Benzoic acid
- Formula: C7H6O2
- Molecular weight: 122.1213
- IUPAC Standard InChIKey: WPYMKLBDIGXBTP-UHFFFAOYSA-N
- CAS Registry Number: 65-85-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Benzenecarboxylic acid; Benzeneformic acid; Benzenemethanoic acid; Benzoesaeure GK; Benzoesaeure GV; Carboxybenzene; Dracylic acid; Phenylcarboxylic acid; Phenylformic acid; Retarder BA; Retardex; Salvo, liquid; Solvo, powder; Tenn-Plas; Acide benzoique; Benzoic acid, tech.; Kyselina benzoova; Benzoesaeure; Salvo powder; E 210; HA 1; HA 1 (acid); Phenylcarboxy; Benzenemethonic acid; Diacylic acid; Flowers of benjamin; Flowers of benzoin; Oracylic acid; Retarder BAX; NSC 149
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔcH°liquid | -3227.00 ± 0.20 | kJ/mol | Ccb | Gundry, Harrop, et al., 1969 | Reanalyzed by Pedley, Naylor, et al., 1986, Original value = -3225.73 kJ/mol; Corresponding ΔfHºliquid = -385.06 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°solid | -384.8 ± 0.50 | kJ/mol | Ccb | Corral, 1960 | ALS |
ΔfH°solid | -386. | kJ/mol | Ccb | Landrieu, Baylocq, et al., 1929 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -3228. ± 4. | kJ/mol | AVG | N/A | Average of 17 out of 18 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 165.71 | J/mol*K | N/A | Kaji, Tochigi, et al., 1993 | DH |
S°solid,1 bar | 167.73 | J/mol*K | N/A | Arvidsson, Falk, et al., 1976 | DH |
S°solid,1 bar | 167.59 | J/mol*K | N/A | Furukawa, McCoskey, et al., 1951 | DH |
S°solid,1 bar | 167.82 | J/mol*K | N/A | Davies and Staveley, 1957 | DH |
S°solid,1 bar | 170.7 | J/mol*K | N/A | Parks, Huffman, et al., 1933 | Extrapolation below 90 K, 59.25 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
259. | 413. | Pacor, 1967 | DH |
Constant pressure heat capacity of solid
Cp,solid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
147.78 | 300. | Kaji, Tochigi, et al., 1993 | T = 19 to 312 K. Unsmoothed experimental datum.; DH |
147.03 | 298.902 | Sorai, Kaji, et al., 1992 | T = 15 to 305 K. Unsmoothed experimental datum.; DH |
146.23 | 296.29 | Moriya, Matsuo, et al., 1982 | T = 13 to 355 K. NBS SRM 29.; DH |
146.65 | 298.15 | Shakirov and Lyubarskii, 1980 | T = 20 to 300 K.; DH |
146.79 | 298.15 | Arvidsson, Falk, et al., 1976 | T = 6 to 341 K.; DH |
147.07 | 299.62 | Tatsumi, Matsuo, et al., 1975 | T = 12 to 304 K.; DH |
149. | 301. | Mosselman, Mourik, et al., 1974 | One temperature, T = 5 K. Value 5 J/mol*K.; DH |
146.80 | 298.15 | Konicek, Suurkuusk, et al., 1971 | DH |
167.40 | 298.15 | Justice, 1969 | As check on system. Only value at 298 K given.; DH |
147.14 | 299.99 | Suga and Seki, 1965 | T = 13 to 300 K. Value is unsmoothed experimental datum.; DH |
130. | 340. | David, 1964 | T = 298 to 373 K. Mean value. T = uncertain.; DH |
146.31 | 298.15 | Kolesov, Seregin, et al., 1962 | T = 22 to 310 K.; DH |
147.02 | 298.15 | Davies and Staveley, 1957 | T = 20 to 298 K.; DH |
149.79 | 298.15 | Popov and Kolesov, 1956 | T = 80 to 300 K.; DH |
146.81 | 298.15 | Ginnings and Furukawa, 1953 | T = 14 to 410 K.; DH |
146.81 | 298.15 | Furukawa, McCoskey, et al., 1951 | T = 13 to 410 K.; DH |
160.2 | 323. | Satoh and Sogabe, 1939 | T = 0 to 100 C. Mean value.; DH |
145.10 | 295.1 | Parks, Huffman, et al., 1933 | T = 93 to 295 K. Value is unsmoothed experimental datum.; DH |
155.2 | 298. | Andrews, Lynn, et al., 1926 | T = 22 to 200 C.; DH |
Phase change data
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 522.2 | K | N/A | Weast and Grasselli, 1989 | BS |
Tboil | 522. | K | N/A | Buckingham and Donaghy, 1982 | BS |
