Formamide, N,N-dimethyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C7H7NO3- + Formamide, N,N-dimethyl- = (C7H7NO3- • Formamide, N,N-dimethyl-)

By formula: C7H7NO3- + C3H7NO = (C7H7NO3- • C3H7NO)

Quantity Value Units Method Reference Comment
Δr25. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
25.343.PHPMSChowdhury, 1987gas phase; M
25.343.PHPMSChowdhury, 1987gas phase; M

C6H5NO2- + Formamide, N,N-dimethyl- = (C6H5NO2- • Formamide, N,N-dimethyl-)

By formula: C6H5NO2- + C3H7NO = (C6H5NO2- • C3H7NO)

Quantity Value Units Method Reference Comment
Δr26. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
26.343.PHPMSChowdhury, 1987gas phase; M

C7H4N2O2- + Formamide, N,N-dimethyl- = (C7H4N2O2- • Formamide, N,N-dimethyl-)

By formula: C7H4N2O2- + C3H7NO = (C7H4N2O2- • C3H7NO)

Quantity Value Units Method Reference Comment
Δr16. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
16.343.PHPMSChowdhury, 1987gas phase; M

C6H4FNO2- + Formamide, N,N-dimethyl- = (C6H4FNO2- • Formamide, N,N-dimethyl-)

By formula: C6H4FNO2- + C3H7NO = (C6H4FNO2- • C3H7NO)

Quantity Value Units Method Reference Comment
Δr25. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
25.343.PHPMSChowdhury, 1987gas phase; M

C6H4FNO2- + Formamide, N,N-dimethyl- = (C6H4FNO2- • Formamide, N,N-dimethyl-)

By formula: C6H4FNO2- + C3H7NO = (C6H4FNO2- • C3H7NO)

Quantity Value Units Method Reference Comment
Δr25. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
25.343.PHPMSChowdhury, 1987gas phase; M

C6H4FNO2- + Formamide, N,N-dimethyl- = (C6H4FNO2- • Formamide, N,N-dimethyl-)

By formula: C6H4FNO2- + C3H7NO = (C6H4FNO2- • C3H7NO)

Quantity Value Units Method Reference Comment
Δr23. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
23.343.PHPMSChowdhury, 1987gas phase; M

C7H7NO3- + Formamide, N,N-dimethyl- = (C7H7NO3- • Formamide, N,N-dimethyl-)

By formula: C7H7NO3- + C3H7NO = (C7H7NO3- • C3H7NO)

Quantity Value Units Method Reference Comment
Δr26. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
26.343.PHPMSChowdhury, 1987gas phase; M

C7H7NO2- + Formamide, N,N-dimethyl- = (C7H7NO2- • Formamide, N,N-dimethyl-)

By formula: C7H7NO2- + C3H7NO = (C7H7NO2- • C3H7NO)

Quantity Value Units Method Reference Comment
Δr26. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
26.343.PHPMSChowdhury, 1987gas phase; M

C6H4N2O4- + Formamide, N,N-dimethyl- = (C6H4N2O4- • Formamide, N,N-dimethyl-)

By formula: C6H4N2O4- + C3H7NO = (C6H4N2O4- • C3H7NO)

Quantity Value Units Method Reference Comment
Δr10. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
10.343.PHPMSChowdhury, 1987gas phase; M

C6H4N2O4- + Formamide, N,N-dimethyl- = (C6H4N2O4- • Formamide, N,N-dimethyl-)

By formula: C6H4N2O4- + C3H7NO = (C6H4N2O4- • C3H7NO)

Quantity Value Units Method Reference Comment
Δr19. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
19.343.PHPMSChowdhury, 1987gas phase; M

C7H7NO2- + Formamide, N,N-dimethyl- = (C7H7NO2- • Formamide, N,N-dimethyl-)

By formula: C7H7NO2- + C3H7NO = (C7H7NO2- • C3H7NO)

Quantity Value Units Method Reference Comment
Δr26. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
26.343.PHPMSChowdhury, 1987gas phase; M

C6F4O2- + Formamide, N,N-dimethyl- = (C6F4O2- • Formamide, N,N-dimethyl-)

By formula: C6F4O2- + C3H7NO = (C6F4O2- • C3H7NO)

Quantity Value Units Method Reference Comment
Δr11. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
11.343.PHPMSChowdhury, 1987gas phase; M

p-Benzoquinone anion + Formamide, N,N-dimethyl- = (p-Benzoquinone anion • Formamide, N,N-dimethyl-)

By formula: C6H4O2- + C3H7NO = (C6H4O2- • C3H7NO)

Quantity Value Units Method Reference Comment
Δr18. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
18.343.PHPMSChowdhury, 1987gas phase; M

C7H4N2O2- + Formamide, N,N-dimethyl- = (C7H4N2O2- • Formamide, N,N-dimethyl-)

