Anthracene
- Formula: C14H10
- Molecular weight: 178.2292
- IUPAC Standard InChIKey: MWPLVEDNUUSJAV-UHFFFAOYSA-N
- CAS Registry Number: 120-12-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Anthracin; Green Oil; Paranaphthalene; Tetra Olive N2G; Anthracene oil; p-Naphthalene; Anthracen; Coal tar pitch volatiles:anthracene; Sterilite hop defoliant
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°solid | 121. ± 10. | kJ/mol | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -7061. ± 10. | kJ/mol | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 207.15 | J/mol*K | N/A | Goursot, Girdhar, et al., 1970 | DH |
S°solid,1 bar | 207.15 | J/mol*K | N/A | Goursot, Girdhar, et al., 1968 | DH |
S°solid,1 bar | 207.5 | J/mol*K | N/A | Huffman, Parks, et al., 1931 | Extrapolation below 90 K, 14.98 cal/mol*K.; DH |
Constant pressure heat capacity of solid
Cp,solid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
211.7 | 298.15 | Radomska and Radomski, 1980 | T = 180 to 430 K. Data given graphically. Cp calculated from equation.; DH |
210.50 | 298.15 | Goursot, Girdhar, et al., 1970 | T = 5 to 500 K.; DH |
210.50 | 298.15 | Goursot, Girdhar, et al., 1968 | T = 5 to 520 K. Only 6 points given; summary article.; DH |
217.5 | 298.15 | Ueberreiter and Orthmann, 1950 | T = 293 to 368 K. Equation only.; DH |
207.1 | 297.2 | Huffman, Parks, et al., 1931 | T = 94 to 297 K. Value is unsmoothed experimental datum.; DH |
221.8 | 298.15 | Hildebrand, Duschak, et al., 1917 | T = 293 to 593 K. From heat content data.; DH |
Phase change data
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 613.2 | K | N/A | Weast and Grasselli, 1989 | BS |
Tboil | 613.0 | K | N/A | Buckingham and Donaghy, 1982 | BS |
Tboil | 613.1 | K | N/A | Burriel, 1931 | Uncertainty assigned by TRC = 0.3 K; TRC |
Tboil | 613. | K | N/A | Kirby, 1921 | Uncertainty assigned by TRC = 5. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 490. ± 3. | K | AVG | N/A | Average of 27 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 488.93 | K | N/A | Goursot, Girdhar, et al., 1970, 2 | Uncertainty assigned by TRC = 0.01 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 78.5 | kJ/mol | CGC | Zhao, Unhannanant, et al., 2008 | AC |
ΔvapH° | 79.5 ± 1.2 | kJ/mol | GC | Haftka, Parsons, et al., 2006 | Based on data from 413. to 473. K.; AC |
ΔvapH° | 79.1 | kJ/mol | CGC | Puri, Chickos, et al., 2001 | AC |
ΔvapH° | 79.8 | kJ/mol | CGC | Chickos, Hesse, et al., 1998 | AC |
ΔvapH° | 79.6 | kJ/mol | CGC | Chickos, Hosseini, et al., 1995 | Based on data from 453. to 503. K.; AC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 98. ± 10. | kJ/mol | AVG | N/A | Average of 12 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
66.7 | 498. | N/A | Rojas and Orozco, 2003 | See also Hanshaw, Nutt, et al., 2008.; AC |
72.4 | 398. | GC | Lei, Chankalal, et al., 2002 | Based on data from 323. to 473. K.; AC |
69.7 | 398. | GC | Hinckley, Bidleman, et al., 1990 | Based on data from 343. to 453. K.; AC |
58.6 | 519. | A | Stephenson and Malanowski, 1987 | Based on data from 504. to 615. K.; AC |
62.1 | 500. | N/A | Kudchadker, Kudchadker, et al., 1979 | See also Hanshaw, Nutt, et al., 2008.; AC |
59.2 | 558. | I | Mortimer and Murphy, 1923 | Based on data from 500. to 616. K.; AC |
60.3 | 515. | I | Mortimer and Murphy, 1923 | Based on data from 500. to 616. K. See also Boublik, Fried, et al., 1984.; AC |
59.6 | 555. | I | NELSON and SENSEMAN, 1922 | Based on data from 496. to 614. K.; AC |
60.7 | 511. | I | NELSON and SENSEMAN, 1922 | Based on data from 496. to 614. K. See also Boublik, Fried, et al., 1984.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
496.4 to 613.8 | 4.72997 | 2759.53 | -30.753 | Mortimer and Murphy, 1923 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
97.9 ± 0.6 | 320. to 355. | ME | Oja, Chen, et al., 2009 | AC |
98.4 ± 0.7 | 320. to 350. | ME | Oja, Chen, et al., 2009 | AC |