Tboil | 523.18 | K | N/A | Burriel, 1931 | Uncertainty assigned by TRC = 0.2 K; TRC |
Tboil | 523.59 | K | N/A | Burriel, 1931 | Uncertainty assigned by TRC = 0.2 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 395.2 ± 0.7 | K | AVG | N/A | Average of 18 out of 20 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 395.52 | K | N/A | Marsh, 1987 | Uncertainty assigned by TRC = 0.005 K; recommended as calibration standard; TRC |
Ttriple | 395.520 | K | N/A | Andon and Connett, 1980 | Uncertainty assigned by TRC = 0.01 K; TRC |
Ttriple | 395.52 | K | N/A | Ginnings and Furukawa, 1953, 2 | Uncertainty assigned by TRC = 0.01 K; TRC |
Ttriple | 395.52 | K | N/A | Furukawa, McCoskey, et al., 1951, 2 | Uncertainty assigned by TRC = 0.01 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 78.9 | kJ/mol | CGC | Chickos, Hosseini, et al., 1995 | Based on data from 353. to 393. K.; AC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 90. ± 4. | kJ/mol | AVG | N/A | Average of 13 values; Individual data points |
Reduced pressure boiling point
Tboil (K) | Pressure (bar) | Reference | Comment |
---|---|---|---|
406.2 | 0.013 | Weast and Grasselli, 1989 | BS |
406. | 0.013 | Buckingham and Donaghy, 1982 | BS |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
87.450 | 335. | N/A | Torres-Gomez, Barreiro-Rodriguez, et al., 1988 | DH |
63.3 ± 0.6 | 401. to 416. | N/A | Pena, Ribet, et al., 2003 | AC |
66.3 | 420. | A | Stephenson and Malanowski, 1987 | Based on data from 405. to 523. K.; AC |
67.8 | 368. to 428. | GS | Matsubara and Kuwamoto, 1985 | AC |
65.4 | 428. | I | Cramer, 1943 | AC |
67.7 | 416. | MM,A | Klosky, Woo, et al., 1927 | Based on data from 401. to 520. K.; AC |
Entropy of vaporization
ΔvapS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
261.0 | 335. | Torres-Gomez, Barreiro-Rodriguez, et al., 1988 | DH |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
369. to 522.4 | 4.47834 | 1771.357 | -127.484 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
89.230 | 298.15 | N/A | Torres-Gomez, Barreiro-Rodriguez, et al., 1988 | DH |
90.9 ± 2.0 | 340. to 410. | TG-TS | Selvakumar, Raghunathan, et al., 2009 | AC |
90.0 ± 0.5 | 307. | ME | Ribeiro da Silva, Monte, et al., 2006 | Based on data from 299. to 317. K.; AC |
93. ± 4. | 294. to 331. | ME | Ginkel, Kruif, et al., 2001 | AC |
90.5 ± 0.3 | 323. to 394. | GS | Zielenkiewicz, Perlovich, et al., 1999 | AC |
86.7 | 313. to 343. | TGA | Elder, 1997 | AC |
88.7 ± 0.9 | 311. | ME | Da Silva and Monte, 1990 | Based on data from 307. to 314. K.; AC |
87.5 ± 0.3 | 335. | C | Torres-Gomez, Barreiro-Rodriguez, et al., 1988 | AC |
90.8 ± 0.6 | 306. | QR | Glukhova, Arkhangelova, et al., 1985 | Based on data from 293. to 319. K.; AC |
95.1 ± 1.8 | 294. | N/A | Kaisersberger, Hädrich, et al., 1985 | AC |
87.8 | 368. to 428. | GS | Matsubara and Kuwamoto, 1985 | AC |
91. ± 2. | 293. to 313. | ME | Colomina, Jimenez, et al., 1982 | AC |
89.5 ± 0.05 | 353. | DM | de Kruif and Blok, 1982 | Based on data from 316. to 391. K.; AC |
89.1 ± 0.2 | 320. to 370. | C | Murata, Sakiyama, et al., 1982 | AC |
85. ± 2. | 369. | SG | Sachinidis and Hill, 1980 | Based on data from 344. to 395. K.; AC |
88.3 ± 2.9 | 281. to 323. | LE | Nowak, Szczepaniak, et al., 1978 | AC |
88.5 ± 1.6 | 293. to 318. | TE | DeKruif, van Ginkel, et al., 1975 | AC |
92.9 ± 0.2 | 296. | ME | Arshadi, 1974 | Based on data from 273. to 318. K.; AC |
88.1 ± 0.2 | 293. to 311. | TCM | de Kruif and Oonk, 1973 | AC |
