas phase; M

(Chromium ion (1+) • Ammonia) + Ammonia = (Chromium ion (1+) • 2Ammonia)

By formula: (Cr+ • H3N) + H3N = (Cr+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr42.8 ± 2.2kcal/molCIDTWalter and Armentrout, 1998RCD
Δr40.8kcal/molCIDMarinelli and Squires, 1989gas phase; M

(Chromium ion (1+) • 2Ammonia) + Ammonia = (Chromium ion (1+) • 3Ammonia)

By formula: (Cr+ • 2H3N) + H3N = (Cr+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr12.9 ± 1.4kcal/molCIDTWalter and Armentrout, 1998RCD

(Chromium ion (1+) • 3Ammonia) + Ammonia = (Chromium ion (1+) • 4Ammonia)

By formula: (Cr+ • 3H3N) + H3N = (Cr+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr7.2 ± 2.2kcal/molCIDTWalter and Armentrout, 1998RCD

Copper ion (1+) + Ammonia = (Copper ion (1+) • Ammonia)

By formula: Cu+ + H3N = (Cu+ • H3N)

Quantity Value Units Method Reference Comment
Δr56.6 ± 3.3kcal/molCIDTWalter and Armentrout, 1998RCD

(Copper ion (1+) • Ammonia) + Ammonia = (Copper ion (1+) • 2Ammonia)

By formula: (Cu+ • H3N) + H3N = (Cu+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr58.8 ± 2.4kcal/molCIDTWalter and Armentrout, 1998RCD

(Copper ion (1+) • 2Ammonia) + Ammonia = (Copper ion (1+) • 3Ammonia)

By formula: (Cu+ • 2H3N) + H3N = (Cu+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr11.2 ± 1.4kcal/molCIDTWalter and Armentrout, 1998RCD
Δr14.0kcal/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr23.8cal/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Copper ion (1+) • 3Ammonia) + Ammonia = (Copper ion (1+) • 4Ammonia)

By formula: (Cu+ • 3H3N) + H3N = (Cu+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr10.0 ± 1.4kcal/molCIDTWalter and Armentrout, 1998RCD
Δr12.8kcal/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr28.7cal/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Copper ion (1+) • 4Ammonia) + Ammonia = (Copper ion (1+) • 5Ammonia)

By formula: (Cu+ • 4H3N) + H3N = (Cu+ • 5H3N)

Quantity Value Units Method Reference Comment
Δr12.8kcal/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr33.1cal/mol*KHPMSHolland and Castleman, 1982gas phase; M

Fluorine anion + Ammonia = (Fluorine anion • Ammonia)

By formula: F- + H3N = (F- • H3N)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr23.kcal/molFASpears and Ferguson, 1973gas phase; ΔrH>; M

Iron ion (1+) + Ammonia = (Iron ion (1+) • Ammonia)

By formula: Fe+ + H3N = (Fe+ • H3N)

Quantity Value Units Method Reference Comment
Δr43.7 ± 2.9kcal/molCIDTWalter and Armentrout, 1998RCD
Δr38.5kcal/molCIDMarinelli and Squires, 1989gas phase; M

(Iron ion (1+) • Ammonia) + Ammonia = (Iron ion (1+) • 2Ammonia)

By formula: (Fe+ • H3N) + H3N = (Fe+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr53.8 ± 2.9kcal/molCIDTWalter and Armentrout, 1998RCD
Δr48.7kcal/molCIDMarinelli and Squires, 1989gas phase; M

(Iron ion (1+) • 2Ammonia) + Ammonia = (Iron ion (1+) • 3Ammonia)

By formula: (Fe+ • 2H3N) + H3N = (Fe+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr16.3 ± 3.1kcal/molCIDTWalter and Armentrout, 1998RCD

(Iron ion (1+) • 3Ammonia) + Ammonia = (Iron ion (1+) • 4Ammonia)

By formula: (Fe+ • 3H3N) + H3N = (Fe+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr10.0 ± 1.7kcal/molCIDTWalter and Armentrout, 1998RCD

Hydrogen anion + Ammonia = (Hydrogen anion • Ammonia)

By formula: H- + H3N = (H- • H3N)

Quantity Value Units Method Reference Comment
Δr7.10kcal/molEstSnodgrass, Coe, et al., 1995gas phase; Stated electron affinity is the Vertical Detachment Energy; B
Δr8.3kcal/molPESCoe, Snodgrass, et al., 1985gas phase; ΔrH<; M

(Hydrogen anion • Ammonia) + Ammonia = (Hydrogen anion • 2Ammonia)

By formula: (H- • H3N) + H3N = (H- • 2H3N)

Quantity Value Units Method Reference Comment
Δr8.10kcal/molEstSnodgrass, Coe, et al., 1995gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B

HO- + Ammonia = H4NO-

By formula: HO- + H3N = H4NO-

Quantity Value Units Method Reference Comment
Δr12.00kcal/molN/ASchwartz, Davico, et al., 2000gas phase; Vertical Detachment Energy: 2.54±0.015 eV. Affinity is from difference in EAs; B

H2N- + Ammonia = (H2N- • Ammonia)

By formula: H2N- + H3N = (H2N- • H3N)

Quantity Value Units Method Reference Comment
Δr12.00kcal/molPDisSnodgrass, Coe, et al., 1989gas phase; B

(H2N- • Ammonia) + Ammonia = (H2N- • 2Ammonia)

By formula: (H2N- • H3N) + H3N = (H2N- • 2H3N)

Quantity Value Units Method Reference Comment
Δr11.10kcal/molEstSnodgrass, Coe, et al., 1989gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B

H3N+ + Ammonia = (H3N+ • Ammonia)

By formula: H3N+ + H3N = (H3N+ • H3N)

Quantity Value Units Method Reference Comment
Δr23.1 ± 4.6kcal/molEIStephan, Futrell, et al., 1982gas phase; M
Δr18.1kcal/molPINg, Trevor, et al., 1977gas phase; M

(H3N+ • Ammonia) + Ammonia = (H3N+ • 2Ammonia)

By formula: (H3N+ • H3N) + H3N = (H3N+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr9. ± 5.kcal/molEIBreen, Tzeng, et al., 1989gas phase; M
Δr9.2 ± 4.6kcal/molEIStephan, Futrell, et al., 1982gas phase; M

(NH4+ • Hydrogen cyanide) + Ammonia = (NH4+ • Ammonia • Hydrogen cyanide)

By formula: (H4N+ • CHN) + H3N = (H4N+ • H3N • CHN)

Quantity Value Units Method Reference Comment
Δr18.8kcal/molPHPMSDeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr22.cal/mol*KN/ADeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
9.4429.PHPMSDeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M

