Ethanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Phase change data

Go To: Top, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil351.5 ± 0.2KAVGN/AAverage of 138 out of 148 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus159. ± 2.KAVGN/AAverage of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple150. ± 20.KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Tc514. ± 7.KAVGN/AAverage of 37 out of 38 values; Individual data points
Quantity Value Units Method Reference Comment
Pc63. ± 4.barAVGN/AAverage of 18 out of 19 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.168l/molN/AGude and Teja, 1995 
Quantity Value Units Method Reference Comment
ρc6.0 ± 0.2mol/lAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap42.3 ± 0.4kJ/molAVGN/AAverage of 12 out of 13 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
38.56351.5N/AMajer and Svoboda, 1985 
41.7326.N/AMejia, Segura, et al., 2010Based on data from 311. to 351. K.; AC
39.3338.N/AAucejo, Loras, et al., 1999Based on data from 323. to 357. K.; AC
40.7321.EBDiogo, Santos, et al., 1995Based on data from 309. to 343. K.; AC
40.5357.N/AOrtega, Susial, et al., 1990Based on data from 342. to 357. K.; AC
35.2393.CVine and Wormald, 1989AC
30.6423.CVine and Wormald, 1989AC
25.7453.CVine and Wormald, 1989AC
21.8473.CVine and Wormald, 1989AC
17.3493.CVine and Wormald, 1989AC
14.2503.CVine and Wormald, 1989AC
40.9320.CDong, Lin, et al., 1988AC
40.4328.CDong, Lin, et al., 1988AC
40.2335.CDong, Lin, et al., 1988AC
39.4344.CDong, Lin, et al., 1988AC
38.8351.CDong, Lin, et al., 1988AC
41.3335.AStephenson and Malanowski, 1987Based on data from 320. to 359. K.; AC
45.6256.AStephenson and Malanowski, 1987Based on data from 210. to 271. K.; AC
44.208.AStephenson and Malanowski, 1987Based on data from 193. to 223. K.; AC
41.3335.AStephenson and Malanowski, 1987Based on data from 320. to 359. K.; AC
40.1361.AStephenson and Malanowski, 1987Based on data from 349. to 374. K.; AC
39.1385.AStephenson and Malanowski, 1987Based on data from 370. to 464. K.; AC
36.1474.AStephenson and Malanowski, 1987Based on data from 459. to 514. K.; AC
42.5307.AStephenson and Malanowski, 1987Based on data from 292. to 353. K.; AC
42.5308.A,EBStephenson and Malanowski, 1987Based on data from 293. to 366. K. See also Ambrose, Counsell, et al., 1970.; AC
42.9286.N/AWilhoit and Zwolinski, 1973Based on data from 271. to 373. K.; AC
41.0 ± 0.1320.CCounsell, Fenwick, et al., 1970AC
40.0 ± 0.1335.CCounsell, Fenwick, et al., 1970AC
38.7 ± 0.1351.CCounsell, Fenwick, et al., 1970AC
42.4303.N/AVan Ness, Soczek, et al., 1967Based on data from 288. to 348. K.; AC
42.2313.N/AKretschmer and Wiebe, 1949Based on data from 298. to 351. K.; AC
40.0351.N/AOguri, Anjo, et al., 1934AC
54.1301.N/AKahlbaum, 1883Based on data from 286. to 351. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 469.
A (kJ/mol) 50.43
α -0.4475
β 0.4989
Tc (K) 513.9
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
364.8 to 513.914.925311432.526-61.819Ambrose, Sprake, et al., 1975Coefficents calculated by NIST from author's data.
292.77 to 366.635.246771598.673-46.424Ambrose and Sprake, 1970Coefficents calculated by NIST from author's data.
273. to 351.705.372291670.409-40.191Kretschmer and Wiebe, 1949Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
4.973159.Yoshida, 1944DH
5.021158.5Kelley, 1929DH
4.626156.2Gibson, Parks, et al., 1920DH
4.64158.8Domalski and Hearing, 1996AC
4.962158.7Parks, 1925DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
31.3159.Yoshida, 1944DH
31.68158.5Kelley, 1929DH
21.22158.7Parks, 1925DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
28.16111.4Domalski and Hearing, 1996CAL
29.25158.8
5.2127.5
31.0159.

