Triphenylmethane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DH - Eugene S. Domalski and Elizabeth D. Hearing
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfsolid167.7 ± 4.1kJ/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfsolid162.9 ± 4.0kJ/molCcbParks, West, et al., 1946Reanalyzed by Cox and Pilcher, 1970, Original value = 162.0 ± 0.08 kJ/mol; ALS
Δfsolid  CcbSchmidlin, 1906uncertain value: 145. kJ/mol; Undetermine error; ALS
Quantity Value Units Method Reference Comment
Δcsolid-9934.5 ± 1.3kJ/molCcbCoops, Mulder, et al., 1947Reanalyzed by Cox and Pilcher, 1970, Original value = -9916.8 ± 1.3 kJ/mol; See Coops, Mulder, et al., 1946; Corresponding Δfsolid = 171.2 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid-9926.2 ± 4.0kJ/molCcbParks, West, et al., 1946Reanalyzed by Cox and Pilcher, 1970, Original value = -9925.4 ± 4.0 kJ/mol; Corresponding Δfsolid = 162.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid  CcbSchmidlin, 1906uncertain value: -9979.3 kJ/mol; Undetermine error; ALS
Quantity Value Units Method Reference Comment
solid,1 bar312.1J/mol*KN/AHuffman, Parks, et al., 1930Extrapolation below 90 K, 99.75 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
454.0373.Kurbatov, 1950T = 100 to 343°C.; DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
295.6298.15Steele, 1979DH
333.5298.1Eibert, 1944T = 30 to 200°C, equations only, in t°C. Cp(c) = 0.326 cal/g*K (30 to 90°C); Cp(liq) = 0.325 + 0.000889t cal/g*K (92 to 200°C).; DH
308.8303.Spaght, Thomas, et al., 1932T = 30 to 110°C.; DH
295.4298.15Smith and Andrews, 1931T = 102 to 346 K. Value is unsmoothed experimental datum.; DH
294.6294.3Huffman, Parks, et al., 1930T = 89 to 294 K. Value is unsmoothed datum.; DH
261.1298.15Hildebrand, Duschak, et al., 1917T = 293 to 418 K. From heat content data.; DH

Phase change data

Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil449.KN/AMcGrath and Levine, 1955Uncertainty assigned by TRC = 2. K; TRC
Tboil632.KN/AKurbatov, 1950, 2Uncertainty assigned by TRC = 1. K; TRC
Tboil632.KN/ALagerlof, 1918Uncertainty assigned by TRC = 6. K; TRC
Quantity Value Units Method Reference Comment
Tfus365. ± 3.KAVGN/AAverage of 26 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap93.2 ± 2.2kJ/molCGCHanshaw, Nutt, et al., 2008AC
Δvap94.6kJ/molCGCChickos, Hesse, et al., 1998AC
Δvap95.0kJ/molCGCChickos, Hosseini, et al., 1995Based on data from 453. to 503. K.; AC
Quantity Value Units Method Reference Comment
Δsub108.4 ± 2.8kJ/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δsub109.1 ± 0.6kJ/molGSVerevkin, 1999Based on data from 323. to 353. K.; AC
Δsub112.kJ/molCGC-DSCChickos, Hesse, et al., 1998AC
Δsub100.7kJ/molN/AMarcus and Loewenschuss, 1986See also Cuthbertson and Bent, 1936.; AC
Δsub105. ± 0.8kJ/molVPepekin, Erlikh, et al., 1974ALS

Reduced pressure boiling point

Tboil (K) Pressure (bar) Reference Comment
631.71.01Weast and Grasselli, 1989BS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
82.0403.N/ASasse, N'guimbi, et al., 1989Based on data from 343. to 462. K.; AC
58.6527.AStephenson and Malanowski, 1987Based on data from 512. to 643. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
442.9 to 532.413.852077254.697-9.133Stull, 1947Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
106.7 ± 0.6338.GSVerevkin, 1999Based on data from 323. to 353. K.; AC
113.9353.EMSasse, N'guimbi, et al., 1989Based on data from 343. to 363. K.; AC
106.8330.THansen and Eckert, 1986Based on data from 303. to 358. K.; AC
100.1 ± 0.59367.VAihara, 1959crystal phase; ALS
100. ± 0.4339.VAihara, 1959, 2Based on data from 325. to 349. K. See also Cox and Pilcher, 1970, 2 and Stephenson and Malanowski, 1987.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Method Reference Comment
21.979365.3N/ASpaght, Thomas, et al., 1932DH
20.7367.2DSCVerevkin, 1999AC
21.97365.3N/ADomalski and Hearing, 1996AC
20.920365.6N/AEibert, 1944DH
18.200365.5N/AHildebrand, Duschak, et al., 1917DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
60.2365.3Spaght, Thomas, et al., 1932DH
57.2365.6Eibert, 1944DH
49.8365.5Hildebrand, Duschak, et al., 1917DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Gas phase ion energetics data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi

Ionization energy determinations

IE (eV) Method Reference Comment
8.34 ± 0.03PIRodionov, Potapov, et al., 1973LLK
8.34 ± 0.04PIPotapov, Kardash, et al., 1972LLK
8.40 ± 0.05PEDistefano, Pignataro, et al., 1976Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C13H11+10.9C6H5PIRodionov, Potapov, et al., 1973LLK

De-protonation reactions

C19H15- + Hydrogen cation = Triphenylmethane

By formula: C19H15- + H+ = C19H16

Quantity Value Units Method Reference Comment
Δr1501. ± 9.2kJ/molG+TSTaft and Bordwell, 1988gas phase; B
Δr1510. ± 10.kJ/molG+TSBartmessgas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr1467. ± 8.4kJ/molIMRETaft and Bordwell, 1988gas phase; B
Δr1476. ± 9.6kJ/molIMREBartmessgas phase; value altered from reference due to change in acidity scale; B

Mass spectrum (electron ionization)

Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-5907
NIST MS number 228265

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Parks, West, et al., 1946
Parks, G.S.; West, T.J.; Naylor, B.F.; Fujii, P.S.; McClaine, L.A., Thermal data on organic compounds. XXIII. Modern combustion data for fourteen hydrocarbons and five polyhydroxy alcohols, J. Am. Chem. Soc., 1946, 68, 2524-2527. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Schmidlin, 1906
Schmidlin, M.J., Recherches chimiques et thermochimiques sur la constitution des rosanilines, Ann. Chim. Phys., 1906, 1, 195-256. [all data]

Coops, Mulder, et al., 1947
Coops, J.; Mulder, D.; Dienske, J.W.; Smittenberg, J., Researches on heat of combustion IV. Technique for the determination of the heats of combustion of volatile liquids, Recl. Trav. Chim. Pays-Bas, 1947, 66, 153-160. [all data]

Coops, Mulder, et al., 1946
Coops, J.; Mulder, D.; Dienske, J.W.; Smittenberg, J., The heats of combustion of a number of hydrocarbons, Rec. Trav. Chim. Pays/Bas, 1946, 65, 128. [all data]

Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Daniels, A.C., Thermal data on organic compounds. VII. The heat capacities, entropies and free energies of twelve aromatic hydrocarbons, J. Am. Chem. Soc., 1930, 52, 1547-1558. [all data]

Kurbatov, 1950
Kurbatov, V.Ya., Specific heats of liquids. III. Specific heat of hydrocarbons with several noncondensed rings, Zhur. Obshch. Khim., 1950, 20, 1139-1144. [all data]

Steele, 1979
Steele, W.V., The standard enthalpies of formation of the triphenyl compounds of the group V elements. 2. Triphenylbismuth and the Ph-Bi mean bond-dissociation energy, J. Chem. Thermodynam., 1979, 11, 187-192. [all data]

Eibert, 1944
Eibert, J., Thesis Washington University (St. Louis), 1944. [all data]

Spaght, Thomas, et al., 1932
Spaght, M.E.; Thomas, S.B.; Parks, G.S., Some heat capacity data on organic compounds obtained with a radiation calorimeter, J. Phys. Chem., 1932, 36, 882-888. [all data]

Smith and Andrews, 1931
Smith, R.H.; Andrews, D.H., Thermal energy studies. I. Phenyl derivatives of methane, ethane and some related compounds. J. Am. Chem. Soc., 1931, 53, 3644-3660. [all data]

Hildebrand, Duschak, et al., 1917
Hildebrand, J.H.; Duschak, A.D.; Foster, A.H., and Beebe, C.W. The specific heats and heats of fusion of triphenylmethane, anthraquinone and anthracene, J. Am. Chem. Soc., 1917, 39, 2293-2297. [all data]

McGrath and Levine, 1955
McGrath, T.F.; Levine, R., The Reactions of Certain Fluorinated and Chlorinated Acetic Acids with Phenyllithium in Refluxing Ether, J. Am. Chem. Soc., 1955, 77, 3634. [all data]

Kurbatov, 1950, 2
Kurbatov, V.Y., Specific heat of liquids. III. Specific heat of hydrocarbons with several noncondensed rings, Zh. Obshch. Khim., 1950, 20, 1139. [all data]

Lagerlof, 1918
Lagerlof, D., Thermodynamic research: reduced formulas for simplified calculations of latent molar heat of evaporation, J. Prakt. Chem., 1918, 98, 136. [all data]