(NH4+ • Ethane, 1,2-dimethoxy-) + Ammonia = (NH4+ • Ammonia • Ethane, 1,2-dimethoxy-)

By formula: (H4N+ • C4H10O2) + H3N = (H4N+ • H3N • C4H10O2)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr14.0kcal/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr19.4cal/mol*KPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M

(NH4+ • Water) + Ammonia = (NH4+ • Ammonia • Water)

By formula: (H4N+ • H2O) + H3N = (H4N+ • H3N • H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr18.4kcal/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr23.0cal/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • 2Water) + Ammonia = (NH4+ • Ammonia • 2Water)

By formula: (H4N+ • 2H2O) + H3N = (H4N+ • H3N • 2H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr18.2kcal/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr30.3cal/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • 3Water) + Ammonia = (NH4+ • Ammonia • 3Water)

By formula: (H4N+ • 3H2O) + H3N = (H4N+ • H3N • 3H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr17.3kcal/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr35.1cal/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

NH4+ + Ammonia = (NH4+ • Ammonia)

By formula: H4N+ + H3N = (H4N+ • H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr26. ± 2.kcal/molAVGN/AAverage of 4 out of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Δr26. ± 3.cal/mol*KAVGN/AAverage of 4 out of 6 values; Individual data points

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
6.3400.HPMSWincel, 1972gas phase; M

(NH4+ • Ammonia • 2Hydrogen cyanide) + Ammonia = (NH4+ • 2Ammonia • 2Hydrogen cyanide)

By formula: (H4N+ • H3N • 2CHN) + H3N = (H4N+ • 2H3N • 2CHN)

Quantity Value Units Method Reference Comment
Δr12.9kcal/molPHPMSDeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/ADeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
6.6315.PHPMSDeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M

(NH4+ • Ammonia • Acetonitrile) + Ammonia = (NH4+ • 2Ammonia • Acetonitrile)

By formula: (H4N+ • H3N • C2H3N) + H3N = (H4N+ • 2H3N • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr15.5kcal/molMKERTzeng, Wei, et al., 1991gas phase; from graph; M

(NH4+ • 2Ammonia • Acetonitrile) + Ammonia = (NH4+ • 3Ammonia • Acetonitrile)

By formula: (H4N+ • 2H3N • C2H3N) + H3N = (H4N+ • 3H3N • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr13.6kcal/molMKERTzeng, Wei, et al., 1991gas phase; from graph; M

(NH4+ • 3Ammonia • Acetonitrile) + Ammonia = (NH4+ • 4Ammonia • Acetonitrile)

By formula: (H4N+ • 3H3N • C2H3N) + H3N = (H4N+ • 4H3N • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr7.4kcal/molMKERTzeng, Wei, et al., 1991gas phase; from graph; M

(NH4+ • 4Ammonia • Acetonitrile) + Ammonia = (NH4+ • 5Ammonia • Acetonitrile)

By formula: (H4N+ • 4H3N • C2H3N) + H3N = (H4N+ • 5H3N • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr6.9kcal/molMKERTzeng, Wei, et al., 1991gas phase; from graph; M

(NH4+ • 5Ammonia • Acetonitrile) + Ammonia = (NH4+ • 6Ammonia • Acetonitrile)

By formula: (H4N+ • 5H3N • C2H3N) + H3N = (H4N+ • 6H3N • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr6.0kcal/molMKERTzeng, Wei, et al., 1991gas phase; from graph; M

(NH4+ • 6Ammonia • Acetonitrile) + Ammonia = (NH4+ • 7Ammonia • Acetonitrile)

By formula: (H4N+ • 6H3N • C2H3N) + H3N = (H4N+ • 7H3N • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr5.5kcal/molMKERTzeng, Wei, et al., 1991gas phase; from graph; M

(NH4+ • 7Ammonia • Acetonitrile) + Ammonia = (NH4+ • 8Ammonia • Acetonitrile)

By formula: (H4N+ • 7H3N • C2H3N) + H3N = (H4N+ • 8H3N • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr6.0kcal/molMKERTzeng, Wei, et al., 1991gas phase; from graph; M

(NH4+ • 8Ammonia • Acetonitrile) + Ammonia = (NH4+ • 9Ammonia • Acetonitrile)

By formula: (H4N+ • 8H3N • C2H3N) + H3N = (H4N+ • 9H3N • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr5.5kcal/molMKERTzeng, Wei, et al., 1991gas phase; from graph; M

(NH4+ • Ammonia • Water) + Ammonia = (NH4+ • 2Ammonia • Water)

By formula: (H4N+ • H3N • H2O) + H3N = (H4N+ • 2H3N • H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr17.1kcal/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr31.8cal/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • Ammonia • 2Water) + Ammonia = (NH4+ • 2Ammonia • 2Water)

By formula: (H4N+ • H3N • 2H2O) + H3N = (H4N+ • 2H3N • 2H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr15.7kcal/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr33.9cal/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • 2Ammonia • Water) + Ammonia = (NH4+ • 3Ammonia • Water)

By formula: (H4N+ • 2H3N • H2O) + H3N = (H4N+ • 3H3N • H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr15.0kcal/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr34.3cal/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • Ammonia) + Ammonia = (NH4+ • 2Ammonia)

By formula: (H4N+ • H3N) + H3N = (H4N+ • 2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr17. ± 1.kcal/molAVGN/AAverage of 5 out of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Δr23.9cal/mol*KHPMSTang and Castleman, 1975gas phase; M
Δr23.7cal/mol*KPHPMSArshadi and Futrell, 1974gas phase; M
Δr24.8cal/mol*KDTLong and Franklin, 1973gas phase; M
Δr26.8cal/mol*KPHPMSSearles and Kebarle, 1968gas phase; M
Δr22.9cal/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; typographical error in ΔrH; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
9.7296.FAFehsenfeld and Ferguson, 1973gas phase; DG>; M
10.1296.SAMSPuckett and Teague, 1971gas phase; M
5.5400.HPMSWincel, 1972gas phase; M

(NH4+ • 2Ammonia) + Ammonia = (NH4+ • 3Ammonia)

By formula: (H4N+ • 2H3N) + H3N = (H4N+ • 3H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr13. ± 5.kcal/molAVGN/AAverage of 6 out of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Δr25. ± 1.cal/mol*KAVGN/AAverage of 4 out of 7 values; Individual data points

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
6.5296.FAFehsenfeld and Ferguson, 1973gas phase; M
6.4296.SAMSPuckett and Teague, 1971gas phase; M

(NH4+ • 3Ammonia) + Ammonia = (NH4+ • 4Ammonia)