89.0 ± 0.4 | 338. to 383. | ME | Malaspina, 1973 | AC |
89.3 ± 0.4 | 338. to 383. | C | Malaspina, 1973 | AC |
90. ± 0.3 | 293. to 308. | ME | Colomina, Monzon, et al., 1972 | AC |
86.6 ± 1.3 | 290. to 315. | ME,C | Wiedemann, 1972 | AC |
89.1 | 314. | N/A | Ashcroft, 1971 | Based on data from 299. to 329. K.; AC |
90.4 ± 0.8 | 367. | HSA | Melia and Merrifield, 1970 | Based on data from 324. to 392. K.; AC |
86.6 ± 1.7 | 303. | ME | Wiedemann and Waughna, 1970 | Based on data from 290. to 315. K. See also Zielenkiewicz, Perlovich, et al., 1999.; AC |
88.9 ± 0.5 | 363. | GS | Mertl, 1968 | Based on data from 348. to 378. K.; AC |
90.9 | 299. | ME | Davies and Kybett, 1965 | Based on data from 291. to 307. K.; AC |
84.2 ± 0.8 | 318. | TE | Wolf and Weghofer, 1938 | AC |
84.1 ± 0.8 | 318. | V | Wolf and Weghofer, 1938, 2 | ALS |
85.8 | 383. | T | Hirsbrunner, 1934 | Based on data from 333. to 389. K.; AC |
84.5 ± 0.5 | 364. | I | Klosky, Woo, et al., 1927 | Based on data from 377. to 394. K.; AC |
Entropy of sublimation
ΔsubS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
299.3 | 298.15 | Torres-Gomez, Barreiro-Rodriguez, et al., 1988 | DH |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
18.006 | 395.52 | N/A | Ginnings and Furukawa, 1953 | DH |
18.000 | 395.52 | N/A | Furukawa, McCoskey, et al., 1951 | DH |
16.99 | 396.9 | DSC | Brittain, 2009 | AC |
17.3 | 394.4 | DSC | Sharma, Kant, et al., 2003 | See also Sharma, Jamwal, et al., 2004.; AC |
17.1 | 395.4 | DSC | Roy, Riga, et al., 2002 | AC |
17.99 | 395.5 | N/A | Pitzer, Peiper, et al., 1984 | AC |
16.230 | 395. | N/A | Pacor, 1967 | DH |
17.320 | 395.0 | N/A | Andrews, Lynn, et al., 1926 | DH |
17.400 | 395. | N/A | David, 1964 | Temperature not measured.; DH |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
45.52 | 395.52 | Ginnings and Furukawa, 1953 | DH |
45.51 | 395.52 | Furukawa, McCoskey, et al., 1951 | DH |
41.1 | 395. | Pacor, 1967 | DH |
43.8 | 395.0 | Andrews, Lynn, et al., 1926 | DH |
44. | 395. | David, 1964 | Temperature; DH |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
18.062 | 395.527 | crystaline, I | liquid | Andon and Connett, 1980, 2 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
45.67 | 395.527 | crystaline, I | liquid | Andon and Connett, 1980, 2 | DH |
Gas phase ion energetics data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Proton affinity (review) | 821.1 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 790.1 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.3 | PE | Klasinc, Kovac, et al., 1983 | LBLHLM |
9.6 | PE | Meeks, Wahlborg, et al., 1981 | LLK |
9.8 ± 0.2 | EI | Benoit, 1973 | LLK |
9.75 | EI | Benoit, 1973, 2 | LLK |
9.73 ± 0.09 | EI | Foffani, Pignataro, et al., 1964 | RDSH |
9.47 | PE | Klasinc, Kovac, et al., 1983 | Vertical value; LBLHLM |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C6H5+ | 14.3 ± 0.07 | ? | EI | Tajima, Azami, et al., 1977 | LLK |
C6H5+ | 15.1 ± 0.2 | CO+OH | EI | Benoit, 1973 | LLK |
C6H5+ | 15.08 | CO+OH | EI | Benoit, 1973, 2 | LLK |
C7H5O+ | 11.5 ± 0.07 | OH | EI | Tajima, Azami, et al., 1977 | LLK |
C7H5O+ | 12.1 ± 0.2 | OH | EI | Benoit, 1973 | LLK |
C7H5O+ | 12.11 | OH | EI | Benoit, 1973, 2 | LLK |
De-protonation reactions
By formula: C7H5O2- + H+ = C7H6O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1423. ± 9.2 | kJ/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 1423. ± 12. | kJ/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; Recalculated from data in paper; error in Table vs. ladder; B |