97.6 ± 1.3 | 369. | ME | Siddiqi, Siddiqui, et al., 2009 | Based on data from 339. to 399. K.; AC |
95.6 ± 1.2 | 337. | N/A | Chen, Oja, et al., 2006 | Based on data from 320. to 354. K.; AC |
91.2 | 338. | GS | Grayson and Fosbraey, 2006 | Based on data from 323. to 353. K.; AC |
98.8 ± 0.4 | 350. | ME | Ribeiro da Silva, Monte, et al., 2006 | Based on data from 340. to 360. K.; AC |
102.5 ± 1.9 | 358. | ME | Verevkin, 2004 | Based on data from 348. to 368. K.; AC |
96. ± 6. | 283. to 323. | LE | McEachern and Sandoval, 2001 | AC |
94.5 | 423. to 488. | MEM | Emmenegger and Piccand, 1999 | AC |
102.5 | 338. to 353. | ME | Kloc and Laudise, 1998 | AC |
100.0 ± 2.8 | 341. | ME | Oja and Suuberg, 1998 | Based on data from 318. to 363. K.; AC |
99.7 | 383. | GS | Nass, Lenoir, et al., 1995 | Based on data from 313. to 453. K.; AC |
102.6 | 338. | GS | Hansen and Eckert, 1986 | Based on data from 313. to 363. K.; AC |
98.7 | 346. | GS | Rordorf, 1986 | Based on data from 318. to 373. K.; AC |
94.3 | 353. to 399. | GS | Bender, Bieling, et al., 1983 | AC |
91.8 ± 0.9 | 303. | GS | Sonnefeld, Zoller, et al., 1983 | Based on data from 283. to 323. K.; AC |
94.8 | 376. | GS | Macknick and Prausnitz, 1979 | Based on data from 358. to 393. K.; AC |
98.8 ± 0.4 | 363. to 448. | HSA | Dygdala, Stefanski, et al., 1977 | AC |
97.2 | 328. to 372. | ME | Taylor and Crookes, 1976 | AC |
101.0 ± 0.5 | 353. to 432. | ME | Malaspina, 1973 | AC |
99.7 | 393. | C | Malaspina, 1973 | AC |
84.1 | 290. to 358. | ME,C | Wiedemann, 1972 | See also Beech and Lintonbon, 1971.; AC |
98.49 | 342. | V | Kelley and Rice, 1964 | ALS |
98.3 ± 2.1 | 342. to 359. | N/A | Kelley and Rice, 1964, 2 | See also Cox and Pilcher, 1970.; AC |
90. ± 1.3 | 337. | TE | Budurov, 1960 | Based on data from 327. to 346. K.; AC |
103.4 ± 2.9 | 303. to 373. | N/A | Hoyer and Peperle, 1958 | See also Cox and Pilcher, 1970.; AC |
103.3 ± 2.9 | 303. | V | Hoyer and Peperle, 1958, 2 | Reanalyzed by Pedley, Naylor, et al., 1986, Original value = 102. kJ/mol; ALS |
102.1 ± 2.1 | 338. to 353. | N/A | Bradley and Cleasby, 1953 | See also Cox and Pilcher, 1970.; AC |
102.1 | 346. | N/A | Bradley and Cleasby, 1953, 2 | Based on data from 339. to 353. K.; AC |
102.09 | 338.7 | V | Bradley and Cleasby, 1953, 3 | ALS |
98. ± 2. | 396. to 421. | HSA | Stevens, 1953 | AC |
97. ± 2. | 396. | V | Stevens, 1953, 2 | ALS |
92.0 ± 2.1 | 364. | ME | Inokuchi, Shiba, et al., 1952 | AC |
90.4 | 353. | ME | Inokuchi, 1951 | AC |
97.3 ± 1.2 | 378. to 398. | RG | Sears and Hopke, 1949 | AC |
93.3 ± 4.2 | 353. | N/A | Wolf and Weghofer, 1938 | AC |
93.3 ± 0.8 | 353. | V | Wolf and Weghofer, 1938, 2 | ALS |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
29.372 | 488.93 | N/A | Goursot, Girdhar, et al., 1970 | Note that table of smoothed values indicates Hm = 6485 J/mol and Sm = 251 J/mol*K.; DH |
29.8 | 492. | DSC | Rojas and Orozco, 2003 | Based on data from 463. to 503. K.; AC |
31.5 | 491. | DSC | Storoniak, Krzyminski, et al., 2003 | AC |
28.8 | 489.4 | DSC | Lisicki and Jamróz, 2000 | AC |
29.37 | 488.9 | N/A | Domalski and Hearing, 1996 | AC |
28.830 | 490. | N/A | Ueberreiter and Orthmann, 1950 | DH |
28.870 | 489.7 | N/A | Hildebrand, Duschak, et al., 1917 | DH |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
60.07 | 488.93 | Goursot, Girdhar, et al., 1970 | Note; DH |
58.0 | 490. | Ueberreiter and Orthmann, 1950 | DH |
59.0 | 489.7 | Hildebrand, Duschak, et al., 1917 | DH |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
29.000 | 490.6 | crystaline, I | liquid | Radomska and Radomski, 1980 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
59.1 | 490.6 | crystaline, I | liquid | Radomska and Radomski, 1980 | DH |
Gas phase ion energetics data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