By formula: (H4N+ • 3H3N) + H3N = (H4N+ • 4H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr12.2 ± 0.9kcal/molAVGN/AAverage of 5 out of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Δr28. ± 2.cal/mol*KAVGN/AAverage of 3 out of 7 values; Individual data points

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.4296.FAFehsenfeld and Ferguson, 1973gas phase; M

(NH4+ • 4Ammonia) + Ammonia = (NH4+ • 5Ammonia)

By formula: (H4N+ • 4H3N) + H3N = (H4N+ • 5H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr7.0kcal/molPHPMSArshadi and Futrell, 1974gas phase; M
Δr7.5kcal/molPHPMSSearles and Kebarle, 1968gas phase; M
Δr7.kcal/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M
Δr2.8kcal/molTPEPICOKamke, Herrmann, et al., 1988gas phase; M
Δr9.6kcal/molDTLong and Franklin, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr21.5cal/mol*KPHPMSArshadi and Futrell, 1974gas phase; M
Δr25.cal/mol*KPHPMSSearles and Kebarle, 1968gas phase; M
Δr32.cal/mol*KDTLong and Franklin, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr0.5kcal/molHPMSHogg, Haynes, et al., 1966gas phase; M

(NH4+ • 5Ammonia) + Ammonia = (NH4+ • 6Ammonia)

By formula: (H4N+ • 5H3N) + H3N = (H4N+ • 6H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr6.5kcal/molPHPMSArshadi and Futrell, 1974gas phase; M
Δr6.kcal/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M
Quantity Value Units Method Reference Comment
Δr21.9cal/mol*KPHPMSArshadi and Futrell, 1974gas phase; M

(NH4+ • 6Ammonia) + Ammonia = (NH4+ • 7Ammonia)

By formula: (H4N+ • 6H3N) + H3N = (H4N+ • 7H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr5.kcal/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 7Ammonia) + Ammonia = (NH4+ • 8Ammonia)

By formula: (H4N+ • 7H3N) + H3N = (H4N+ • 8H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr5.kcal/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 8Ammonia) + Ammonia = (NH4+ • 9Ammonia)

By formula: (H4N+ • 8H3N) + H3N = (H4N+ • 9H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr4.kcal/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 9Ammonia) + Ammonia = (NH4+ • 10Ammonia)

By formula: (H4N+ • 9H3N) + H3N = (H4N+ • 10H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr4.kcal/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 10Ammonia) + Ammonia = (NH4+ • 11Ammonia)

By formula: (H4N+ • 10H3N) + H3N = (H4N+ • 11H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr5.kcal/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 11Ammonia) + Ammonia = (NH4+ • 12Ammonia)

By formula: (H4N+ • 11H3N) + H3N = (H4N+ • 12H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr4.kcal/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 12Ammonia) + Ammonia = (NH4+ • 13Ammonia)

By formula: (H4N+ • 12H3N) + H3N = (H4N+ • 13H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr5.kcal/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 13Ammonia) + Ammonia = (NH4+ • 14Ammonia)

By formula: (H4N+ • 13H3N) + H3N = (H4N+ • 14H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr4.kcal/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 14Ammonia) + Ammonia = (NH4+ • 15Ammonia)

By formula: (H4N+ • 14H3N) + H3N = (H4N+ • 15H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr4.kcal/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 15Ammonia) + Ammonia = (NH4+ • 16Ammonia)

By formula: (H4N+ • 15H3N) + H3N = (H4N+ • 16H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr4.kcal/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

Iodide + Ammonia = (Iodide • Ammonia)

By formula: I- + H3N = (I- • H3N)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr7.40 ± 0.30kcal/molTDAsEvans, Keesee, et al., 1987gas phase; B,M
Δr7.4 ± 1.0kcal/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M
Quantity Value Units Method Reference Comment
Δr20.9cal/mol*KHPMSEvans, Keesee, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr1.20 ± 0.60kcal/molTDAsEvans, Keesee, et al., 1987gas phase; B

Potassium ion (1+) + Ammonia = (Potassium ion (1+) • Ammonia)

By formula: K+ + H3N = (K+ • H3N)

Quantity Value Units Method Reference Comment
Δr20.1kcal/molHPMSCastleman, 1978gas phase; M
Δr17.8kcal/molHPMSDavidson and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr23.0cal/mol*KHPMSCastleman, 1978gas phase; M
Δr28.0cal/mol*KHPMSDavidson and Kebarle, 1976gas phase; M

(Potassium ion (1+) • Ammonia) + Ammonia = (Potassium ion (1+) • 2Ammonia)

By formula: (K+ • H3N) + H3N = (K+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr16.3kcal/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr22.8cal/mol*KHPMSCastleman, 1978gas phase; M

(Potassium ion (1+) • 2Ammonia) + Ammonia = (Potassium ion (1+) • 3Ammonia)

By formula: (K+ • 2H3N) + H3N = (K+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr13.5kcal/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr27.7cal/mol*KHPMSCastleman, 1978gas phase; M

(Potassium ion (1+) • 3Ammonia) + Ammonia = (Potassium ion (1+) • 4Ammonia)

By formula: (K+ • 3H3N) + H3N = (K+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr11.6kcal/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr25.4cal/mol*KHPMSCastleman, 1978gas phase; M

Lithium ion (1+) + Ammonia = (Lithium ion (1+) • Ammonia)

By formula: Li+ + H3N = (Li+ • H3N)

Quantity Value Units Method Reference Comment
Δr39.1kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Δr38.5kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Quantity Value Units Method Reference Comment
Δr32.1kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M

(Lithium ion (1+) • Ammonia) + Ammonia = (Lithium ion (1+) • 2Ammonia)

By formula: (Li+ • H3N) + H3N = (Li+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr33.1kcal/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr29.7cal/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Lithium ion (1+) • 2Ammonia) + Ammonia = (Lithium ion (1+) • 3Ammonia)

By formula: (Li+ • 2H3N) + H3N = (Li+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr21.0kcal/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr25.3cal/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Lithium ion (1+) • 3Ammonia) + Ammonia = (Lithium ion (1+) • 4Ammonia)

By formula: (Li+ • 3H3N) + H3N = (Li+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr16.5kcal/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr32.6cal/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Lithium ion (1+) • 4Ammonia) + Ammonia = (Lithium ion (1+) • 5Ammonia)

By formula: (Li+ • 4H3N) + H3N = (Li+ • 5H3N)

Quantity Value Units Method Reference Comment
Δr11.1kcal/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr28.0cal/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Lithium ion (1+) • 5Ammonia) + Ammonia = (Lithium ion (1+) • 6Ammonia)

By formula: (Li+ • 5H3N) + H3N = (Li+ • 6H3N)

Quantity Value Units Method Reference Comment
Δr9.3kcal/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr25.3cal/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