ΔrH° | 1423. ± 9.2 | kJ/mol | G+TS | Caldwell, Renneboog, et al., 1989 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1393. ± 8.4 | kJ/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 1393. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; Recalculated from data in paper; error in Table vs. ladder; B |
ΔrG° | 1394. ± 8.4 | kJ/mol | IMRE | Caldwell, Renneboog, et al., 1989 | gas phase; B |
Mass spectrum (electron ionization)
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center, 1998. |
NIST MS number | 290514 |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Gundry, Harrop, et al., 1969
Gundry, H.A.; Harrop, D.; Head, A.J.; Lewis, G.B.,
Thermodynamic properties of organic oxygen compounds. 21. Enthalpies of combustion of benzoic acid, pentan-1-ol, octan-1-ol, and hexadecan-1-ol,
J. Chem. Thermodyn., 1969, 1, 321-332. [all data]
Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P.,
Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]
Corral, 1960
Corral, L.B.,
Investigaciones termoquimicas sobre los acidos toluicos y dimetilbenzoicos,
Rev. R. Acad. Cienc., 1960, 54, 365-403. [all data]
Landrieu, Baylocq, et al., 1929
Landrieu, P.; Baylocq, F.; Johnson, J.R.,
Etude thermochimique dans la serie furanique,
Bull. Soc. Chim. France, 1929, 45, 36-49. [all data]
Kaji, Tochigi, et al., 1993
Kaji, K.; Tochigi, K.; Misawa, Y.; Suzuki, T.,
An adiabatic calorimeter for samples of mass less than 0.1 g and heat capacity measurements on benzoic acid at temperatures from 19 K to 312 K,
J. Chem. Thermodynam., 1993, 25(6), 699-709. [all data]
Arvidsson, Falk, et al., 1976
Arvidsson, K.; Falk, B.; Sunner, S.,
A small sample low temperature adiabatic heat capacity calorimeter with an automatic data acquisition system,
Chem. Scr., 1976, 10, 193-200. [all data]
Furukawa, McCoskey, et al., 1951
Furukawa, G.T.; McCoskey, R.E.; King, G.J.,
Calorimetric properties of benzoic acid from 0 to 410K,
J. Res., 1951, NBS 47, 256-261. [all data]
Davies and Staveley, 1957
Davies, T.; Staveley, L.A.K.,
The behaviour of the ammonium ion in the ammonium salt of tetraphenylboron by comparison of the heat capacities of the ammonium, rubidium, and potassium salts,
Trans. Faraday Soc., 1957, 53, 19-30. [all data]
Parks, Huffman, et al., 1933
Parks, G.S.; Huffman, H.M.; Barmore, M.,
Thermal data on organic compounds. XI. The heat capacities,
entropies and free energies of ten compounds containing oxygen or nitrogen. J. Am. Chem. Soc., 1933, 55, 2733-2740. [all data]
Pacor, 1967
Pacor, P.,
Applicability of the DuPont 900 DTA apparatus in quantitative differential thermal analysis,
Anal. Chim. Acta, 1967, 37, 200-208. [all data]
Sorai, Kaji, et al., 1992
Sorai, M.; Kaji, K.; Kaneko, Y.,
An automated adiabatic calorimeter for the temperature range 13 K to 530 K The heat capacities for benzoic acid from 15 K to 305 K and of synthetic sapphire from 60 K to 505 K,
J. Chem. Thermodynam., 1992, 24(2), 167-180. [all data]
Moriya, Matsuo, et al., 1982
Moriya, K.; Matsuo, T.; Suga, H.,
Low temperature adiabatic calorimeter with a built-in cryo-refrigerator,
J. Chem. Thermodynam., 1982, 14, 1143-1148. [all data]
Shakirov and Lyubarskii, 1980
Shakirov, R.F.; Lyubarskii, M.V.,
Low-temperature heat capacity and thermodynamic functions of methyl trichlorothioacrylate,
SPSTL Deposited Publication 3 KhP-D80, 1980, 19p. [all data]
Tatsumi, Matsuo, et al., 1975
Tatsumi, M.; Matsuo, T.; Suga, H.; Seki, S.,
An adiabatic calorimeter for high-resolution heat capacity measurements in the temperature range from 12 to 300 K,
