Neopentane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-190.3 ± 0.63kJ/molCcbGood, 1970ALS
Δfliquid-188.2 ± 1.0kJ/molCcbProsen and Rossini, 1945ALS
Quantity Value Units Method Reference Comment
Δcliquid-3492.4 ± 0.59kJ/molCcbGood, 1970Reanalyzed by Pedley, Naylor, et al., 1986, Original value = -3492.2 ± 0.50 kJ/mol; Corresponding Δfliquid = -190.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-3494.4 ± 1.0kJ/molCcbProsen and Rossini, 1945Corresponding Δfliquid = -188.2 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid216.81J/mol*KN/AEnokida, Shinoda, et al., 1969At normal boiling point.; DH
liquid218.8J/mol*KN/AAston and Messerly, 1936DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
153.09259.93Enokida, Shinoda, et al., 1969T = 4 to 260 K. Value is unsmoothed experimental datum.; DH
163.89278.92Aston and Messerly, 1936T = 13 to 283 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil282.6 ± 0.5KAVGN/AAverage of 17 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus255. ± 3.KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple256.76KN/AEnokido, Shinoda, et al., 1969Crystal phase 1 phase; Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple256.77KN/AStreiff, 1964Crystal phase 1 phase; Uncertainty assigned by TRC = 0.03 K; TRC
Ttriple256.53KN/AAston and Messerly, 1936, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Tc433.8 ± 0.1KN/ADaubert, 1996 
Tc433.8KN/AMajer and Svoboda, 1985 
Tc433.8KN/ADawson, Silberberg, et al., 1973Uncertainty assigned by TRC = 0.2 K; TRC
Tc433.75KN/APartington, Rowlinson, et al., 1960Uncertainty assigned by TRC = 0.1 K; Visual, THg; TRC
Tc433.75KN/ABeattie, Douslin, et al., 1951Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Pc32.0 ± 0.1barN/ADaubert, 1996 
Pc31.963barN/ADawson, Silberberg, et al., 1973Uncertainty assigned by TRC = 0.1013 bar; TRC
Pc31.99barN/ABeattie, Douslin, et al., 1951Uncertainty assigned by TRC = 0.2027 bar; TRC
Quantity Value Units Method Reference Comment
Vc0.307l/molN/ADaubert, 1996 
Vc0.304l/molN/ABeattie, Douslin, et al., 1951Uncertainty assigned by TRC = 0.004 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc3.26 ± 0.01mol/lN/ADaubert, 1996 
ρc3.214mol/lN/ADawson, Silberberg, et al., 1973Uncertainty assigned by TRC = 0.03 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap22.39kJ/molN/AMajer and Svoboda, 1985 
Δvap21.8kJ/molCHossenlopp and Scott, 1981AC
Δvap21.85kJ/molN/AReid, 1972AC
Δvap22.4 ± 0.59kJ/molVGood, 1970ALS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
22.74282.7N/AMajer and Svoboda, 1985 
22.753282.61N/AAston and Messerly, 1936P = 101.325 kPa; DH
24.3272.N/AHöpfner, Parekh, et al., 2010Based on data from 257. to 293. K. See also Boublik, Fried, et al., 1984.; AC
24.0283.AStephenson and Malanowski, 1987Based on data from 268. to 313. K.; AC
23.1327.AStephenson and Malanowski, 1987Based on data from 312. to 385. K.; AC
23.1397.AStephenson and Malanowski, 1987Based on data from 382. to 433. K.; AC
22.2290.N/ADas, Reed, et al., 1977AC
19.5330.N/ADas, Reed, et al., 1977AC
16.2370.N/ADas, Reed, et al., 1977AC
11.1410.N/ADas, Reed, et al., 1977AC
22.8358.N/ADawson, Silberberg, et al., 1973Based on data from 343. to 433. K. See also Boublik, Fried, et al., 1984.; AC
22.8 ± 0.1283.N/AAston and Messerly, 1936AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
264. to 303.36.760.2813433.8Majer and Svoboda, 1985 

Entropy of vaporization

ΔvapS (J/mol*K) Temperature (K) Reference Comment
80.50282.61Aston and Messerly, 1936P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
205.7 to 293.163.28533695.152-70.679Hopfner, Parekh, et al., 1975Coefficents calculated by NIST from author's data.
268.02 to 313.203.86373950.318-36.329Osborn and Douslin, 1974Coefficents calculated by NIST from author's data.
343. to 433.4.616161478.86841.256Dawson, Silberberg, et al., 1973Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
28.2241.N/AStephenson and Malanowski, 1987Based on data from 223. to 256. K.; AC
23.9210.AStull, 1947Based on data from 171. to 249. K.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
3.26256.5Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
18.41140.Domalski and Hearing, 1996CAL
12.69256.5