Magnesium ion (1+) + Ammonia = (Magnesium ion (1+) • Ammonia)

By formula: Mg+ + H3N = (Mg+ • H3N)

Quantity Value Units Method Reference Comment
Δr36.8 ± 2.8kcal/molCIDTAndersen, Muntean, et al., 2000RCD

(Magnesium ion (1+) • Ammonia) + Ammonia = (Magnesium ion (1+) • 2Ammonia)

By formula: (Mg+ • H3N) + H3N = (Mg+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr29.2 ± 1.6kcal/molCIDTAndersen, Muntean, et al., 2000RCD

(Magnesium ion (1+) • 2Ammonia) + Ammonia = (Magnesium ion (1+) • 3Ammonia)

By formula: (Mg+ • 2H3N) + H3N = (Mg+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr22.8 ± 2.1kcal/molCIDTAndersen, Muntean, et al., 2000RCD

(Magnesium ion (1+) • 3Ammonia) + Ammonia = (Magnesium ion (1+) • 4Ammonia)

By formula: (Mg+ • 3H3N) + H3N = (Mg+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr10.4 ± 2.5kcal/molCIDTAndersen, Muntean, et al., 2000RCD

(Magnesium ion (1+) • 4Ammonia) + Ammonia = (Magnesium ion (1+) • 5Ammonia)

By formula: (Mg+ • 4H3N) + H3N = (Mg+ • 5H3N)

Quantity Value Units Method Reference Comment
Δr13.3 ± 2.8kcal/molCIDTAndersen, Muntean, et al., 20005th ligand is NH3; RCD

Manganese ion (1+) + Ammonia = (Manganese ion (1+) • Ammonia)

By formula: Mn+ + H3N = (Mn+ • H3N)

Quantity Value Units Method Reference Comment
Δr35.1 ± 1.9kcal/molCIDTWalter and Armentrout, 1998RCD
Δr36.9kcal/molCIDMarinelli and Squires, 1989gas phase; M

(Manganese ion (1+) • Ammonia) + Ammonia = (Manganese ion (1+) • 2Ammonia)

By formula: (Mn+ • H3N) + H3N = (Mn+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr36.3 ± 2.9kcal/molCIDTWalter and Armentrout, 1998RCD
Δr34.1kcal/molCIDMarinelli and Squires, 1989gas phase; M

(Manganese ion (1+) • 2Ammonia) + Ammonia = (Manganese ion (1+) • 3Ammonia)

By formula: (Mn+ • 2H3N) + H3N = (Mn+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr15.3 ± 2.2kcal/molCIDTWalter and Armentrout, 1998RCD
Δr11.8kcal/molCIDMarinelli and Squires, 1989gas phase; M

(Manganese ion (1+) • 3Ammonia) + Ammonia = (Manganese ion (1+) • 4Ammonia)

By formula: (Mn+ • 3H3N) + H3N = (Mn+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr8.6 ± 1.4kcal/molCIDTWalter and Armentrout, 1998RCD

Nitric oxide anion + Ammonia = H3N2O-

By formula: NO- + H3N = H3N2O-

Quantity Value Units Method Reference Comment
Δr10.40kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Sodium ion (1+) + Ammonia = (Sodium ion (1+) • Ammonia)

By formula: Na+ + H3N = (Na+ • H3N)

Quantity Value Units Method Reference Comment
Δr24.4 ± 1.3kcal/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr24.4 ± 1.3kcal/molCIDTArmentrout and Rodgers, 2000RCD
Δr25.6 ± 0.2kcal/molHPMSHoyau, Norrman, et al., 1999RCD
Δr29.1kcal/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr21800.cal/mol*KHPMSHoyau, Norrman, et al., 1999RCD
Δr25.7cal/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
18.6298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

(Sodium ion (1+) • Ammonia) + Ammonia = (Sodium ion (1+) • 2Ammonia)

By formula: (Na+ • H3N) + H3N = (Na+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr22. ± 1.kcal/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr25.1cal/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Sodium ion (1+) • 2Ammonia) + Ammonia = (Sodium ion (1+) • 3Ammonia)

By formula: (Na+ • 2H3N) + H3N = (Na+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr17.1kcal/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr24.0cal/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Sodium ion (1+) • 3Ammonia) + Ammonia = (Sodium ion (1+) • 4Ammonia)

By formula: (Na+ • 3H3N) + H3N = (Na+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr14.7kcal/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr29.0cal/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Sodium ion (1+) • 4Ammonia) + Ammonia = (Sodium ion (1+) • 5Ammonia)

By formula: (Na+ • 4H3N) + H3N = (Na+ • 5H3N)

Quantity Value Units Method Reference Comment
Δr10.7kcal/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr29.8cal/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Sodium ion (1+) • 5Ammonia) + Ammonia = (Sodium ion (1+) • 6Ammonia)

By formula: (Na+ • 5H3N) + H3N = (Na+ • 6H3N)

Quantity Value Units Method Reference Comment
Δr9.7kcal/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr29.7cal/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

Nickel ion (1+) + Ammonia = (Nickel ion (1+) • Ammonia)

By formula: Ni+ + H3N = (Ni+ • H3N)

Quantity Value Units Method Reference Comment
Δr55.2 ± 3.8kcal/molCIDTWalter and Armentrout, 1998RCD
Δr51.2kcal/molCIDMarinelli and Squires, 1989gas phase; M

(Nickel ion (1+) • Ammonia) + Ammonia = (Nickel ion (1+) • 2Ammonia)

By formula: (Ni+ • H3N) + H3N = (Ni+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr59.5 ± 3.1kcal/molCIDTWalter and Armentrout, 1998RCD
Δr55.1kcal/molCIDMarinelli and Squires, 1989gas phase; M

(Nickel ion (1+) • 2Ammonia) + Ammonia = (Nickel ion (1+) • 3Ammonia)

By formula: (Ni+ • 2H3N) + H3N = (Ni+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr21.5 ± 1.9kcal/molCIDTWalter and Armentrout, 1998RCD
Δr17.8kcal/molCIDMarinelli and Squires, 1989gas phase; M

(Nickel ion (1+) • 3Ammonia) + Ammonia = (Nickel ion (1+) • 4Ammonia)

By formula: (Ni+ • 3H3N) + H3N = (Ni+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr8.8 ± 1.4kcal/molCIDTWalter and Armentrout, 1998RCD

Lead ion (1+) + Ammonia = (Lead ion (1+) • Ammonia)

By formula: Pb+ + H3N = (Pb+ • H3N)

Quantity Value Units Method Reference Comment
Δr28.3kcal/molHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M
Quantity Value Units Method Reference Comment
Δr23.6cal/mol*KHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M