Bull. Chem. Soc. Japan, 1975, 48, 3060-3066. [all data]
Mosselman, Mourik, et al., 1974
Mosselman, C.; Mourik, J.; Dekker, H.,
Enthalpies of phase change and heat capacities of some long-chain alcohols. Adiabatic semi-microcalorimeter for studies of polymorphism,
J. Chem. Thermodynam., 1974, 6, 477-487. [all data]
Konicek, Suurkuusk, et al., 1971
Konicek, J.; Suurkuusk, J.; Wadso, I.,
A precise drop heat capacity calorimeter for small samples,
Chemica Scripta, 1971, 1, 217-220. [all data]
Justice, 1969
Justice, B.H.,
Low temperature thermodynamic properties of aluminum trichloride,
J. Chem. Eng. Data, 1969, 14, 4-5. [all data]
Suga and Seki, 1965
Suga, H.; Seki, S.,
An automatic adiabatic calorimeter for low temperatures. The heat capacity of standard benzoic acid,
Bull. Chem. Soc. Japan, 1965, 38, 1000-1006. [all data]
David, 1964
David, D.J.,
Determination of specific heat and heat of fusion by differential thermal analysis. Study of theory and operating parameters,
Anal. Chem., 1964, 36, 2162-2166. [all data]
Kolesov, Seregin, et al., 1962
Kolesov, V.P.; Seregin, E.A.; Skuratov, S.M.,
Adiabatic calorimeter of small volume for the determination of true heat capacity over the range 12-340K,
Zhur. Fiz. Khim., 1962, 36, 647-651. [all data]
Popov and Kolesov, 1956
Popov, M.M.; Kolesov, V.P.,
Determination of the true specific heat of solid substances at low temperatures,
Zhur. Obshch. Khim., 1956, 26, 2385-2393. [all data]
Ginnings and Furukawa, 1953
Ginnings, D.C.; Furukawa, G.T.,
Heat capacity standards for the range 14 to 1200°K,
J. Am. Chem. Soc., 1953, 75, 522-527. [all data]
Satoh and Sogabe, 1939
Satoh, S.; Sogabe, T.,
The specific heats of some solid aromatic acids and their ammonium salts and the atomic heat of nitrogen,
Sci. Pap. Inst. Phys. Chem. Res. (Tokyo), 1939, 36, 449-457. [all data]
Andrews, Lynn, et al., 1926
Andrews, D.H.; Lynn, G.; Johnston, J.,
The heat capacities and heat of crystallization of some isomeric aromatic compounds,
J. Am. Chem. Soc., 1926, 48, 1274-1287. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Buckingham and Donaghy, 1982
Buckingham, J.; Donaghy, S.M.,
Dictionary of Organic Compounds: Fifth Edition, Chapman and Hall, New York, 1982, 1. [all data]
Burriel, 1931
Burriel, F.,
Physico-Chemical Study of Some Solid Organic Compounds at Ordinary Temperatures, and Their COrrelationo with Temperature,
An. R. Soc. Esp. Fis. Quim., 1931, 29, 89. [all data]
Marsh, 1987
Marsh, K.N.,
Recommended Reference Materials for the Realization of Physicochemical Properties, Blackwell Sci. Pub., Oxford, 1987. [all data]
Andon and Connett, 1980
Andon, R.J.L.; Connett, J.E.,
Calibrants for thermal analysis. measurement of their enthalpies of fusion by adiabatic calorimetry.,
Thermochim. Acta, 1980, 42, 241. [all data]
Ginnings and Furukawa, 1953, 2
Ginnings, D.C.; Furukawa, G.T.,
Heat Capacity Standards for the Range 14 to 1200 K,
J. Am. Chem. Soc., 1953, 75, 522-7. [all data]
Furukawa, McCoskey, et al., 1951, 2
Furukawa, G.T.; McCoskey, R.E.; King, G.J.,
Calorimetric properties of benzoic acid from 0 to 410 K,
J. Res. Natl. Bur. Stand. (U. S.), 1951, 47, 256. [all data]
Chickos, Hosseini, et al., 1995
Chickos, James S.; Hosseini, Sarah; Hesse, Donald G.,
Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times,
Thermochimica Acta, 1995, 249, 41-62, https://doi.org/10.1016/0040-6031(95)90670-3
. [all data]
Torres-Gomez, Barreiro-Rodriguez, et al., 1988
Torres-Gomez, L.A.; Barreiro-Rodriguez, G.; Galarza-Mondragon, A.,