Hanshaw, Nutt, et al., 2008
Hanshaw, William; Nutt, Marjorie; Chickos, James S., Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons, J. Chem. Eng. Data, 2008, 53, 8, 1903-1913, https://doi.org/10.1021/je800300x . [all data]

Chickos, Hesse, et al., 1998
Chickos, James; Hesse, Donald; Hosseini, Sarah; Nichols, Gary; Webb, Paul, Sublimation enthalpies at 298.15K using correlation gas chromatography and differential scanning calorimetry measurements, Thermochimica Acta, 1998, 313, 2, 101-110, https://doi.org/10.1016/S0040-6031(97)00432-2 . [all data]

Chickos, Hosseini, et al., 1995
Chickos, James S.; Hosseini, Sarah; Hesse, Donald G., Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times, Thermochimica Acta, 1995, 249, 41-62, https://doi.org/10.1016/0040-6031(95)90670-3 . [all data]

Verevkin, 1999
Verevkin, Sergey P., Thermochemical Properties of Triphenylalkanes and Tetraphenylmethane. Strain in Phenyl Substituted Alkanes, J. Chem. Eng. Data, 1999, 44, 3, 557-562, https://doi.org/10.1021/je9802726 . [all data]

Marcus and Loewenschuss, 1986
Marcus, Yizhak; Loewenschuss, Aharon, Entropies of tetrahedral M---phenyl species, J. Chem. Soc., Faraday Trans. 1, 1986, 82, 3, 993, https://doi.org/10.1039/f19868200993 . [all data]

Cuthbertson and Bent, 1936
Cuthbertson, G.R.; Bent, H.E., Single Bond Energies. IV. The Vapor Pressure of Hexaphenylethane, J. Am. Chem. Soc., 1936, 58, 10, 2000-2003, https://doi.org/10.1021/ja01301a052 . [all data]

Pepekin, Erlikh, et al., 1974
Pepekin, V.I.; Erlikh, R.D.; Matyushin, Yu.N.; Lebedev, Yu.A., Dissociation energy of the C - N3 bond in triphenylazidomethane and benzyl and phenyl azides. Enghalpy of formation of triphenylmethyl radical, Dokl. Phys. Chem. (Engl. Transl.), 1974, 214, 123-125. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Sasse, N'guimbi, et al., 1989
Sasse, K.; N'guimbi, J.; Jose, J.; Merlin, J.C., Tension de vapeur d'hydrocarbures polyaromatiques dans le domaine 10-3--10 Torr, Thermochimica Acta, 1989, 146, 53-61, https://doi.org/10.1016/0040-6031(89)87075-3 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Hansen and Eckert, 1986
Hansen, Philip C.; Eckert, Charles A., An improved transpiration method for the measurement of very low vapor pressures, J. Chem. Eng. Data, 1986, 31, 1, 1-3, https://doi.org/10.1021/je00043a001 . [all data]

Aihara, 1959
Aihara, A., Estimation of the energy of hydrogen bonds formed in crystals. I. Sublimation pressures of some organic molecular crystals and the additivity of lattice energy, Bull. Chem. Soc. Jpn., 1959, 32, 1242. [all data]

Aihara, 1959, 2
Aihara, Ariyuki, Estimation of the Energy of Hydrogen Bonds Formed in Crystals. I. Sublimation Pressures of Some Organic Molecular Crystals and the Additivity of Lattice Energy, Bull. Chem. Soc. Jpn., 1959, 32, 11, 1242-1248, https://doi.org/10.1246/bcsj.32.1242 . [all data]

Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press Inc., London, 1970, 643. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Rodionov, Potapov, et al., 1973
Rodionov, A.N.; Potapov, V.K.; Rogozhin, K.L., Photoionization of certain aromatic heteroorganic compounds, High Energy Chem., 1973, 7, 249, In original 278. [all data]

Potapov, Kardash, et al., 1972
Potapov, V.K.; Kardash, I.E.; Sorokin, V.V.; Sokolov, S.A.; Evlasheva, T.I., Photoionization of heteroaromatic compounds, Khim. Vys. Energ., 1972, 6, 392. [all data]

Distefano, Pignataro, et al., 1976
Distefano, G.; Pignataro, S.; Szepes, L.; Borossay, J., Photoelectron spectroscopy study of the triphenyl derivatives of the group IV elements, J. Organomet. Chem., 1976, 104, 173. [all data]

Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G., Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase, Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005 . [all data]

Bartmess
Bartmess, J.E., The Gas Phase Thermochemistry of Ph3C-, Ph3C., and Ph3C+, 32nd Ann. Conf. on Mass Spectrom. Allied Topics, San Antonio TX 27 May-1 June 1984. Abstracts p. 472. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References