(Lead ion (1+) • Ammonia) + Ammonia = (Lead ion (1+) • 2Ammonia)

By formula: (Pb+ • H3N) + H3N = (Pb+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr19.2kcal/molHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M
Quantity Value Units Method Reference Comment
Δr27.0cal/mol*KHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M

(Lead ion (1+) • 2Ammonia) + Ammonia = (Lead ion (1+) • 3Ammonia)

By formula: (Pb+ • 2H3N) + H3N = (Pb+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr13.0kcal/molHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M
Quantity Value Units Method Reference Comment
Δr21.4cal/mol*KHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M

(Lead ion (1+) • 3Ammonia) + Ammonia = (Lead ion (1+) • 4Ammonia)

By formula: (Pb+ • 3H3N) + H3N = (Pb+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr10.7kcal/molHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M
Quantity Value Units Method Reference Comment
Δr24.3cal/mol*KHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M

Rubidium ion (1+) + Ammonia = (Rubidium ion (1+) • Ammonia)

By formula: Rb+ + H3N = (Rb+ • H3N)

Quantity Value Units Method Reference Comment
Δr18.7kcal/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr24.3cal/mol*KHPMSCastleman, 1978gas phase; M

(Rubidium ion (1+) • Ammonia) + Ammonia = (Rubidium ion (1+) • 2Ammonia)

By formula: (Rb+ • H3N) + H3N = (Rb+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr15.2kcal/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr23.6cal/mol*KHPMSCastleman, 1978gas phase; M

(Rubidium ion (1+) • 2Ammonia) + Ammonia = (Rubidium ion (1+) • 3Ammonia)

By formula: (Rb+ • 2H3N) + H3N = (Rb+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr13.1kcal/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr25.1cal/mol*KHPMSCastleman, 1978gas phase; M

(Rubidium ion (1+) • 3Ammonia) + Ammonia = (Rubidium ion (1+) • 4Ammonia)

By formula: (Rb+ • 3H3N) + H3N = (Rb+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr11.4kcal/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr38.0cal/mol*KHPMSCastleman, 1978gas phase; M

(Rubidium ion (1+) • 4Ammonia) + Ammonia = (Rubidium ion (1+) • 5Ammonia)

By formula: (Rb+ • 4H3N) + H3N = (Rb+ • 5H3N)

Quantity Value Units Method Reference Comment
Δr10.2kcal/molHPMSCastleman, 1978gas phase; M

Titanium ion (1+) + Ammonia = (Titanium ion (1+) • Ammonia)

By formula: Ti+ + H3N = (Ti+ • H3N)

Quantity Value Units Method Reference Comment
Δr46.6 ± 1.7kcal/molCIDTWalter and Armentrout, 1998RCD

(Titanium ion (1+) • Ammonia) + Ammonia = (Titanium ion (1+) • 2Ammonia)

By formula: (Ti+ • H3N) + H3N = (Ti+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr41.8 ± 3.6kcal/molCIDTWalter and Armentrout, 1998RCD

(Titanium ion (1+) • 2Ammonia) + Ammonia = (Titanium ion (1+) • 3Ammonia)

By formula: (Ti+ • 2H3N) + H3N = (Ti+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr42.1 ± 3.6kcal/molCIDTWalter and Armentrout, 1998RCD

(Titanium ion (1+) • 3Ammonia) + Ammonia = (Titanium ion (1+) • 4Ammonia)

By formula: (Ti+ • 3H3N) + H3N = (Ti+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr37.3 ± 2.4kcal/molCIDTWalter and Armentrout, 1998RCD

Vanadium ion (1+) + Ammonia = (Vanadium ion (1+) • Ammonia)

By formula: V+ + H3N = (V+ • H3N)

Quantity Value Units Method Reference Comment
Δr45.4 ± 2.6kcal/molCIDTWalter and Armentrout, 1998RCD
Δr51.9kcal/molCIDMarinelli and Squires, 1989gas phase; M

(Vanadium ion (1+) • Ammonia) + Ammonia = (Vanadium ion (1+) • 2Ammonia)

By formula: (V+ • H3N) + H3N = (V+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr39.2 ± 2.2kcal/molCIDTWalter and Armentrout, 1998RCD
Δr45.0kcal/molCIDMarinelli and Squires, 1989gas phase; M

(Vanadium ion (1+) • 2Ammonia) + Ammonia = (Vanadium ion (1+) • 3Ammonia)

By formula: (V+ • 2H3N) + H3N = (V+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr24.9 ± 2.6kcal/molCIDTWalter and Armentrout, 1998RCD
Δr22.6kcal/molCIDMarinelli and Squires, 1989gas phase; M

(Vanadium ion (1+) • 3Ammonia) + Ammonia = (Vanadium ion (1+) • 4Ammonia)

By formula: (V+ • 3H3N) + H3N = (V+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr22.7 ± 2.6kcal/molCIDTWalter and Armentrout, 1998RCD
Δr18.7kcal/molCIDMarinelli and Squires, 1989gas phase; M

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 6

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedPMS-100150.118.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPMS-100180.131.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m

References

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Qi, Sheng, et al., 1995
Qi, F.; Sheng, L.; Zhang, Y.; Yu, S.; Li, W.-K., Experimental and theoretical study of the dissociation energies DO(H2N-H) and DO(H2N+-H) and other related quantities, Chem. Phys. Lett., 1995, 234, 450. [all data]

Ruede, Troxler, et al., 1993
Ruede, R.; Troxler, H.; Beglinger, C.; Jungen, M., The dissociation energies of the positive ions NH3+, NF3+, PH3+, PF3+ and PCl3+, Chem. Phys. Lett., 1993, 203, 477. [all data]

Reiser, Habenicht, et al., 1993
Reiser, G.; Habenicht, W.; Muller-Dethlefs, K., Zero kinetic energy (ZEKE) photoelectron spectroscopy of ammonia by nonresonant two-photon ionization from the neutral ground state, J. Chem. Phys., 1993, 98, 8462. [all data]

Locht, Hottmann, et al., 1992
Locht, R.; Hottmann, K.; Hagenow, G.; Denzer, W.; Baumgartel, H., The threhold-photoelectron spectrum of NH3, Chem. Phys. Lett., 1992, 190, 124. [all data]

Locht, Leyh, et al., 1991
Locht, R.; Leyh, B.; Denzer, W.; Hagenow, G.; Baumgartel, H., The photoionization of ammonia revisited. The vibrational autoionization of NH3 and its three isotopomers in the 10-12 eV photon energy range, Chem. Phys., 1991, 155, 407. [all data]

Habenicht, 1989
Habenicht, W., [Title unavailable], Ph.D. Thesis, Technische Universitat Munchen, 1989. [all data]