A new method for the measurement of enthalpies of sublimation using differential scanning calorimetry,
Thermochim. Acta, 1988, 124, 229-233. [all data]
Pena, Ribet, et al., 2003
Pena, R.; Ribet, J.P.; Maurel, J.L.; Valat, L.; Lacoulonche, F.; Chauvet, A.,
Sublimation and vaporisation processes of S(-) efaroxan hydrochloride,
Thermochimica Acta, 2003, 408, 1-2, 85-96, https://doi.org/10.1016/S0040-6031(03)00321-6
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Matsubara and Kuwamoto, 1985
Matsubara, Norio; Kuwamoto, Tooru,
Vapor pressure measurements in carrier gas containing ligand vapor using the transpiration technique,
Thermochimica Acta, 1985, 83, 2, 193-202, https://doi.org/10.1016/0040-6031(85)87003-9
. [all data]
Cramer, 1943
Cramer, K.S.N.,
Chem. Zentr. II, 1943, 2234. [all data]
Klosky, Woo, et al., 1927
Klosky, Simon; Woo, Leo P.L.; Flanigan, Robert J.,
THE VAPOR-PRESSURE CURVE OF BENZOIC ACID,
J. Am. Chem. Soc., 1927, 49, 5, 1280-1284, https://doi.org/10.1021/ja01404a017
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Selvakumar, Raghunathan, et al., 2009
Selvakumar, Jayapragasam; Raghunathan, Vinjamoor Seshadri; Nagaraja, Karachalacheruvu Seetharamaiah,
Vapor Pressure Measurements of Sc(tmhd) 3 and Synthesis of Stabilized Zirconia Thin Films by Hybrid CVD Technique Using Sc(tmhd) 3 , Zr(tmhd) 4 , and Al(acac) 3 [tmhd, 2,2,6,6-tetramethyl-3,5-heptanedione; acac, 2,4-pentanedione] as Precursors,
J. Phys. Chem. C, 2009, 113, 44, 19011-19020, https://doi.org/10.1021/jp906204c
. [all data]
Ribeiro da Silva, Monte, et al., 2006
Ribeiro da Silva, Manuel A.V.; Monte, Manuel J.S.; Santos, Luís M.N.B.F.,
The design, construction, and testing of a new Knudsen effusion apparatus,
The Journal of Chemical Thermodynamics, 2006, 38, 6, 778-787, https://doi.org/10.1016/j.jct.2005.08.013
. [all data]
Ginkel, Kruif, et al., 2001
Ginkel, C.H.D. van; Kruif, C.G. de; Waal, F.E.B. de,
The need for temperature control in effusion experiments (and application to heat of sublimation determination),
J. Phys. E: Sci. Instrum., 2001, 8, 6, 490-492, https://doi.org/10.1088/0022-3735/8/6/018
. [all data]
Zielenkiewicz, Perlovich, et al., 1999
Zielenkiewicz, X.; Perlovich, G.L.; Wszelaka-Rylik, M.,
Journal of Thermal Analysis and Calorimetry, 1999, 57, 1, 225-234, https://doi.org/10.1023/A:1010179814511
. [all data]
Elder, 1997
Elder, J.P.,
Sublimation measurements of pharmaceutical compounds by isothermal thermogravivletry,
Journal of Thermal Analysis, 1997, 49, 2, 897-905, https://doi.org/10.1007/BF01996775
. [all data]
Da Silva and Monte, 1990
Da Silva, Manuel A.V. Ribeiro; Monte, Manuel J.S.,
The construction, testing and use of a new knudsen effusion apparatus,
Thermochimica Acta, 1990, 171, 169-183, https://doi.org/10.1016/0040-6031(90)87017-7
. [all data]
Glukhova, Arkhangelova, et al., 1985
Glukhova, O.T.; Arkhangelova, N.M.; Teplitsky, A.B.; Sukhodub, L.F.; Yanson, I.K.; Kaminski, Miron,
The low-temperature quartz resonator method for determination of the enthalpy of sublimation,
Thermochimica Acta, 1985, 95, 1, 133-138, https://doi.org/10.1016/0040-6031(85)80041-1
. [all data]
Kaisersberger, Hädrich, et al., 1985
Kaisersberger, E.; Hädrich, W.; Emmerich, W.-D.,
Measurement of low vapour pressures according to the Knudsen effusion method,
Thermochimica Acta, 1985, 95, 2, 331-336, https://doi.org/10.1016/0040-6031(85)85294-1
. [all data]
Colomina, Jimenez, et al., 1982
Colomina, M.; Jimenez, P.; Turrion, C.,
Vapour pressures and enthalpies of sublimation of naphthalene and benzoic acid,
J. Chem. Thermodyn., 1982, 14, 779-784. [all data]