By formula: C7H4N2O2- + C3H7NO = (C7H4N2O2- • C3H7NO)

Quantity Value Units Method Reference Comment
Δr20. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
20.343.PHPMSChowdhury, 1987gas phase; M

Potassium ion (1+) + Formamide, N,N-dimethyl- = (Potassium ion (1+) • Formamide, N,N-dimethyl-)

By formula: K+ + C3H7NO = (K+ • C3H7NO)

Quantity Value Units Method Reference Comment
Δr123.kJ/molCIDTKlassen, Anderson, et al., 1996RCD
Δr130.kJ/molHPMSSunner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KHPMSSunner, 1984gas phase; M

C7H4N2O2- + Formamide, N,N-dimethyl- = (C7H4N2O2- • Formamide, N,N-dimethyl-)

By formula: C7H4N2O2- + C3H7NO = (C7H4N2O2- • C3H7NO)

Quantity Value Units Method Reference Comment
Δr19. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
19.343.PHPMSChowdhury, 1987gas phase; M

C7H4F3NO2- + Formamide, N,N-dimethyl- = (C7H4F3NO2- • Formamide, N,N-dimethyl-)

By formula: C7H4F3NO2- + C3H7NO = (C7H4F3NO2- • C3H7NO)

Quantity Value Units Method Reference Comment
Δr20. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
20.343.PHPMSChowdhury, 1987gas phase; M

Sodium ion (1+) + Formamide, N,N-dimethyl- = (Sodium ion (1+) • Formamide, N,N-dimethyl-)

By formula: Na+ + C3H7NO = (Na+ • C3H7NO)

Quantity Value Units Method Reference Comment
Δr156. ± 4.kJ/molCIDTArmentrout and Rodgers, 2000See 96KLA/AND?; RCD

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
126.298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

C3H6NO- + Hydrogen cation = Formamide, N,N-dimethyl-

By formula: C3H6NO- + H+ = C3H7NO

Quantity Value Units Method Reference Comment
Δr1670. ± 17.kJ/molG+TSDePuy, Grabowski, et al., 1985gas phase; B
Quantity Value Units Method Reference Comment
Δr1640. ± 17.kJ/molIMRBDePuy, Grabowski, et al., 1985gas phase; B

Lithium ion (1+) + Formamide, N,N-dimethyl- = (Lithium ion (1+) • Formamide, N,N-dimethyl-)

By formula: Li+ + C3H7NO = (Li+ • C3H7NO)

Quantity Value Units Method Reference Comment
Δr210.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

(Potassium ion (1+) • 2Formamide, N,N-dimethyl-) + Formamide, N,N-dimethyl- = (Potassium ion (1+) • 3Formamide, N,N-dimethyl-)

By formula: (K+ • 2C3H7NO) + C3H7NO = (K+ • 3C3H7NO)

Quantity Value Units Method Reference Comment
Δr63.kJ/molHPMSSunner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr75.J/mol*KHPMSSunner, 1984gas phase; M

(Potassium ion (1+) • 3Formamide, N,N-dimethyl-) + Formamide, N,N-dimethyl- = (Potassium ion (1+) • 4Formamide, N,N-dimethyl-)

By formula: (K+ • 3C3H7NO) + C3H7NO = (K+ • 4C3H7NO)

Quantity Value Units Method Reference Comment
Δr54.kJ/molHPMSSunner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KHPMSSunner, 1984gas phase; M

(Potassium ion (1+) • Formamide, N,N-dimethyl-) + Formamide, N,N-dimethyl- = (Potassium ion (1+) • 2Formamide, N,N-dimethyl-)

By formula: (K+ • C3H7NO) + C3H7NO = (K+ • 2C3H7NO)

Quantity Value Units Method Reference Comment
Δr88.kJ/molHPMSSunner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KHPMSSunner, 1984gas phase; M

IR Spectrum

Go To: Top, Reaction thermochemistry data, Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Gas Chromatography

Go To: Top, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCBP-1752.Shimadzu, 200325. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCBP-201333.Shimadzu, 200325. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C
CapillaryCarbowax 20M1304.Nishimura, Yamaguchi, et al., 19892. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillarySPB-Sulfur756.3de Lacy Costello, Evans, et al., 200130. m/0.32 mm/4. μm, 40. C @ 12.5 min, 4. K/min; Tend: 200. C

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-101326.Chung, Yung, et al., 200260. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillarySupelcowax-101326.Chung, Yung, et al., 200160. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillarySupelcowax-101328.Chung and Cadwallader, 199360. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 2. K/min, 195. C @ 40. min
CapillaryDB-Wax1319.Umano, Hagi, et al., 1992He, 40. C @ 10. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryDB-Wax1282.Frohlich and Schreier, 199030. m/0.32 mm/0.25 μm, He, 40. C @ 3. min, 5. K/min; Tend: 220. C