Baldwin, Loudon, et al., 1977
Baldwin, M.A.; Loudon, A.G.; Webb, K.S.; Cardnell, P.C., Charge location and fragmentation under electron impact. V-The ionization potentials of (methylated) phosphoramides, guanidines, formamides, acetamides, ureas and thioureas, Org. Mass Spectrom., 1977, 12, 279. [all data]

Debies and Rabalais, 1975
Debies, T.P.; Rabalais, J.W., Calculated photoionization cross-sections and angular distributions for the isoelectronic series Ne, HF, H2O, NH3, and CH4, J. Am. Chem. Soc., 1975, 97, 487. [all data]

Aue, Webb, et al., 1975
Aue, D.H.; Webb, H.M.; Bowers, M.T., Photoelectron spectrum and gas-phase basicity of manxine. Evidence for a planar bridgehead nitrogen, J. Am. Chem. Soc., 1975, 97, 4136. [all data]

Morrison and Traeger, 1973
Morrison, J.D.; Traeger, J.C., Ionization and dissociation by electron impact. II. NH3 and PH3, Int. J. Mass Spectrom. Ion Phys., 1973, 11, 277. [all data]

Potts and Price, 1972
Potts, A.W.; Price, W.C., Photoelectron spectra and valence shell orbital structures of groups V VI hydrides, Proc. R. Soc. London A:, 1972, 326, 181. [all data]

Weiss and Lawrence, 1970
Weiss, M.J.; Lawrence, G.M., Photoelectron spectroscopy of NH3 and ND3 using molecular beams, J. Chem. Phys., 1970, 53, 214. [all data]

Branton, Frost, et al., 1969
Branton, G.R.; Frost, D.C.; Herring, F.G.; McDowell, C.A.; Stenhouse, I.A., The ionization potentials of ammonia and ammonia-d3, measured by photoelectron spectroscopy, and an INDO calculation of these values, Chem. Phys. Lett., 1969, 3, 581. [all data]

Potapov, 1968
Potapov, V.K., Mechanism of ionic-molecular reactions, Dokl. Akad. Nauk SSSR, 1968, 183, 386, In original 843. [all data]

Chupka and Russell, 1968
Chupka, W.A.; Russell, M.E., Ion-molecule reactions of NH3+ by photoionization, J. Chem. Phys., 1968, 48, 1527. [all data]

Dibeler, Walker, et al., 1966
Dibeler, V.H.; Walker, J.A.; Rosenstock, H.M., Mass spectrometric study of photoionization. V.Water and ammonia, J.Res. NBS, 1966, 70A, 459. [all data]

Watanabe and Sood, 1965
Watanabe, K.; Sood, S.P., Absorption and photoionization coefficients of NH3 in the 580-1650 A region, Sci. Light (Tokyo), 1965, 14, 36. [all data]

Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W., Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials, J. Chem. Soc., 1964, 4434. [all data]

Watanabe and Mottl, 1957
Watanabe, K.; Mottl, J.R., Ionization potentials of ammonia and some amines, J. Chem. Phys., 1957, 26, 1773. [all data]

Baumgartel, Jochims, et al., 1989
Baumgartel, H.; Jochims, H.-W.; Ruhl, E.; Bock, H.; Dammel, R.; Minkwitz, J.; Nass, R., Photoelectron and photoionization mass spectra of the fluoramines NH3-nFn1, Inorg. Chem., 1989, 28, 943. [all data]

Bieri, Asbrink, et al., 1982
Bieri, G.; Asbrink, L.; Von Niessen, W., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1982, 27, 129. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Campbell, Liesegang, et al., 1979
Campbell, M.J.; Liesegang, J.; Riley, J.D.; Leckey, R.C.G.; Jenkin, J.G.; Poole, R.T., The electronic structure of the valence bands of solid NH3 and H2O studied by ultraviolet photoelectron spectroscopy, J. Electron Spectrosc. Relat. Phenom., 1979, 15, 83. [all data]

Daamen and Oskam, 1978
Daamen, H.; Oskam, A., Bonding properties of some monosubstituted chromium and tungsten hexacarbonyls M(CO)5L (L=amine, substituted pyridine, azine), Inorg. Chim. Acta, 1978, 26, 81. [all data]

Muller and Schulz, 1990
Muller, U.; Schulz, G., Electron-impact dissociation of ammonia; formation of NH+ ions in excited states, Chem. Phys. Lett., 1990, 170, 401. [all data]

Locht, Servais, et al., 1988
Locht, R.; Servais, C.; Ligot, M.; Derwa, F.; Momigny, J., The dissociative electroionization of ammonia and ammonia-d3. I. The NH+ and NH2+ dissociation channels, Chem. Phys., 1988, 123, 443. [all data]

Reed and Snedden, 1959
Reed, R.I.; Snedden, W., The ionisation potential of NH, J. Chem. Soc., 1959, 4132. [all data]

Powis, 1981
Powis, I., Influence of angular momentum in the dissociation of NH3+, J. Chem. Soc. Faraday Trans. 2, 1981, 77, 1433. [all data]

McCulloh, 1976
McCulloh, K.E., Energetics and mechanisms of fragment ion formation in the photoionization of normal and deuterated water and ammonia, Int. J. Mass Spectrom. Ion Phys., 1976, 21, 333. [all data]

Foner and Hudson, 1958
Foner, S.N.; Hudson, R.L., Mass spectrometric detection of triazene and tetrazene and studies of the free radicals NH2, and N2H3, J. Chem. Phys., 1958, 29, 442. [all data]

Wickham-Jones, Ervin, et al., 1989
Wickham-Jones, C.T.; Ervin, K.M.; Ellison, G.B.; Lineberger, W.C., NH2 Electron Affinity, J. Chem. Phys., 1989, 91, 4, 2762, https://doi.org/10.1063/1.456994 . [all data]

MacKay, Hemsworth, et al., 1976
MacKay, G.J.; Hemsworth, R.S.; Bohme, D.K., Absolute gas-phase acidities of CH3NH2, C2H5NH2, (CH3)2NH, and (CH3)3N, Can. J. Chem., 1976, 54, 1624. [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Holland and Castleman, 1982
Holland, P.M.; Castleman, A.W., The Thermochemical Properties of Gas - Phase Transition Metal Ion Complexes, J. Chem. Phys., 1982, 76, 8, 4195, https://doi.org/10.1063/1.443497 . [all data]

Castleman, 1978
Castleman, A.W., The Properties of Clusters in the Gas Phase: Ammonia about Bi+, Rb+, and K+, Chem. Phys. Lett., 1978, 53, 3, 560, https://doi.org/10.1016/0009-2614(78)80069-4 . [all data]