de Kruif and Blok, 1982
de Kruif, C.G.; Blok, J.G.,
The vapour pressure of benzoic acid,
The Journal of Chemical Thermodynamics, 1982, 14, 3, 201-206, https://doi.org/10.1016/0021-9614(82)90011-8
. [all data]
Murata, Sakiyama, et al., 1982
Murata, S.; Sakiyama, M.; Seki, S.,
Construction and testing of a sublimation calorimetric system using a Calvet microcalorimeter,
The Journal of Chemical Thermodynamics, 1982, 14, 8, 707-721, https://doi.org/10.1016/0021-9614(82)90167-7
. [all data]
Sachinidis and Hill, 1980
Sachinidis, J.; Hill, J.O.,
A re-evaluation of the enthalpy of sublimation of some metal acetylacetonate complexes,
Thermochimica Acta, 1980, 35, 1, 59-66, https://doi.org/10.1016/0040-6031(80)85021-0
. [all data]
Nowak, Szczepaniak, et al., 1978
Nowak, M.J.; Szczepaniak, K.; Barski, A.; Shugar, D.Z.,
Z. Naturforsch. C, 1978, 33C, 876. [all data]
DeKruif, van Ginkel, et al., 1975
DeKruif, C.G.; van Ginkel, C.H.D.; Voogd, J.,
Torsion-effusion vapour pressure measurements of organic compounds,
Conf. Int. Thermodyn. Chim. C. R. 4th, 1975, 8, 11-18. [all data]
Arshadi, 1974
Arshadi, Mohammed R.,
Determination of heats of sublimation of organic compounds by a mass spectrometric--knudsen effusion method,
J. Chem. Soc., Faraday Trans. 1, 1974, 70, 0, 1569, https://doi.org/10.1039/f19747001569
. [all data]
de Kruif and Oonk, 1973
de Kruif, C.G.; Oonk, H.A.J.,
The determination of enthalpies of sublimation by means of thermal conductivity manometers,
Chemie Ing. Techn., 1973, 45, 7, 455-461, https://doi.org/10.1002/cite.330450705
. [all data]
Malaspina, 1973
Malaspina, L.,
Microcalorimetric determination of the enthalpy of sublimation of benzoic acid and anthracene,
J. Chem. Phys., 1973, 59, 1, 387, https://doi.org/10.1063/1.1679817
. [all data]
Colomina, Monzon, et al., 1972
Colomina, M.; Monzon, C.; Turrion, C.; Laynez, J.,
, Fifth Experimental Thermodynamics Conference, Lancaster, 1972. [all data]
Wiedemann, 1972
Wiedemann, H.G.,
Applications of thermogravimetry for vapor pressure determination,
Thermochim. Acta, 1972, 355-366. [all data]
Ashcroft, 1971
Ashcroft, S.J.,
The measurement of enthalpies of sublimation by thermogravimetry,
Thermochimica Acta, 1971, 2, 6, 512-514, https://doi.org/10.1016/0040-6031(71)80021-7
. [all data]
Melia and Merrifield, 1970
Melia, T.P.; Merrifield, R.,
Vapour pressures of the tris(acetylacetonato) complexes of scandium(III), vanadium(III) and chromium(III),
Journal of Inorganic and Nuclear Chemistry, 1970, 32, 5, 1489-1493, https://doi.org/10.1016/0022-1902(70)80636-4
. [all data]
Wiedemann and Waughna, 1970
Wiedemann, A.G.; Waughna, H.P.,
, Proceedings of the Third Toronto Symposium on Thermal Analysis, Toronto, 1970, 233. [all data]
Mertl, 1968
Mertl, I.,
Chem. Listy, 1968, 62, 5, 584. [all data]
Davies and Kybett, 1965
Davies, M.; Kybett, B.,
Sublimation and vaporization heats of long-chain alcohols,
Trans. Faraday Soc., 1965, 61, 1608. [all data]
Wolf and Weghofer, 1938
Wolf, K.L.; Weghofer, H.Z.,
Z. Phys. Chem. Abt. B, 1938, 39, 194. [all data]
Wolf and Weghofer, 1938, 2
Wolf, K.L.; Weghofer, H.,
Uber sublimationswarmen,
Z. Phys. Chem., 1938, 39, 194-208. [all data]
Hirsbrunner, 1934
Hirsbrunner, H.,
Uber das gleichgewicht der thermischen dissoziation der salicylsaure,
Helv. Chim. Acta, 1934, 17, 477-504. [all data]
Brittain, 2009
Brittain, Harry G.,
Vibrational Spectroscopic Studies of Cocrystals and Salts. 2. The Benzylamine-Benzoic Acid System,
Crystal Growth & Design, 2009, 9, 8, 3497-3503, https://doi.org/10.1021/cg9001972