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.659127.5crystaline, IIliquidHaida, Suga, et al., 1977DH
4.931159.00crystaline, IliquidHaida, Suga, et al., 1977DH
3.138111.4crystaline, IIcrystaline, INikolaev, Rabinovich, et al., 1967DH
4.644158.8crystaline, IliquidNikolaev, Rabinovich, et al., 1967DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
5.19127.5crystaline, IIliquidHaida, Suga, et al., 1977DH
31.01159.00crystaline, IliquidHaida, Suga, et al., 1977DH
28.17111.4crystaline, IIcrystaline, INikolaev, Rabinovich, et al., 1967DH
29.24158.8crystaline, IliquidNikolaev, Rabinovich, et al., 1967DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Gas phase ion energetics data

Go To: Top, Phase change data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C2H6O+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.48 ± 0.07eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)776.4kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity746.kJ/molN/AHunter and Lias, 1998HL

Proton affinity at 298K

Proton affinity (kJ/mol) Reference Comment
779.4 ± 0.8Tabrizchi and Shooshtari, 2003T = 403-453K; Authors report only relative PAs. Absolute values are referenced here to PA(CH3COOC2H5) = 835.7 kJ/mol as listed in Hunter and Lias, 1998, although average PA(CH3COOC2H5) from the literature sources in Hunter and Lias, 1998 is 831.0 kJ/mol; MM

Ionization energy determinations

IE (eV) Method Reference Comment
10.41 ± 0.05EIHolmes and Lossing, 1991LL
10.4PEOhno, Imai, et al., 1985LBLHLM
10.47 ± 0.07EIBowen and Maccoll, 1984LBLHLM
10.3PEOhno, Imai, et al., 1983LBLHLM
10.5EIMishchanchuk, Pokrovskii, et al., 1982LBLHLM
10.7PEVon Niessen, Bieri, et al., 1980LLK
10.49 ± 0.01PIPotapov and Sorokin, 1972LLK
10.46 ± 0.02PECocksey, Eland, et al., 1971LLK
10.65PEBaker, Betteridge, et al., 1971LLK
10.46PEDewar and Worley, 1969RDSH
10.47 ± 0.02PIRefaey and Chupka, 1968RDSH
10.48 ± 0.05PIWatanabe, Nakayama, et al., 1962RDSH
10.64PEOhno, Imai, et al., 1985Vertical value; LBLHLM
10.64PEUtsunomiya, Kobayashi, et al., 1980Vertical value; LLK
10.65PEHoppilliard and Solgadi, 1980Vertical value; LLK
10.61PEBenoit and Harrison, 1977Vertical value; LLK
10.65 ± 0.03PEPeel and Willett, 1975Vertical value; LLK
10.59PEVovna, Lopatin, et al., 1974Vertical value; LLK
10.04PESchweig and Thiel, 1974Vertical value; LLK
10.62PERobin and Kuebler, 1973Vertical value; LLK
10.64PEKatsumata, Iwai, et al., 1973Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+22.9 ± 0.5H2+H+CH2OHEIStepanov, Perov, et al., 1988LL
CH2O+11.70CH4PIRefaey and Chupka, 1968RDSH
CH3+14.70 ± 0.10?EIHaney and Franklin, 1969RDSH
CH3O+11.25 ± 0.09CH3EIBowen and Maccoll, 1984LBLHLM
CH3O+11.40 ± 0.06CH3EISelim and Helal, 1981LLK
CH3O+11.30CH3EILossing, 1977LLK
CH3O+11.20 ± 0.05CH3PIPotapov and Sorokin, 1972LLK
CH3O+11.25CH3PIRefaey and Chupka, 1968RDSH
C2H3+14.7?EIFriedman, Long, et al., 1957RDSH
C2H3O+14.5H2+HEIFriedman, Long, et al., 1957RDSH
C2H4+12.0 ± 0.9H2OEIBowen and Maccoll, 1984LBLHLM
C2H4+12.0H2OPIRefaey and Chupka, 1968RDSH
C2H4O+~10.45H2EIHolmes, Terlouw, et al., 1976LLK
C2H5+12.7OHPIRefaey and Chupka, 1968RDSH
C2H5O+10.78 ± 0.09HEIBowen and Maccoll, 1984LBLHLM
C2H5O+10.6HEIMishchanchuk, Pokrovskii, et al., 1982LBLHLM
C2H5O+10.67HEILossing, 1977LLK
C2H5O+10.75 ± 0.03HEISolka and Russell, 1974LLK
C2H5O+10.80 ± 0.05HPIPotapov and Sorokin, 1972LLK
C2H5O+10.78 ± 0.02HPIRefaey and Chupka, 1968RDSH
C2H5O+[CH3CHOH+]10.801 ± 0.005HPIRuscic and Berkowitz, 1994T = 0K; LL
H+21.0 ± 0.5CH2+CH2OHEIStepanov, Perov, et al., 1988LL
H2O+13.06C2H4EILewis and Hamill, 1970RDSH
H3O+13.8H2+C2H3PIPECONiwa, Nishimura, et al., 1982LBLHLM
H3O+14.30 ± 0.02?EIHaney and Franklin, 1969, 2RDSH
O+21.7 ± 0.52CH3EIStepanov, Perov, et al., 1988LL