View reactions leading to C14H10+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 7.439 ± 0.006 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 877.3 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 846.6 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.530 ± 0.020 | LPES | Ando, Mitsui, et al., 2007 | B |
0.5300 ± 0.0050 | LPES | Scheidt and Weinkauf, 1997 | B |
0.60 ± 0.10 | TDEq | Heinis, Chowdhury, et al., 1993 | ΔGea(343 K) = -13.2 kcal/mol; ΔSea = -1.1 eu.; B |
0.660 ± 0.060 | ECD | Ruoff, Kadish, et al., 1995 | Revised data, work of Becker and Chen, 1966; B |
0.570 ± 0.020 | ECD | Lyons, Morris, et al., 1968 | B |
0.5560 ± 0.0080 | ECD | Becker and Chen, 1966 | B |
<0.481 ± 0.039 | ECD | Wojnarovits and Foldiak, 1981 | EA is an upper limit: Chen and Wentworth, 1989.; B |
0.41998 | ECD | Wentworth and Becker, 1962 | B |
Proton affinity at 298K
Proton affinity (kJ/mol) | Reference | Comment |
---|---|---|
869.4 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Gas basicity at 298K
Gas basicity (review) (kJ/mol) | Reference | Comment |
---|---|---|
842.7 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Ionization energy determinations
Mass spectrum (electron ionization)
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW- 132 |
NIST MS number | 228201 |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Goursot, Girdhar, et al., 1970
Goursot, P.; Girdhar, H.L.; Westrum, E.F., Jr.,
Thermodynamics of polynuclear aromatic molecules. III. Heat capacities and enthalpies of fusion of anthracene,
J. Phys. Chem., 1970, 74, 2538-2541. [all data]
Goursot, Girdhar, et al., 1968
Goursot, P.; Girdhar, H.L.; Westrum, E.F., Jr.,
Mesure de la capacite calorifique de l'anthracene de 5 a 520K,
Compt. rend., 1968, C266, 949-950. [all data]
Huffman, Parks, et al., 1931
Huffman, H.M.; Parks, G.S.; Barmore, M.,
Thermal data on organic compounds. X. Further studies on the heat capacities, entropies and free energies of hydrocarbons,
J. Am. Chem. Soc., 1931, 53, 3876-3888. [all data]
Radomska and Radomski, 1980
Radomska, M.; Radomski, R.,
Calorimetric studies of binary systems of 1,3,5-trinitrobenzene with naphthalene, anthracene, and carbazole. I. Phase transitions and heat capacities of the pure components and charge-transfer complexes,
Thermochim. Acta, 1980, 40, 405-414. [all data]
Ueberreiter and Orthmann, 1950
Ueberreiter, K.; Orthmann, H.-J.,
Specifische Wärme, spezifisches Volumen, Temperatur- und Wärme-leittähigkeit einiger disubstituierter Benzole und polycyclischer Systeme,
Z. Natursforsch. 5a, 1950, 101-108. [all data]
Hildebrand, Duschak, et al., 1917
Hildebrand, J.H.; Duschak, A.D.; Foster, A.H.,
and Beebe, C.W. The specific heats and heats of fusion of triphenylmethane, anthraquinone and anthracene,
J. Am. Chem. Soc., 1917, 39, 2293-2297. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Buckingham and Donaghy, 1982
Buckingham, J.; Donaghy, S.M.,
Dictionary of Organic Compounds: Fifth Edition, Chapman and Hall, New York, 1982, 1. [all data]
Burriel, 1931
Burriel, F.,
Physico-Chemical Study of Some Solid Organic Compounds at Ordinary Temperatures, and Their COrrelationo with Temperature,
An. R. Soc. Esp. Fis. Quim., 1931, 29, 89. [all data]
Kirby, 1921
Kirby, W.,
Determination of the Melting and Boiling Points of Anthracene, Phenanthrene and Carbazole,
J. Soc. Chem. Ind., London, Trans. Commun., 1921, 40, 274T. [all data]
Goursot, Girdhar, et al., 1970, 2
Goursot, P.; Girdhar, H.L.; Westrum, E.F.,
Thermodynamics of Polynuclear Aromatic Molecules III. Heat Capacities and Enthalpies of Fusion of Anthracene,
J. Phys. Chem., 1970, 74, 2538. [all data]
Zhao, Unhannanant, et al., 2008
Zhao, Hui; Unhannanant, Patamaporn; Hanshaw, William; Chickos, James S.,
Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects,
J. Chem. Eng. Data, 2008, 53, 7, 1545-1556, https://doi.org/10.1021/je800091s
. [all data]
Haftka, Parsons, et al., 2006
Haftka, Joris J.H.; Parsons, John R.; Govers, Harrie A.J.,
Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography,
