Phenol, 3-chloro-
- Formula: C6H5ClO
- Molecular weight: 128.556
- IUPAC Standard InChIKey: HORNXRXVQWOLPJ-UHFFFAOYSA-N
- CAS Registry Number: 108-43-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Phenol, m-chloro-; m-Chlorophenol; 3-Chlorophenol; 3-Hydroxychlorobenzene; meta-Chlorophenol; m-Chlorophenic acid; NSC 59700
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔcH°liquid | -2910.0 ± 8.4 | kJ/mol | Ccb | Smith, Bjellerup, et al., 1953 | Reanalyzed by Cox and Pilcher, 1970, Original value = -2907. ± 3. kJ/mol; "Supercooled" |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -2890. ± 8. | kJ/mol | Ccb | Smith, Bjellerup, et al., 1953 | powder at 291.7 °K |
Phase change data
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 487.2 | K | N/A | Weast and Grasselli, 1989 | BS |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 305.8 | K | N/A | Poeti, Faneli, et al., 1982 | Uncertainty assigned by TRC = 0.2 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 63.5 ± 0.3 | kJ/mol | GS | Verevkin, Emel'yanenko, et al., 2007 | Based on data from 308. to 335. K.; AC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 76.9 ± 0.3 | kJ/mol | GS | Verevkin, Emel'yanenko, et al., 2007 | Based on data from 275. to 306. K.; AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
61.9 | 322. | GS | Verevkin, Emel'yanenko, et al., 2007 | Based on data from 308. to 335. K.; AC |
53.1 | 332. | A | Stephenson and Malanowski, 1987 | Based on data from 317. to 487. K. See also Stull, 1947.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
317.4 to 487. | 4.67081 | 2074.632 | -42.359 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
53. ± 1. | 301. | V | Wolf and Weghofer, 1938 | ALS |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
14.905 | 305.8 | Poeti, Fanelli, et al., 1982 | DH |
14.91 | 305.8 | Acree, 1991 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
48.74 | 305.8 | Poeti, Fanelli, et al., 1982 | DH |
Gas phase ion energetics data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
View reactions leading to C6H5ClO+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 8.655 ± 0.001 | eV | N/A | N/A | L |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.655 ± 0.001 | LS | Cockett, Takahashi, et al., 1991 | Cis isomer; LL |
8.682 ± 0.001 | LS | Cockett, Takahashi, et al., 1991 | Trans isomer; LL |
8.65 ± 0.03 | S | Oikawa, Abe, et al., 1985 | LBLHLM |
De-protonation reactions
C6H4ClO- + =
By formula: C6H4ClO- + H+ = C6H5ClO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1430. ± 15. | kJ/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; Exptl ΔHf(AH) more stable than group additivity by 6 kcal/mol; value altered from reference due to change in acidity scale; B |
ΔrH° | 1433. ± 21. | kJ/mol | G+TS | Kebarle and McMahon, 1977 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1402. ± 8.4 | kJ/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; Exptl ΔHf(AH) more stable than group additivity by 6 kcal/mol; value altered from reference due to change in acidity scale; B |
ΔrG° | 1404. ± 8.4 | kJ/mol | IMRE | Kebarle and McMahon, 1977 | gas phase; B |
Mass spectrum (electron ionization)
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | A.E.WILLIAMS ICI DYESTUFFS DIVISION. BLACKLEY. |
NIST MS number | 2761 |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Smith, Bjellerup, et al., 1953
Smith, L.; Bjellerup, L.; Krook, S.; Westermark, H.,
Heats of combustion of organic chloro compounds determined by the "quartz wool" method,
Acta Chem. Scand., 1953, 7, 65. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Poeti, Faneli, et al., 1982
Poeti, G.; Faneli, E.; Braghetti, M.J.,
A differential scanning calorimetric study of some phenol derivatives,
Therm. Anal., 1982, 24, 2, 273, https://doi.org/10.1007/BF01913681
. [all data]
Verevkin, Emel'yanenko, et al., 2007
Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Klamt, Andreas,
Thermochemistry of Chlorobenzenes and Chlorophenols: Ambient Temperature Vapor Pressures and Enthalpies of Phase Transitions,
J. Chem. Eng. Data, 2007, 52, 2, 499-510, https://doi.org/10.1021/je060429r
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Wolf and Weghofer, 1938
Wolf, K.L.; Weghofer, H.,
Uber sublimationswarmen,
Z. Phys. Chem., 1938, 39, 194-208. [all data]
Poeti, Fanelli, et al., 1982
Poeti, G.; Fanelli, E.; Braghetti, M.,
A differential scanning calorimetric study of some phenol derivatives,
J. Therm. Anal., 1982, 24(2), 273-279. [all data]
Acree, 1991
Acree, William E.,
Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation,
Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H
. [all data]
Cockett, Takahashi, et al., 1991
Cockett, M.C.R.; Takahashi, M.; Okuyama, K.; Kimura, K.,
REMPI threshold photoelectron spectra of the cis and trans rotational isomers of jet-cooled m-chlorophenol,
Chem. Phys. Lett., 1991, 187, 250. [all data]
Oikawa, Abe, et al., 1985
Oikawa, A.; Abe, H.; Mikami, N.; Ito, M.,
Electronic spectra and ionization potentials of rotational isomers of severaldDisubstituted benzenes,
Chem. Phys. Lett., 1985, 116, 50. [all data]
Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W.,
Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities,
J. Am. Chem. Soc., 1981, 103, 4017. [all data]
Kebarle and McMahon, 1977
Kebarle, P.; McMahon, T.B.,
Intrinsic Acidities of Substituted Phenols and Benzoic Acids Determined by Gas Phase Proton Transfer Equilibria,
J. Am. Chem. Soc., 1977, 99, 7, 2222, https://doi.org/10.1021/ja00449a032
. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References
- Symbols used in this document:
IE (evaluated) Recommended ionization energy Tboil Boiling point Tfus Fusion (melting) point ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.