De-protonation reactions

C2H5O- + Hydrogen cation = Ethanol

By formula: C2H5O- + H+ = C2H6O

Quantity Value Units Method Reference Comment
Δr1587. ± 4.2kJ/molD-EARamond, Davico, et al., 2000gas phase; B
Δr1582. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1579. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1586.2 ± 0.42kJ/molCIDTDeTuri and Ervin, 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr1559. ± 4.6kJ/molH-TSRamond, Davico, et al., 2000gas phase; B
Δr1554. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1551. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B

Anion protonation reactions

C2H5O- + Hydrogen cation = Ethanol

By formula: C2H5O- + H+ = C2H6O

Quantity Value Units Method Reference Comment
Δr1587. ± 4.2kJ/molD-EARamond, Davico, et al., 2000gas phase; B
Δr1582. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1579. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1586.2 ± 0.42kJ/molCIDTDeTuri and Ervin, 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr1559. ± 4.6kJ/molH-TSRamond, Davico, et al., 2000gas phase; B
Δr1554. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1551. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B

Mass spectrum (electron ionization)

Go To: Top, Phase change data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1990.
NIST MS number 118507

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Mejia, Segura, et al., 2010
Mejia, Andres; Segura, Hugo; Cartes, Marcela, Vapor-Liquid Equilibria and Interfacial Tensions of the System Ethanol + 2-Methoxy-2-methylpropane, J. Chem. Eng. Data, 2010, 55, 1, 428-434, https://doi.org/10.1021/je9004068 . [all data]

Aucejo, Loras, et al., 1999
Aucejo, Antonio; Loras, Sonia; Muñoz, Rosa; Ordoñez, Luis Miguel, Isobaric vapor--liquid equilibrium for binary mixtures of 2-methylpentane+ethanol and +2-methyl-2-propanol, Fluid Phase Equilibria, 1999, 156, 1-2, 173-183, https://doi.org/10.1016/S0378-3812(99)00029-1 . [all data]

Diogo, Santos, et al., 1995
Diogo, Hermínio P.; Santos, Rui C.; Nunes, Paulo M.; Minas da Piedade, Manuel E., Ebulliometric apparatus for the measurement of enthalpies of vaporization, Thermochimica Acta, 1995, 249, 113-120, https://doi.org/10.1016/0040-6031(95)90678-9 . [all data]