Journal of Chromatography A, 2006, 1135, 1, 91-100, https://doi.org/10.1016/j.chroma.2006.09.050
. [all data]
Puri, Chickos, et al., 2001
Puri, Swati; Chickos, James S.; Welsh, William J.,
Determination of Vaporization Enthalpies of Polychlorinated Biphenyls by Correlation Gas Chromatography,
Anal. Chem., 2001, 73, 7, 1480-1484, https://doi.org/10.1021/ac001246p
. [all data]
Chickos, Hesse, et al., 1998
Chickos, James; Hesse, Donald; Hosseini, Sarah; Nichols, Gary; Webb, Paul,
Sublimation enthalpies at 298.15K using correlation gas chromatography and differential scanning calorimetry measurements,
Thermochimica Acta, 1998, 313, 2, 101-110, https://doi.org/10.1016/S0040-6031(97)00432-2
. [all data]
Chickos, Hosseini, et al., 1995
Chickos, James S.; Hosseini, Sarah; Hesse, Donald G.,
Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times,
Thermochimica Acta, 1995, 249, 41-62, https://doi.org/10.1016/0040-6031(95)90670-3
. [all data]
Rojas and Orozco, 2003
Rojas, Aarón; Orozco, Eulogio,
Measurement of the enthalpies of vaporization and sublimation of solids aromatic hydrocarbons by differential scanning calorimetry,
Thermochimica Acta, 2003, 405, 1, 93-107, https://doi.org/10.1016/S0040-6031(03)00139-4
. [all data]
Hanshaw, Nutt, et al., 2008
Hanshaw, William; Nutt, Marjorie; Chickos, James S.,
Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons,
J. Chem. Eng. Data, 2008, 53, 8, 1903-1913, https://doi.org/10.1021/je800300x
. [all data]
Lei, Chankalal, et al., 2002
Lei, Ying Duan; Chankalal, Raymond; Chan, Anita; Wania, Frank,
Supercooled Liquid Vapor Pressures of the Polycyclic Aromatic Hydrocarbons,
J. Chem. Eng. Data, 2002, 47, 4, 801-806, https://doi.org/10.1021/je0155148
. [all data]
Hinckley, Bidleman, et al., 1990
Hinckley, Daniel A.; Bidleman, Terry F.; Foreman, William T.; Tuschall, Jack R.,
Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatograhic retention data,
J. Chem. Eng. Data, 1990, 35, 3, 232-237, https://doi.org/10.1021/je00061a003
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Kudchadker, Kudchadker, et al., 1979
Kudchadker, Shanti A.; Kudchadker, Arvind P.; Zwolinski, Bruno J.,
Chemical thermodynamic properties of anthracene and phenanthrene,
The Journal of Chemical Thermodynamics, 1979, 11, 11, 1051-1059, https://doi.org/10.1016/0021-9614(79)90135-6
. [all data]
Mortimer and Murphy, 1923
Mortimer, F. Spencer.; Murphy, Ray v.,
The Vapor Pressures of Some Substances Found in Coal Tar.,
Ind. Eng. Chem., 1923, 15, 11, 1140-1142, https://doi.org/10.1021/ie50167a012
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
NELSON and SENSEMAN, 1922
NELSON, O.A.; SENSEMAN, C.E.,
Vapor Pressure Determinations on Naphthalene, Anthracene, Phecanthrene, and Anthraquinone between Their Melting and Boiling Points,
J. Ind. Eng. Chem., 1922, 14, 1, 58-62, https://doi.org/10.1021/ie50145a028
. [all data]
Oja, Chen, et al., 2009
Oja, Vahur; Chen, Xu; Hajaligol, Mohammad R.; Chan, W. Geoffrey,
Sublimation Thermodynamic Parameters for Cholesterol, Ergosterol, β-Sitosterol, and Stigmasterol,
J. Chem. Eng. Data, 2009, 54, 3, 730-734, https://doi.org/10.1021/je800395m
. [all data]
Siddiqi, Siddiqui, et al., 2009
Siddiqi, M. Aslam; Siddiqui, Rehan A.; Atakan, Burak,
Thermal Stability, Sublimation Pressures, and Diffusion Coefficients of Anthracene, Pyrene, and Some Metal β-Diketonates,
J. Chem. Eng. Data, 2009, 54, 10, 2795-2802, https://doi.org/10.1021/je9001653
. [all data]
Chen, Oja, et al., 2006
Chen, Xu; Oja, Vahur; Chan, W. Geoffrey; Hajaligol, Mohammad R.,
Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method,
J. Chem. Eng. Data, 2006, 51, 2, 386-391, https://doi.org/10.1021/je050293h
. [all data]
Grayson and Fosbraey, 2006
Grayson, B. Terence; Fosbraey, Lynda A.,
Determination of the vapour pressure of pesticides,
Pestic. Sci., 2006, 13, 3, 269-278, https://doi.org/10.1002/ps.2780130308
. [all data]
Ribeiro da Silva, Monte, et al., 2006
Ribeiro da Silva, Manuel A.V.; Monte, Manuel J.S.; Santos, Luís M.N.B.F.,