Evans, Keesee, et al., 1987
Evans, D.H.; Keesee, R.G.; Castleman Jr., The Association of Ammonia with Halide Ions in the Gas Phase, J. Chem. Phys., 1987, 86, 5, 2927, https://doi.org/10.1063/1.452043 . [all data]

Yamdagni and Kebarle, 1974
Yamdagni, R.; Kebarle, P., The hydrogen bond energies in ClHCl- and Cl-(HCl)n, Can. J. Chem., 1974, 52, 2449. [all data]

Li and Stone, 1990
Li, X.; Stone, A.J., Gas-Phase (CH3)3Si+ Affinities of Alkylamines and Proton Affinities of Trimethylsilyl Alkylamines, Int. J. Mass Spectrom. Ion Proc., 1990, 101, 2-3, 149, https://doi.org/10.1016/0168-1176(90)87008-5 . [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Meot-Ner (Mautner) and Sieck, 1991
Meot-Ner (Mautner), M.; Sieck, L.W., Proton affinity ladders from variable-temperature equilibrium measurements. 1. A reevaluation of the upper proton affinity range, J. Am. Chem. Soc., 1991, 113, 12, 4448, https://doi.org/10.1021/ja00012a012 . [all data]

Szulejko and McMahon, 1991
Szulejko, J.E.; McMahon, T.B., A Pulsed Electron Beam, Variable Temperature, High Pressure Mass Spectrometric Reevaluation of the Proton Affinity Difference Between 2-Methylpropene and Ammonia, Int. J. Mass Spectrom. Ion Proc., 1991, 109, 279, https://doi.org/10.1016/0168-1176(91)85109-Y . [all data]

Meot-Ner (Mautner) and Sieck, 1990
Meot-Ner (Mautner), M.; Sieck, L.W., Ion Thermochemistry at High Temperatures. 1. Thermochemistry of the Ammonium Ion from Variable - Temperature Equilibrium Measurements. Proton Transfer, Association, and Decomposition Reactions in Ammonia, Isobutene, and t-Butylamine, J. Phys. Chem., 1990, 94, 19, 7730, https://doi.org/10.1021/j100382a076 . [all data]

Meot-Ner and Field, 1974
Meot-Ner, (Mautner); Field, F.H., Solvation and Association of Protonated Gaseous Amino Acids, J. Am. Chem. Soc., 1974, 96, 10, 3168, https://doi.org/10.1021/ja00817a024 . [all data]

Meot-Ner (Mautner), Sieck, et al., 1996
Meot-Ner (Mautner), M.; Sieck, L.W.; Liebman, J.F.; Scheiner, S., Complexing of the Ammonium Ion by Polyethers. Comparative Complexing Thermochemistry of Ammonium, Hydronium, and Alkali Cations, J. Phys. Chem., 1996, 100, 16, 6445, https://doi.org/10.1021/jp9514943 . [all data]

Tschurl and Boesl, 2008
Tschurl, M.; Boesl, U., IR-photodissociation and photodetachment spectroscopy of Cl-center dot(NH3)(x) (IR : x=1-4, PD : x=1), Chem. Phys. Lett., 2008, 456, 4-6, 150-155, https://doi.org/10.1016/j.cplett.2008.03.041 . [all data]

Markovich, Chesnovsky, et al., 1993
Markovich, G.; Chesnovsky, O.; Kaldor, U., Charge Transfer Excitations in the Photoelectron Spectrum of Cl-NH3: Experiment and calculation, J. Chem. Phys, 1993, https://doi.org/10.1063/1.465913 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

Walter and Armentrout, 1998
Walter, D.; Armentrout, P.B., Periodic Trends in Chemical Reactivity: Reactions of Sc+, Y+, La+, and Lu+ with H2, D2 and HD, J. Am. Chem. Soc., 1998, 120, 13, 3176, https://doi.org/10.1021/ja973202c . [all data]

Marinelli and Squires, 1989
Marinelli, P.J.; Squires, R.R., Sequential Solvation of Atomic Transition Metal Ions: The Second Solvent Molecule Can Bind More Strongly than the First, J. Am. Chem. Soc., 1989, 111, 11, 4101, https://doi.org/10.1021/ja00193a052 . [all data]

Spears and Ferguson, 1973
Spears, K.G.; Ferguson, E.E., Termolecular and Saturated Termolecular Kinetics for Li+ and F-, J. Chem. Phys., 1973, 59, 8, 4174, https://doi.org/10.1063/1.1680610 . [all data]

Snodgrass, Coe, et al., 1995
Snodgrass, J.T.; Coe, J.V.; Freidhoff, C.B.; Mchugh, K.M.; Arnold, S.T.; Bowen, K.H., Negative ion photoelectron spectroscopy of NH2-(NH3)1 and NH2-(NH3)2: Gas phase basicities of partially solvated anions, J. Phys. Chem., 1995, 99, 24, 9675, https://doi.org/10.1021/j100024a006 . [all data]

Coe, Snodgrass, et al., 1985
Coe, J.V.; Snodgrass, J.T.; Friedhoff, C.B.; McHugh, K.M.; Bowen, K.H., Negative ion photoelectron spectroscopy of the negative ion H-(NH3), J. Chem. Phys., 1985, 83, 3169. [all data]

Schwartz, Davico, et al., 2000
Schwartz, R.L.; Davico, G.E.; Kim, J.B.; Lineberger, C.W., Negative Ion Photoelectron Spectroscopy of OH-(NH3), J. Chem. Phys., 2000, 112, 11, 4966, https://doi.org/10.1063/1.481051 . [all data]

Snodgrass, Coe, et al., 1989
Snodgrass, J.T.; Coe, J.V.; Freidhoff, C.B.; McHugh, K.M.; Bowen, K.H., Photoelectron Spectroscopy of the Negative Cluster Ions, NH2-(NH3)n=1,2, J. Chem. Phys., 1989, 92, xxxx. [all data]

Stephan, Futrell, et al., 1982
Stephan, K.; Futrell, J.H.; Peterson, K.I.; Castleman, A.W.; Wagner, H.E.; Djuric, N.; Mark, T.D., An Electron - Impact Study of Ammonia Clusters in a Supersonic Molecular Beam: Appearence Potentials of NH4+, (NH3)2H+, (NH3)3+, (NH3)3H+ and (NH2 NH3)+, Int. J. Mass Spectrom. Ion Phys., 1982, 44, 3-4, 167, https://doi.org/10.1016/0020-7381(82)80023-5 . [all data]

Ng, Trevor, et al., 1977
Ng, C.Y.; Trevor, D.J.; Tiedemann, P.W.; Ceyer, S.T.; Kronebush, B.H.; Mahan, B.H.; Lee, Y.T., Photoinization of Dimeric Polyatomic Molecules: Proton Affinities of H2O and HF, J. Chem. Phys., 1977, 67, 9, 4235, https://doi.org/10.1063/1.435404 . [all data]