Ortega, Susial, et al., 1990
Ortega, Juan; Susial, Pedro; De Alfonso, Casiano, Isobaric vapor-liquid equilibrium of methyl butanoate with ethanol and 1-propanol binary systems, J. Chem. Eng. Data, 1990, 35, 2, 216-219, https://doi.org/10.1021/je00060a037 . [all data]

Vine and Wormald, 1989
Vine, M.D.; Wormald, C.J., The enthalpy of ethanol, The Journal of Chemical Thermodynamics, 1989, 21, 11, 1151-1157, https://doi.org/10.1016/0021-9614(89)90101-8 . [all data]

Dong, Lin, et al., 1988
Dong, Jin-Quan; Lin, Rui-Sen; Yen, Wen-Hsing, Heats of vaporization and gaseous molar heat capacities of ethanol and the binary mixture of ethanol and benzene, Can. J. Chem., 1988, 66, 4, 783-790, https://doi.org/10.1139/v88-136 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J., The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point, The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Counsell, Fenwick, et al., 1970
Counsell, J.F.; Fenwick, J.O.; Lees, E.B., Thermodynamic properties of organic oxygen compounds 24. Vapour heat capacities and enthalpies of vaporization of ethanol, 2-methylpropan-1-ol, and pentan-1-ol, The Journal of Chemical Thermodynamics, 1970, 2, 3, 367-372, https://doi.org/10.1016/0021-9614(70)90007-8 . [all data]

Van Ness, Soczek, et al., 1967
Van Ness, Hendrick C.; Soczek, C.A.; Peloquin, G.L.; Machado, R.L., Thermodynamic excess properties of three alcohol-hydrocarbon systems, J. Chem. Eng. Data, 1967, 12, 2, 217-224, https://doi.org/10.1021/je60033a017 . [all data]

Kretschmer and Wiebe, 1949
Kretschmer, Carl B.; Wiebe, Richard., Liquid-Vapor Equilibrium of Ethanol--Toluene Solutions, J. Am. Chem. Soc., 1949, 71, 5, 1793-1797, https://doi.org/10.1021/ja01173a076 . [all data]

Oguri, Anjo, et al., 1934
Oguri, S.; Anjo, S.; Kuwabara, Y., Bull. Waseda Appl. Chem. Soc., 1934, 22, 1. [all data]

Kahlbaum, 1883
Kahlbaum, Georg W.A., Ueber die Abhängigkeit der Siedetemperatur vom Luftdruck, Ber. Dtsch. Chem. Ges., 1883, 16, 2, 2476-2484, https://doi.org/10.1002/cber.188301602178 . [all data]

Ambrose, Sprake, et al., 1975
Ambrose, D.; Sprake, C.H.S.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds. XXXVII. Vapour Pressures of Methanol, Ethanol, Pentan-1-ol, and Octan-1-ol from the Normal Boiling Temperature to the Critical Temperature, J. Chem. Thermodyn., 1975, 7, 2, 185-190, https://doi.org/10.1016/0021-9614(75)90267-0 . [all data]

Ambrose and Sprake, 1970
Ambrose, D.; Sprake, C.H.S., Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols, The Journal of Chemical Thermodynamics, 1970, 2, 5, 631-645, https://doi.org/10.1016/0021-9614(70)90038-8 . [all data]

Yoshida, 1944
Yoshida, U., Structural relaxation of amorphous solids and the cybotactic structure of super-cooled liquids, Mem. Coll. Sci. Kyoto Imp. Univ., 1944, 24A, 135-148. [all data]

Kelley, 1929
Kelley, K.K., The heat capacities of ethyl and hexyl alcohols from 16°K to 298°K and the corresponding entropies and free energies, J. Am. Chem. Soc., 1929, 51, 779-786. [all data]

Gibson, Parks, et al., 1920
Gibson, G.E.; Parks, G.S.; Latimer, W.M., Entropy changes at low temperatures. II. Ethyl and propyl alcohols and their equal molal mixture, J. Am. Chem. Soc., 1920, 42, 1542-1550. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Parks, 1925
Parks, G.S., Thermal data on organic compounds I. The heat capacities and free energies of methyl, ethyl and normal-butyl alcohols, J. Am. Chem. Soc., 1925, 47, 338-345. [all data]