The design, construction, and testing of a new Knudsen effusion apparatus,
The Journal of Chemical Thermodynamics, 2006, 38, 6, 778-787, https://doi.org/10.1016/j.jct.2005.08.013
. [all data]
Verevkin, 2004
Verevkin, Sergey P.,
Vapor pressure measurements on fluorene and methyl-fluorenes,
Fluid Phase Equilibria, 2004, 225, 145-152, https://doi.org/10.1016/j.fluid.2004.08.037
. [all data]
McEachern and Sandoval, 2001
McEachern, D.M.; Sandoval, O.,
A molecular flow evaporation apparatus for measuring vapour pressures and heats of sublimation of organic compounds,
J. Phys. E: Sci. Instrum., 2001, 6, 2, 155-161, https://doi.org/10.1088/0022-3735/6/2/026
. [all data]
Emmenegger and Piccand, 1999
Emmenegger, F.; Piccand, M.,
Organometallics, 1999, 57, 1, 235-240, https://doi.org/10.1023/A:1010100531350
. [all data]
Kloc and Laudise, 1998
Kloc, Ch.; Laudise, R.A.,
Vapor pressures of organic semiconductors:,
Journal of Crystal Growth, 1998, 193, 4, 563-571, https://doi.org/10.1016/S0022-0248(98)00467-9
. [all data]
Oja and Suuberg, 1998
Oja, Vahur; Suuberg, Eric M.,
Vapor Pressures and Enthalpies of Sublimation of Polycyclic Aromatic Hydrocarbons and Their Derivatives,
J. Chem. Eng. Data, 1998, 43, 3, 486-492, https://doi.org/10.1021/je970222l
. [all data]
Nass, Lenoir, et al., 1995
Nass, Karen; Lenoir, Dieter; Kettrup, Antonius,
Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure,
Angew. Chem. Int. Ed. Engl., 1995, 34, 16, 1735-1736, https://doi.org/10.1002/anie.199517351
. [all data]
Hansen and Eckert, 1986
Hansen, Philip C.; Eckert, Charles A.,
An improved transpiration method for the measurement of very low vapor pressures,
J. Chem. Eng. Data, 1986, 31, 1, 1-3, https://doi.org/10.1021/je00043a001
. [all data]
Rordorf, 1986
Rordorf, Berchtold F.,
Thermal properties of dioxins, furans and related compounds,
Chemosphere, 1986, 15, 9-12, 1325-1332, https://doi.org/10.1016/0045-6535(86)90407-8
. [all data]
Bender, Bieling, et al., 1983
Bender, R.; Bieling, V.; Maurer, G.,
The vapour pressures of solids: anthracene, hydroquinone, and resorcinol,
The Journal of Chemical Thermodynamics, 1983, 15, 6, 585-594, https://doi.org/10.1016/0021-9614(83)90058-7
. [all data]
Sonnefeld, Zoller, et al., 1983
Sonnefeld, W.J.; Zoller, W.H.; May, W.E.,
Dynamic coupled-column liquid-chromatographic determination of ambient-temperature vapor pressures of polynuclear aromatic hydrocarbons,
Anal. Chem., 1983, 55, 2, 275-280, https://doi.org/10.1021/ac00253a022
. [all data]
Macknick and Prausnitz, 1979
Macknick, A. Brian; Prausnitz, John M.,
Vapor pressures of high-molecular-weight hydrocarbons,
J. Chem. Eng. Data, 1979, 24, 3, 175-178, https://doi.org/10.1021/je60082a012
. [all data]
Dygdala, Stefanski, et al., 1977
Dygdala, R.S.; Stefanski, K.; Wonikowski, J.,
Bull. Acad. Pol. Sci., Ser. Sci., Math., Astron. Phys., 1977, 25, 439. [all data]
Taylor and Crookes, 1976
Taylor, John Watson; Crookes, Roy J.,
Vapour pressure and enthalpy of sublimation of 1,3,5,7-tetranitro-1,3,5,7-tetra-azacyclo-octane (HMX),
J. Chem. Soc., Faraday Trans. 1, 1976, 72, 0, 723, https://doi.org/10.1039/f19767200723
. [all data]
Malaspina, 1973
Malaspina, L.,
Microcalorimetric determination of the enthalpy of sublimation of benzoic acid and anthracene,
J. Chem. Phys., 1973, 59, 1, 387, https://doi.org/10.1063/1.1679817
. [all data]
Wiedemann, 1972
Wiedemann, H.G.,
Applications of thermogravimetry for vapor pressure determination,
Thermochim. Acta, 1972, 355-366. [all data]
Beech and Lintonbon, 1971
Beech, Graham; Lintonbon, Roger M.,
The measurement of sublimation enthalpies by differential scanning calorimetry,
Thermochimica Acta, 1971, 2, 1, 86-88, https://doi.org/10.1016/0040-6031(71)85027-X
. [all data]
Kelley and Rice, 1964
Kelley, J.D.; Rice, F.O.,
The vapor pressures of some polynuclear aromatic hydrocarbons,
J. Phys. Chem., 1964, 68, 3794. [all data]
Kelley and Rice, 1964, 2
Kelley, J. Daniel; Rice, Francis Owen,