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
2.630140.5crystaline, IIcrystaline, IChang and Westrum, 1970DH
3.096256.76crystaline, IliquidChang and Westrum, 1970DH
2.6305140. to 142.crystaline, IIcrystaline, IEnokida, Shinoda, et al., 1969DH
3.0962256.76crystaline, IliquidEnokida, Shinoda, et al., 1969DH
2.577140.0crystaline, IIcrystaline, IAston and Messerly, 1936DH
3.255256.53crystaline, IliquidAston and Messerly, 1936DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
18.70140.5crystaline, IIcrystaline, IChang and Westrum, 1970DH
12.05256.76crystaline, IliquidChang and Westrum, 1970DH
18.70140. to 142.crystaline, II, Secondcrystaline, I, order transition, 140 to 142 KEnokida, Shinoda, et al., 1969DH
12.06256.76crystaline, IliquidEnokida, Shinoda, et al., 1969DH
18.41140.0crystaline, IIcrystaline, IAston and Messerly, 1936DH
12.68256.53crystaline, IliquidAston and Messerly, 1936DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Gas phase ion energetics data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)≤10.30 ± 0.08eVN/AN/AL

Ionization energy determinations

IE (eV) Method Reference Comment
10.21 ± 0.04PEJonas, Schweitzer, et al., 1973LLK
10.3 ± 0.1PEEvans, Green, et al., 1972LLK
10.40PEDewar and Worley, 1969RDSH
10.35PIWatanabe, Nakayama, et al., 1962RDSH
10.90PEKimura, Katsumata, et al., 1981Vertical value; LLK
10.9 ± 0.1PEBieri, Burger, et al., 1977Vertical value; LLK
11.3PESchmidt and Wilkins, 1972Vertical value; LLK
11.3PEMurrell and Schmidt, 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH3+29.5 ± 0.2?EIOlmsted, Street, et al., 1964RDSH
CH3+13.14?EILampe and Field, 1959RDSH
C2H3+17.95?EILampe and Field, 1959RDSH
C2H5+13.81?EILampe and Field, 1959RDSH
C3H3+17.08?EILampe and Field, 1959RDSH
C3H5+13.13?EILampe and Field, 1959RDSH
C4H8+10.39 ± 0.02CH4PISteiner, Giese, et al., 1961RDSH
C4H9+10.35CH3PIChesnavich, Su, et al., 1978LLK
C4H9+10.56CH3EILossing and Semeluk, 1970RDSH
C4H9+10.57 ± 0.02CH3PISteiner, Giese, et al., 1961RDSH

De-protonation reactions

C5H11- + Hydrogen cation = Neopentane

By formula: C5H11- + H+ = C5H12

Quantity Value Units Method Reference Comment
Δr1711. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase; B
Δr1720. ± 42.kJ/molCIDTGraul and Squires, 1990gas phase; B
Quantity Value Units Method Reference Comment
Δr1674. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase; B

Mass spectrum (electron ionization)

Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 280

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Good, 1970
Good, W.D., The enthalpies of combustion and formation of the isomeric pentanes, J. Chem. Thermodyn., 1970, 2, 237-244. [all data]

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P., Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]

Enokida, Shinoda, et al., 1969
Enokida, H.; Shinoda, T.; Mashiko, Y., Thermodynamic properties of neopentane from 4K to the melting point and comparison with spectroscopic data, Bull. Chem. Soc. Japan, 1969, 42, 84-91. [all data]

Aston and Messerly, 1936
Aston, J.G.; Messerly, G.H., Heat capacities and entropies of organic compounds. II. Thermal and vapor pressure data for tetramethylmethane from 13.22°K to the boiling point. The entropy from its Raman spectrum, J. Am. Chem. Soc., 1936, 58, 2354-2361. [all data]

Enokido, Shinoda, et al., 1969
Enokido, H.; Shinoda, T.; Mashiko, Y.-I., Thermodynamic Properties of Neopentane from 4 K to the Melting Point and Comparison with Spectroscopic Data, Bull. Chem. Soc. Jpn., 1969, 42, 84. [all data]

Streiff, 1964
Streiff, A.J., , Am. Pet. Inst. Res. Proj. 58B Unpublished, 1964. [all data]

Aston and Messerly, 1936, 2
Aston, J.G.; Messerly, G.H., Heat Capacities and Entropies of Organic Compounds II. Thermal and Vapor Pressure Data for Tetramethylmethane from 13.22K to the Boiling Point. The Entropy from its Raman Spectrum, J. Am. Chem. Soc., 1936, 58, 2354. [all data]

Daubert, 1996
Daubert, T.E., Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes, J. Chem. Eng. Data, 1996, 41, 365-372. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Dawson, Silberberg, et al., 1973
Dawson, Perry P.; Silberberg, I. Harold; McKetta, John J., Volumetric behavior, vapor pressures, and critical properties of neopentane, J. Chem. Eng. Data, 1973, 18, 1, 7-15, https://doi.org/10.1021/je60056a007 . [all data]