Haida, Suga, et al., 1977
Haida, O.; Suga, H.; Seki, S., Calorimetric study of the glassy state. XII. Plural glass-transition phenomena of ethanol, J. Chem. Thermodynam., 1977, 9, 1133-1148. [all data]

Nikolaev, Rabinovich, et al., 1967
Nikolaev, P.N.; Rabinovich, I.B.; Lebedev, B.V., Specific heat of H- and D-ethyl alcohol in the interval 80-250K, Zhur. Fiz. Khim., 1967, 41, 1294-1299. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Tabrizchi and Shooshtari, 2003
Tabrizchi, M.; Shooshtari, S., Proton affinity measurements using ion mobility spectrometry, J. Chem. Thermodynamics, 2003, 35, 863. [all data]

Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P., Ionization energies of homologous organic compounds and correlation with molecular size, Org. Mass Spectrom., 1991, 26, 537. [all data]

Ohno, Imai, et al., 1985
Ohno, K.; Imai, K.; Harada, Y., Variations in reactivity of lone-pair electrons due to intramolecular hydrogen bonding as observed by penning ionization electron spectroscopy, J. Am. Chem. Soc., 1985, 107, 8078. [all data]

Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A., Low energy, low temperature mass spectra, Org. Mass Spectrom., 1984, 19, 379. [all data]

Ohno, Imai, et al., 1983
Ohno, K.; Imai, K.; Matsumoto, S.; Harada, Y., Penning ionization electron spectroscopy of C2H5X (X = NH2, OH, H, Cl, I) relative reactivity of orbital localizing on functional groups upon electrophilic attack by metastable helium atoms, J. Phys. Chem., 1983, 87, 4346. [all data]

Mishchanchuk, Pokrovskii, et al., 1982
Mishchanchuk, B.G.; Pokrovskii, V.A.; Shabel'nikov, V.P.; Korol, E.N., Mass spectrometric study of energy characteristics of methanol and ethanol ions during ionization by a strong electric field, Teor. Eksp. Khim., 1982, 18, 307. [all data]

Von Niessen, Bieri, et al., 1980
Von Niessen, W.; Bieri, G.; Asbrink, L., 30.4 nm He(II) photoelectron spectra of organic molecules. Part III. Oxo-compounds (C,H,O), J. Electron Spectrosc. Relat. Phenom., 1980, 21, 175. [all data]

Potapov and Sorokin, 1972
Potapov, V.K.; Sorokin, V.V., Kinetic energies of products of dissociative photoionization of molecules. I. Aliphatic ketones and alcohols, Khim. Vys. Energ., 1972, 6, 387. [all data]

Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J., The effect of alkyl substitution on ionisation potential, J. Chem. Soc., 1971, (B), 790. [all data]

Baker, Betteridge, et al., 1971
Baker, A.D.; Betteridge, D.; Kemp, N.R.; Kirby, R.E., Application of photoelectron spectrometry to pesticide analysis. II.Photoelectron spectra of hydroxy-, and halo-alkanes and halohydrins, Anal. Chem., 1971, 43, 375. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Refaey and Chupka, 1968
Refaey, K.M.A.; Chupka, W.A., Photoionization of the lower aliphatic alcohols with mass analysis, J. Chem. Phys., 1968, 48, 5205. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Utsunomiya, Kobayashi, et al., 1980
Utsunomiya, C.; Kobayashi, T.; Nagakura, S., Photoelectron angular distribution measurements for some aliphatic alcohols, amines, halides, Bull. Chem. Soc. Jpn., 1980, 53, 1216. [all data]

Hoppilliard and Solgadi, 1980
Hoppilliard, Y.; Solgadi, D., Conformational analysis of 2-haloethanols and 2-methoxyethylhalides in a photoelectron spectrometer, Tetrahedron, 1980, 36, 377. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Peel and Willett, 1975
Peel, J.B.; Willett, G.D., Photoelectron spectroscopic studies of the higher alcohols, Aust. J. Chem., 1975, 28, 2357. [all data]