The Vapor Pressures of Some Polynuclear Aromatic Hydrocarbons 1,
J. Phys. Chem., 1964, 68, 12, 3794-3796, https://doi.org/10.1021/j100794a043
. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press Inc., London, 1970, 643. [all data]
Budurov, 1960
Budurov, S.,
Izv. Khim. Inst. Bulg. Akad. Nauk, 1960, 7, 281. [all data]
Hoyer and Peperle, 1958
Hoyer, H.; Peperle, W.,
Z. Elektrochem., 1958, 62, 61. [all data]
Hoyer and Peperle, 1958, 2
Hoyer, H.; Peperle, W.,
Dampfdrunkmessungen an organischen substanzen und ihre sublimationswarmen,
Z. Electrochem., 1958, 62, 61-66. [all data]
Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P.,
Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]
Bradley and Cleasby, 1953
Bradley, R.S.; Cleasby, T.G.,
346. The vapour pressure and lattice energy of hydrogen-bonded crystals. Part I. Oxamide, oxamic acid, and rubeanic acid,
J. Chem. Soc., 1953, 1681, https://doi.org/10.1039/jr9530001681
. [all data]
Bradley and Cleasby, 1953, 2
Bradley, R.S.; Cleasby, T.G.,
349. The vapour pressure and lattice energy of some aromatic ring compounds,
J. Chem. Soc., 1953, 1690, https://doi.org/10.1039/jr9530001690
. [all data]
Bradley and Cleasby, 1953, 3
Bradley, R.S.; Cleasby, T.G.,
The vapour pressure and lattice energy of some aromatic ring compounds,
J. Am. Chem. Soc., 1953, 1690-16. [all data]
Stevens, 1953
Stevens, B.,
591. Vapour pressure and the heats of sublimation of anthracene and of 9: 10-diphenylanthracene,
J. Chem. Soc., 1953, 2973, https://doi.org/10.1039/jr9530002973
. [all data]
Stevens, 1953, 2
Stevens, B.,
Vapour pressures and the heats of sublimation of anthracene and of 9:10-diphenylanthracene,
J. Chem. Soc., 1953, 76, 2973-29. [all data]
Inokuchi, Shiba, et al., 1952
Inokuchi, Hiroo; Shiba, Sukekuni; Handa, Takashi; Akamatu, Hideo,
Heats of Sublimation of Condensed Polynuclear Aromatic Hydrocarbons,
Bull. Chem. Soc. Jpn., 1952, 25, 5, 299-302, https://doi.org/10.1246/bcsj.25.299
. [all data]
Inokuchi, 1951
Inokuchi, H.,
J. Chem. Soc. Jpn. Pure Chem. Sect., 1951, 72, 552. [all data]
Sears and Hopke, 1949
Sears, G.W.; Hopke, E.R.,
Vapor Pressures of Naphthalene, Anthracene and Hexachlorobenzene in a Low Pressure Region,
J. Am. Chem. Soc., 1949, 71, 5, 1632-1634, https://doi.org/10.1021/ja01173a026
. [all data]
Wolf and Weghofer, 1938
Wolf, K.L.; Weghofer, H.Z.,
Z. Phys. Chem. Abt. B, 1938, 39, 194. [all data]
Wolf and Weghofer, 1938, 2
Wolf, K.L.; Weghofer, H.,
Uber sublimationswarmen,
Z. Phys. Chem., 1938, 39, 194-208. [all data]
Storoniak, Krzyminski, et al., 2003
Storoniak, P.; Krzyminski, K.; Bouzyk, A.; Koval'chuk, E.P.; Blazejowski, J.,
Melting, volatilisation and crystal lattice enthalpies of acridin-9(10H)-ones,
Journal of Thermal Analysis and Calorimetry, 2003, 74, 2, 443-450, https://doi.org/10.1023/B:JTAN.0000005179.91819.6d
. [all data]
Lisicki and Jamróz, 2000
Lisicki, Zygmunt; Jamróz, Malgorzata E.,
(Solid + liquid) equilibria in (polynuclear aromatic+ tertiary amide) systems,
The Journal of Chemical Thermodynamics, 2000, 32, 10, 1335-1353, https://doi.org/10.1006/jcht.2000.0685
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Ando, Mitsui, et al., 2007
Ando, N.; Mitsui, M.; Nakajima, A.,
Comprehensive photoelectron spectroscopic study of anionic clusters of anthracene and its alkyl derivatives: Electronic structures bridging molecules to bulk,
J. Chem. Phys., 2007, 127, 23, 234305, https://doi.org/10.1063/1.2805185
. [all data]
Scheidt and Weinkauf, 1997
Scheidt, J.; Weinkauf, R.,
Photodetachment photoelectron spectroscopy of Mass Selected Anions: Anthracene and the Anthracene-H2O Cluster,
Chem. Phys. Lett., 1997, 266, 1-2, 201, https://doi.org/10.1016/S0009-2614(96)01512-6
. [all data]
Heinis, Chowdhury, et al., 1993
Heinis, T.; Chowdhury, S.; Kebarle, P.,
Electron Affinities of Naphthalene, Anthracene and Substituted Naphthalenes and Anthracenes,
Org. Mass Spectrom., 1993, 28, 4, 358, https://doi.org/10.1002/oms.1210280416