Breen, Tzeng, et al., 1989
Breen, J.J.; Tzeng, W.B.; Kilgore, K.; Keesee, R.G.; Castleman, A.W., Intracluster Reactions in Phenylacetylene - Ammonia Clusters Initiated through Resonant Enhanced Ionization, J. Phys. Chem., 1989, 90, 1, 19, https://doi.org/10.1063/1.456521 . [all data]

Deakyne, Knuth, et al., 1994
Deakyne, C.A.; Knuth, D.M.; Speller, C.V.; Meot-Ner (Mautner), M.; Sieck, L.W., Filling of Solvent Shells about Ions. Part 3. Isomeric Clusters of (HCN)n(NH3)mH+, J. Mol. Structure (Theochem), 1994, 307, 217, https://doi.org/10.1016/0166-1280(94)80130-4 . [all data]

Payzant, Cunningham, et al., 1973
Payzant, J.D.; Cunningham, A.J.; Kebarle, P., Gas - Phase Solvation of Ammonium Ion by NH3 and H2O and Stabilities of Mixed Clusters NH4+(NH3)n(H2O)w, Can. J. Chem., 1973, 51, 19, 3242, https://doi.org/10.1139/v73-485 . [all data]

Wincel, 1972
Wincel, H., Ion-Molecule Reactions in Ammonia at High Pressures, Int. J. Mass Spectrom. Ion Phys., 1972, 9, 3, 267, https://doi.org/10.1016/0020-7381(72)80053-6 . [all data]

Tzeng, Wei, et al., 1991
Tzeng, W.B.; Wei, S.; Castleman, A.W., Stability, Structure and Binding - Energies of Solvated Cluster Ions - Ammonia Acetonitrile and Ammonia Acetaldehyde Systems, J. Phys. Chem., 1991, 95, 15, 5757, https://doi.org/10.1021/j100168a011 . [all data]

Tang and Castleman, 1975
Tang, I.N.; Castleman, A.W., Gas - Phase Solvation of the Ammonium Ion in Ammonia, J. Chem. Phys., 1975, 62, 11, 4576, https://doi.org/10.1063/1.430331 . [all data]

Arshadi and Futrell, 1974
Arshadi, M.R.; Futrell, J.H., Studies in High - Pressure Mass Spectrometry. V. Thermodynamics of Solvation Reactions. NH4+ - NH3, J. Phys. Chem., 1974, 78, 15, 1482, https://doi.org/10.1021/j100608a008 . [all data]

Long and Franklin, 1973
Long, J.W.; Franklin, J.L., Ion-Cluster Reactions in a Drift Tube Ion Source, Int. J. Mass Spectrom. Ion Phys, 1973, 12, 5, 403, https://doi.org/10.1016/0020-7381(73)80025-7 . [all data]

Searles and Kebarle, 1968
Searles, S.K.; Kebarle, P., Ion-Solvent-Molecule Interactions in the Gas Phase. Enthalpies and Entropies for the Reactions NH4+(NH3)(n-1) + NH3 = NH4+(NH3)n, J. Phys. Chem., 1968, 72, 2, 742, https://doi.org/10.1021/j100848a061 . [all data]

Fehsenfeld and Ferguson, 1973
Fehsenfeld, F.C.; Ferguson, E.E., Thermal Energy Positive Ion Reactions in a Wet Atmosphere Containing Ammonia, J. Chem. Phys., 1973, 59, 12, 6272, https://doi.org/10.1063/1.1680006 . [all data]

Puckett and Teague, 1971
Puckett, L.J.; Teague, M.W., Ion-Molecule Reactions in NO - NH3 Gas Mixtures, J. Chem. Phys., 1971, 54, 11, 4860, https://doi.org/10.1063/1.1674763 . [all data]

Wei, Tzeng, et al., 1990
Wei, S.; Tzeng, W.B.; Castleman, A.W., Kinetic Energy Release Measurements of Ammonia Cluster Ions During Metastable Decomposition and Determination of Cluster Ion Binding Energies, J. Chem. Phys., 1990, 92, 1, 332, https://doi.org/10.1063/1.458434 . [all data]

Kamke, Herrmann, et al., 1988
Kamke, W.; Herrmann, R.; Wang, Z.; Hertel, I.V., On the Photoionization and Fragmentation of Ammonia Clusters using TPEPICO, Z. Phys. D., 1988, 10, 4, 491, https://doi.org/10.1007/BF01425768 . [all data]

Hogg, Haynes, et al., 1966
Hogg, A.M.; Haynes, R.M.; Kebarle, P., Ion-Solvent Molecule Interactions Studied in the Gas Phase. Heats and Entropies of Individual Steps. NH4+.(n-1)NH3 = NH4+.nNH3, J. Am. Chem. Soc., 1966, 88, 1, 28, https://doi.org/10.1021/ja00953a006 . [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P., Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M, J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011 . [all data]

Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L., Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids, J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Castleman, Holland, et al., 1978
Castleman, A.W.; Holland, P.M.; Lindsay, D.M.; Peterson, K.I., The Properties of Clusters in the Gas Phase. 2. Ammonia about Metal Ions, J. Am. Chem. Soc., 1978, 100, 19, 6039, https://doi.org/10.1021/ja00487a011 . [all data]

Andersen, Muntean, et al., 2000
Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P.B., Collision-Induced Dissociation and Theoretical Studies of Mg+ Complexes with CO, CO2, NH3, CH4, CH3OH, and C6H6, J. Phys. Chem. A, 2000, 104, 4, 692, https://doi.org/10.1021/jp993031t . [all data]

Hendricks, de Clercq, et al., 2002
Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S., Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2), J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444 . [all data]

Amicangelo and Armentrout, 2001
Amicangelo, J.C.; Armentrout, P.B., Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments, Int. J. Mass Spectrom., 2001, 212, 1-3, 301, https://doi.org/10.1016/S1387-3806(01)00494-8 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Hoyau, Norrman, et al., 1999
Hoyau, S.; Norrman, K.; McMahon, T.B.; Ohanessian, G., A Quantitative Basis for a Scale of Na+ Affinities of Organic and Small Biological Molecules in the Gas Phase, J. Am. Chem. Soc., 1999, 121, 38, 8864, https://doi.org/10.1021/ja9841198 . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Guo and Castleman, 1991
Guo, B.C.; Castleman, A.W., The Clustering Reactions of Na+ and Pb+ with Several Important Ligands, Zeit. Phys. D., 1991, 19, 1-4, 397, https://doi.org/10.1007/BF01448337 . [all data]

Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L., Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases, Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References