Vovna, Lopatin, et al., 1974
Vovna, V.I.; Lopatin, S.N.; Pettsold, R.; Vilesov, F.I.; Akopyan, M.E., Photoelectron spectra of a number of substitution products of thiophosphoryl chloride, Opt. Spectrosc., 1974, 36, 99. [all data]

Schweig and Thiel, 1974
Schweig, A.; Thiel, W., Photoionization cross sections: He I- and He II-photoelectron spectra of homologous oxygen and sulphur compounds, Mol. Phys., 1974, 27, 265. [all data]

Robin and Kuebler, 1973
Robin, M.B.; Kuebler, N.A., Excited electronic states of the simple alcohols, J. Electron Spectrosc. Relat. Phenom., 1973, 1, 13. [all data]

Katsumata, Iwai, et al., 1973
Katsumata, S.; Iwai, T.; Kimura, K., Photoelectron spectra and sum rule consideration. Higher alkyl amines and alcohols, Bull. Chem. Soc. Jpn., 1973, 46, 3391. [all data]

Stepanov, Perov, et al., 1988
Stepanov, A.N.; Perov, A.A.; Kabanov, S.P.; Simonov, A.P., Formation of long-lived, highly excited atoms during dissociative excitation of CH3CN, CH3CH2OH, CH3COOH, HCOOH, and C4H4S molecules on electron impact, Russ. J. Phys. Chem., 1988, 22, 81. [all data]

Haney and Franklin, 1969
Haney, M.A.; Franklin, J.L., Excess energies in mass spectra of some oxygen-containing organic compounds, J. Chem. Soc. Faraday Trans., 1969, 65, 1794. [all data]

Selim and Helal, 1981
Selim, E.T.M.; Helal, A.I., Heat of formation of CH2=OH+ fragment ion, Indian J. Pure Appl. Phys., 1981, 19, 977. [all data]

Lossing, 1977
Lossing, F.P., Heats of formation of some isomeric [CnH2n+1]+ ions. Substitutional effects on ion stability, J. Am. Chem. Soc., 1977, 99, 7526. [all data]

Friedman, Long, et al., 1957
Friedman, L.; Long, F.A.; Wolfsberg, M., Study of the mass spectra of the lower aliphatic alcohols, J. Chem. Phys., 1957, 27, 613. [all data]

Holmes, Terlouw, et al., 1976
Holmes, J.L.; Terlouw, J.K.; Lossing, F.P., The thermochemistry of C2H4O+ ions, J. Phys. Chem., 1976, 80, 2860. [all data]

Solka and Russell, 1974
Solka, B.H.; Russell, M.E., Energetics of formation of some structural isomers of gaseous C2H5O+ C2H6N+ ions, J. Phys. Chem., 1974, 78, 1268. [all data]

Ruscic and Berkowitz, 1994
Ruscic, B.; Berkowitz, J., The heats of formation of some C2H5O+ isomers, relevant bond energies in ethanol and PA(CH3CHO), J. Chem. Phys., 1994, 101, 10936. [all data]

Lewis and Hamill, 1970
Lewis, D.; Hamill, W.H., Excited states of neutral molecular fragments from appearance potentials by electron impact in a mass spectrometer, J. Chem. Phys., 1970, 52, 6348. [all data]

Niwa, Nishimura, et al., 1982
Niwa, Y.; Nishimura, T.; Tsuchiya, T., Ionic dissociation of ethanol studied by photoelectron-photoion coincidence spectroscopy, Int. J. Mass Spectrom. Ion Processes, 1982, 42, 91. [all data]

Haney and Franklin, 1969, 2
Haney, M.A.; Franklin, J.L., Heats of formation of H3O+, H3S+, and NH4+ by electron impact, J. Chem. Phys., 1969, 50, 2028. [all data]

Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C., Vibronic structure of alkoxy radicals via photoelectron spectroscopy, J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767 . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols, J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m . [all data]


Notes

Go To: Top, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References