. [all data]
Ruoff, Kadish, et al., 1995
Ruoff, R.S.; Kadish, K.M.; Boulas, P.; Chen, E.C.M.,
The relationship between the electron affinities and half-wave reduction potentials of fullerenes, aromatic hydrocarbons, and metal complexes,
J. Phys. Chem., 1995, 99, 21, 8843, https://doi.org/10.1021/j100021a060
. [all data]
Becker and Chen, 1966
Becker, R.S.; Chen, E.,
Extension of Electron Affinities and Ionization Potentials of Aromatic Hydrocarbons,
J. Chem. Phys., 1966, 45, 7, 2403, https://doi.org/10.1063/1.1727954
. [all data]
Lyons, Morris, et al., 1968
Lyons, L.E.; Morris, G.C.; Warren, L.J.,
Electron Affinities and the Electron Capture Method for Aromatic Hydrocarbons,
J. Phys. Chem., 1968, 72, 10, 3677, https://doi.org/10.1021/j100856a056
. [all data]
Wojnarovits and Foldiak, 1981
Wojnarovits, L.; Foldiak, G.,
Electron capture detection of aromatic hydrocarbons,
J. Chromatogr. Sci., 1981, 206, 511. [all data]
Chen and Wentworth, 1989
Chen, E.C.M.; Wentworth, W.E.,
Experimental Determination of Electron Affinities of Organic Molecules,
Mol. Cryst. Liq. Cryst., 1989, 171, 271. [all data]
Wentworth and Becker, 1962
Wentworth, W.E.; Becker, R.S.,
Potential Method for the Determination of Electron Affinities of Molecules: Application to Some Aromatic Hydrocarbons.,
J. Am. Chem. Soc., 1962, 84, 22, 4263, https://doi.org/10.1021/ja00881a014
. [all data]
Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D.,
Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons,
Int. J. Mass Spectrom., 2000, 201, 283. [all data]
Hager and Wallace, 1988
Hager, J.W.; Wallace, S.C.,
Two-laser photoionization supersonic jet mass spectrometry of aromatic molecules,
Anal. Chem., 1988, 60, 5. [all data]
Stahl and Maquin, 1984
Stahl, D.; Maquin, F.,
Charge-stripping mass spectrometry of molecular ions from polyacenes and molecular orbital theory,
Chem. Phys. Lett., 1984, 108, 613. [all data]
Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H.,
Photoelectron spectra of acenes. Electronic structure and substituent effects,
Pure Appl. Chem., 1983, 55, 289. [all data]
Mautner(Meot-Ner), 1980
Mautner(Meot-Ner), M.,
Ion thermochemistry of low volatility compounds in the gas phase. 3. Polycyclic aromatics: Ionization energies, proton, and hydrogen affinities. Extrapolations to graphite,
J. Phys. Chem., 1980, 84, 2716. [all data]
Streets and Williams, 1974
Streets, D.G.; Williams, T.A.,
Photoelectron spectroscopy of 9,10-dihaloanthracenes,
J. Electron Spectrosc. Relat. Phenom., 1974, 3, 71. [all data]
Koch, Otto, et al., 1973
Koch, E.E.; Otto, A.; Radler, K.,
The absorption spectrum of the anthracene molecule in the vacuum ultraviolet,
Chem. Phys. Lett., 1973, 21, 501. [all data]
Aihara and Inokuchi, 1973
Aihara, J.; Inokuchi, H.,
Ionization potentials of anthracene,
Chem. Lett., 1973, 421. [all data]
Eland, 1972
Eland, J.H.D.,
Photoelectron spectra and ionization potentials of aromatic hydrocarbons,
Int. J. Mass Spectrom. Ion Phys., 1972, 9, 214. [all data]
Dewar and Goodman, 1972
Dewar, M.J.S.; Goodman, D.W.,
Photoelectron spectra of molecules. Part 5.--Polycyclic aromatic hydrocarbons,
J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1784. [all data]
Clark, Brogli, et al., 1972
Clark, P.A.; Brogli, F.; Heilbronner, E.,
The π-orbital energies of the acenes,
Helv. Chim. Acta, 1972, 55, 1415. [all data]
Boschi, Murrell, et al., 1972
Boschi, R.; Murrell, J.N.; Schmidt, W.,
Photoelectron spectra of polycyclic aromatic hydrocarbons,
Faraday Discuss. Chem. Soc., 1972, 54, 116. [all data]
Rowland, 1971
Rowland, C.G.,
Kinetic energy distributions of C12H8 fragment ions in the mass spectra of anthracene, phenanthrene and diphenylacetylene,
Intern. J. Mass Spectrom. Ion Phys., 1971, 7, 79. [all data]
Kitagawa, 1968
Kitagawa, T.,
Absorption spectra and photoionization of polycyclic aromatics in vacuum ultraviolet region,
J. Mol. Spectry., 1968, 26, 1. [all data]