. [all data]
Sharma, Kant, et al., 2003
Sharma, B.L.; Kant, Rajesh; Sharma, Ritu; Tandon, Sonika,
Deviations of binary organic eutectic melt systems,
Materials Chemistry and Physics, 2003, 82, 1, 216-224, https://doi.org/10.1016/S0254-0584(03)00199-8
. [all data]
Sharma, Jamwal, et al., 2004
Sharma, B.L.; Jamwal, R.; Kant, R.,
Thermodynamic and lamella models relationship for the eutectic system benzoic acid-- cinnamic acid,
Cryst. Res. Technol., 2004, 39, 5, 454-464, https://doi.org/10.1002/crat.200310210
. [all data]
Roy, Riga, et al., 2002
Roy, S.; Riga, A.T.; Alexander, K.S.,
Experimental design aids the development of a differential scanning calorimetry standard test procedure for pharmaceuticals,
Thermochimica Acta, 2002, 392-393, 399-404, https://doi.org/10.1016/S0040-6031(02)00317-9
. [all data]
Pitzer, Peiper, et al., 1984
Pitzer, Kenneth S.; Peiper, J. Christopher; Busey, R.H.,
Thermodynamic Properties of Aqueous Sodium Chloride Solutions,
J. Phys. Chem. Ref. Data, 1984, 13, 1, 1, https://doi.org/10.1063/1.555709
. [all data]
Andon and Connett, 1980, 2
Andon, R.J.L.; Connett, J.E.,
Calibrants for thermal analysis. Measurement of their enthalpies of fusion by adiabatic calorimetry,
Thermochim. Acta, 1980, 42, 241-247. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H.,
Photoelectron spectra of acenes. Electronic structure and substituent effects,
Pure Appl. Chem., 1983, 55, 289. [all data]
Meeks, Wahlborg, et al., 1981
Meeks, J.; Wahlborg, A.; McGlynn, S.P.,
Photoelectron spectroscopy of carbonyls: Benzoic acid and its derivatives,
J. Electron Spectrosc. Relat. Phenom., 1981, 22, 43. [all data]
Benoit, 1973
Benoit, F.,
Substituent effects in mass spectrometry. III. Substituent effects in the dissociation of the molecular ions of para and meta subtituted benzoic acids,
Org. Mass Spectrom., 1973, 7, 295. [all data]
Benoit, 1973, 2
Benoit, F.,
The benzoyl cation: The participation of isolated electronic excited states in the dissociation of molecular ions of the form [C6H5COX]+,
Org. Mass Spectrom., 1973, 7, 1407. [all data]
Foffani, Pignataro, et al., 1964
Foffani, A.; Pignataro, S.; Cantone, B.; Grasso, F.,
Ionization potentials and substituent effects for aromatic carbonyl compounds,
Z. Physik. Chem. (Frankfurt), 1964, 42, 221. [all data]
Tajima, Azami, et al., 1977
Tajima, S.; Azami, T.; Tsuchiya, T.,
An investigation of the decomposition of the common intermediate ions produced by electron impact,
Org. Mass Spectrom., 1977, 12, 24. [all data]
Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W.,
Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities,
J. Am. Chem. Soc., 1981, 103, 4017. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Caldwell, Renneboog, et al., 1989
Caldwell, G.; Renneboog, R.; Kebarle, P.,
Gas Phase Acidities of Aliphatic Carboxylic Acids, Based on Measurements of Proton Transfer Equilibria,
Can. J. Chem., 1989, 67, 4, 661, https://doi.org/10.1139/v89-092
. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References
- Symbols used in this document:
AE Appearance energy Cp,liquid Constant pressure heat capacity of liquid Cp,solid Constant pressure heat capacity of solid S°solid,1 bar Entropy of solid at standard conditions (1 bar) Tboil Boiling point Tfus Fusion (melting) point Ttriple Triple point temperature ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔsubS Entropy of sublimation ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ΔvapS Entropy of vaporization - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.