Partington, Rowlinson, et al., 1960
Partington, E.J.; Rowlinson, J.S.; Weston, J.F., The Gas-Liquid Critical Temperatures of Binary Mixtures. Part 1., Trans. Faraday Soc., 1960, 56, 479. [all data]

Beattie, Douslin, et al., 1951
Beattie, J.A.; Douslin, D.R.; Levine, S.W., The vapor pressure and critical constants of neopentane., J. Chem. Phys., 1951, 19, 948. [all data]

Hossenlopp and Scott, 1981
Hossenlopp, I.A.; Scott, D.W., Vapor heat capacities and enthalpies of vaporization of five alkane hydrocarbons, J. Chem. Thermodyn., 1981, 13, 415-421. [all data]

Reid, 1972
Reid, Robert C., Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00, AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637 . [all data]

Höpfner, Parekh, et al., 2010
Höpfner, A.; Parekh, N.; Hörner, Ch.; Abdel-Hamid, A., Der Dampfdruck-Isotopie-Effekt von deuterierten Neopentanen, Berichte der Bunsengesellschaft für physikalische Chemie, 2010, 79, 2, 216-222, https://doi.org/10.1002/bbpc.19750790217 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Das, Reed, et al., 1977
Das, Tarun R.; Reed, Charles O.; Eubank, Philip T., PVT surface and thermodynamic properties of isopentane, J. Chem. Eng. Data, 1977, 22, 1, 9-15, https://doi.org/10.1021/je60072a015 . [all data]

Hopfner, Parekh, et al., 1975
Hopfner, A.; Parekh, N.; Horner, Ch.; Abdel-Hamid, A., Der Dampfdruck-Isotopie-Effekt von deuterierten Neopentanen, Ber. Bunsen-Ges. Phys. Chem., 1975, 79, 2, 216-222, https://doi.org/10.1002/bbpc.19750790217 . [all data]

Osborn and Douslin, 1974
Osborn, Ann G.; Douslin, Donald R., Vapor-pressure relations for 15 hydrocarbons, J. Chem. Eng. Data, 1974, 19, 2, 114-117, https://doi.org/10.1021/je60061a022 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Chang and Westrum, 1970
Chang, E.T.; Westrum, E.F., Heat capacities and thermodynamic properties of globular molecules. XV. The binary system tetramethylmethane-tetrachloromethane, J. Phys. Chem., 1970, 74, 2528-2538. [all data]

Jonas, Schweitzer, et al., 1973
Jonas, A.E.; Schweitzer, G.K.; Grimm, F.A.; Carlson, T.A., The photoelectron spectra of the tetrafluoro and tetramethyl compounds of the group IV elements, J. Electron Spectrosc. Relat. Phenom., 1973, 1, 29. [all data]

Evans, Green, et al., 1972
Evans, S.; Green, J.C.; Joachim, P.J.; Orchard, A.F.; Turner, D.W.; Maier, J.P., Electronic structures of the Group IVB tetramethyls by helium-(I) photoelectron spectroscopy, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 905. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Schmidt and Wilkins, 1972
Schmidt, W.; Wilkins, B.T., Das "Equivalent Orbital" (EO)-verfahren zur interpretation von photoelektronen(PE)-spektren: Neopentan, Angew. Chem., 1972, 84, 168. [all data]

Murrell and Schmidt, 1972
Murrell, J.N.; Schmidt, W., Photoelectron spectroscopic correlation of the molecular orbitals of methane, ethane, propane, isobutane and neopentane, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1709. [all data]

Olmsted, Street, et al., 1964
Olmsted, J., III; Street, K., Jr.; Newton, A.S., Excess-kinetic-energy ions in organic mass spectra, J. Chem. Phys., 1964, 40, 2114. [all data]

Lampe and Field, 1959
Lampe, F.W.; Field, F.H., The decomposition of neopentane under electron impact, J. Am. Chem. Soc., 1959, 81, 3238. [all data]

Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G., Photoionization of alkanes. Dissociation of excited molecular ions, J. Chem. Phys., 1961, 34, 189. [all data]

Chesnavich, Su, et al., 1978
Chesnavich, W.J.; Su, T.; Bowers, M.T., Reactions of vibrationally excited ions. A theoretical and experimental analysis of the reaction (C4H9+) + NH3 Ü NH4+ + C4H8, J. Am. Chem. Soc., 1978, 100, 4362. [all data]

Lossing and Semeluk, 1970
Lossing, F.P.; Semeluk, G.P., Free radicals by mass spectrometry. XLII.Ionization potentials and ionic heats of formation for C1-C4 alkyl radicals, Can. J. Chem., 1970, 48, 955. [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References