Angus and Morris, 1966
Angus, J.A.; Morris, G.C.,
Ionization potential of the anthracene molecule from Rydberg absorption bands,
J.Mol. Spectry., 1966, 21, 310. [all data]
Kuroda, 1964
Kuroda, H.,
Ionization potentials of polycyclic aromatic hydrocarbons,
Nature, 1964, 201, 1214. [all data]
Finch, 1964
Finch, A.C.M.,
Charge-transfer spectra and the ionization energy of azulene,
J. Chem. Soc., 1964, 2272. [all data]
Briegleb, 1964
Briegleb, G.,
Electron affinity of organic molecules,
Angew. Chem. Intern. Ed., 1964, 3, 617. [all data]
Kinoshita, 1962
Kinoshita, M.,
The absorption spectra of the molecular complexes of aromatic compounds with p-bromanil,
Bull. Chem. Soc. Japan, 1962, 35, 1609. [all data]
Terenin, 1961
Terenin, A.,
Charge transfer in organic solids, induced by light,
Proc. Chem. Soc., London, 1961, 321. [all data]
Briegleb, Czekalla, et al., 1961
Briegleb, G.; Czekalla, J.; Reuss, G.,
Mesomeriemomente und Elektronenuberfuhrungsbanden von Elektronen-donator-akzeptor-komplexen des Chloranils und Tetracyanathylens mit aromatischen Kohlenwasserstoffen,
Z. Phys. Chem. (Neue Folge), 1961, 30, 333. [all data]
Birks and Stifkin, 1961
Birks, J.B.; Stifkin, M.A.,
π-Electronic excitation and ionization energies of condensed ring aromatic hydrocarbons,
Nature, 1961, 191, 761. [all data]
Wacks and Dibeler, 1959
Wacks, M.E.; Dibeler, V.H.,
Electron impact studies of aromatic hydrocarbons. I. Benzene, naphthalene, anthracene, and phenanthrene,
J. Chem. Phys., 1959, 31, 1557. [all data]
Foster, 1959
Foster, R.,
Ionization potentials of electron donors,
Nature (London), 1959, 183, 1253. [all data]
Briegleb and Czekalla, 1959
Briegleb, G.; Czekalla, J.,
Die Bestimmung von lonisierungsenergien aus den Spektren von Elektronenubergangskomplexen,
Z.Elektrochem., 1959, 63, 6. [all data]
Matsen, 1956
Matsen, F.A.,
Electron affinities, methyl affinities, and ionization energies of condensed ring aromatic hydrocarbons,
J. Chem. Phys., 1956, 24, 602. [all data]
Klasinc, Kovac, et al., 1978
Klasinc, L.; Kovac, B.; Schoof, S.; Gusten, H.,
Photoelectron spectroscopy of 9-substituted anthracenes,
Croat. Chem. Acta., 1978, 51, 307. [all data]
Schmidt, 1977
Schmidt, W.,
Photoelectron spectra of polynuclear aromatics. V. Correlations with ultraviolet absorption spectra in the catacondensed series,
J. Chem. Phys., 1977, 66, 828. [all data]
Clar and Schmidt, 1976
Clar, E.; Schmidt, W.,
Correlations between photoelectron and phosphorescence spectra of polycyclic hydrocarbons,
Tetrahedron, 1976, 32, 2563. [all data]
Jongsma, Vermeer, et al., 1975
Jongsma, C.; Vermeer, H.; Bickelhaupt, F.; Schafer, W.; Schweig, A.,
10-methyl-9-phosphaanthracene,
Tetrahedron, 1975, 31, 2931. [all data]
Hush, Cheung, et al., 1975
Hush, N.S.; Cheung, A.S.; Hilton, P.R.,
Binding energies of π- and "lone pair"-levels in mono- and diaza-phenanthrenes and anthracenes: an He(I) photoelectron spectroscopic study,
J. Electron Spectrosc. Relat. Phenom., 1975, 7, 385. [all data]
Marschner and Goetz, 1974
Marschner, F.; Goetz, H.,
Korrelation zwischen photoelektronen- und elektronen-spektren. II. Untersuchung aromatischer π-systeme mit modifizierten PPP-SCF-CI-parametern,
Tetrahedron, 1974, 30, 3159. [all data]
Schafer, Schweig, et al., 1972
Schafer, W.; Schweig, A.; Bickelhaupt, F.; Vermeer, H.,
Photoelectron spectroscopy and conjugation. Direct proof of the unusual sequence of the two highest occupied π-molecular orbitals in the phosphorin (phosphabenzene) and the arsenin (arsabenzene) system,
Angew. Chem. Int. Ed. Engl., 1972, 11, 924. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References
- Symbols used in this document:
Cp,solid Constant pressure heat capacity of solid EA Electron affinity IE (evaluated) Recommended ionization energy S°solid,1 bar Entropy of solid at standard conditions (1 bar) Tboil Boiling point Tfus Fusion (melting) point Ttriple Triple point temperature ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.