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryMethyl Silicone100.747.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone120.750.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone140.753.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone80.745.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryDB-160.742.Shimadzu, 2003, 260. m/0.32 mm/1. μm, He
PackedDC-400150.790.Anderson, 1968Helium, Gas-Pak (60-80 mesh); Column length: 3.0 m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS772.Radulovic, Blagojevic, et al., 201030. m/0.25 mm/0.25 μm, Helium, 5. K/min, 290. C @ 10. min; Tstart: 70. C
CapillaryVF-5783.Li and Zhao, 200930. m/0.25 mm/0.25 μm, Helium, 60. C @ 2. min, 10. K/min, 300. C @ 10. min

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySPB-1746.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryMethyl Silicone751.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillarySPB-1746.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillaryDB-1735.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryDB-1738.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryCP Sil 8 CB782.Weller and Wolf, 198940. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C

Normal alkane RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryDB-Wax60.1344.Shimadzu, 2003, 250. m/0.32 mm/1. μm, He

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1361.Shimadzu, 201230. m/0.32 mm/0.50 μm, Helium, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-Wax1361.Shimadzu Corporation, 200330. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryPEG-20M1295.Kubota, Matsujage, et al., 199650. m/0.25 mm/0.25 μm, Nitrogen, 2. K/min; Tstart: 60. C; Tend: 180. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPolyethylene Glycol1325.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillaryDB-Wax1312.Peng, Yang, et al., 1991Program: not specified
CapillaryDB-Wax1327.Peng, Yang, et al., 1991Program: not specified
CapillaryCP-Wax 52CB1290.Vernin, 1991Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillarySuperox 0.6; Carbowax 20M1276.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.1276.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified

References

Go To: Top, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chowdhury, Grimsrud, et al., 1987
Chowdhury, S.; Grimsrud, E.P.; Kebarle, P., Bonding of Charged Delocalized Anions to Protic and Dipolar Aprotic Solvent Molecules, J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021 . [all data]

Chowdhury, 1987
Chowdhury, S. Grimsrud, Bonding of Charge Delocalized Anions to Protic and Dipolar Aprotic Solvents, J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021 . [all data]

Klassen, Anderson, et al., 1996
Klassen, J.S.; Anderson, S.G.; Blades, A.T.; Kebarle, P., Reaction Enthalpies for M+L = M+ + L, Where M+ = Na+ and K+ and L = Acetamide, N-Methylacetamide, N,N-Dimethylacetamide, Glycine, and Glycylglycine, from Determinations of the Collision-Induced Dissociation Thresholds, J. Phys. Chem., 1996, 100, 33, 14218, https://doi.org/10.1021/jp9608382 . [all data]

Sunner, 1984
Sunner, J. Kebarle, Ion - Solvent Molecule Interactions in the Gas Phase. The Potassium Ion and Me2SO, DMA, DMF, and Acetone, J. Am. Chem. Soc., 1984, 106, 21, 6135, https://doi.org/10.1021/ja00333a002 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

DePuy, Grabowski, et al., 1985
DePuy, C.H.; Grabowski, J.J.; Bierbaum, V.M.; Ingemann, S.; Nibbering, N.M.M., Gas-phase reactions of anions with methyl formate and N,N-dimethylformamide, J. Am. Chem. Soc., 1985, 107, 1093. [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Shimadzu, 2003
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 2), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Nishimura, Yamaguchi, et al., 1989
Nishimura, O.; Yamaguchi, K.; Mihara, S.; Shibamoto, T., Volatile Constituents of Guava Fruits (Psidium guajava L.) and Canned Puree, J. Agric. Food Chem., 1989, 37, 1, 139-142, https://doi.org/10.1021/jf00085a033 . [all data]

de Lacy Costello, Evans, et al., 2001
de Lacy Costello, B.P.J.; Evans, P.; Ewen, R.J.; Gunson, H.E.; Jones, P.R.H.; Ratcliffe, N.M.; Spencer-Phillips, P.T.N., Gas chromatography-mass spectrometry analyses of volatile organic compounds from potato tubers inoculated with Phytophthora infestans or Fusarium coeruleum, Plant Pathol., 2001, 50, 4, 489-496, https://doi.org/10.1046/j.1365-3059.2001.00594.x . [all data]

Chung, Yung, et al., 2002
Chung, H.-Y.; Yung, I.K.S.; Ma, W.C.J.; Kim, J.-S., Analysis of volatile components in frozen and dried scallops (Patinopecten yessoensis) by gas chromatography/mass spectrometry, Food Res. Int., 2002, 35, 1, 43-53, https://doi.org/10.1016/S0963-9969(01)00107-7 . [all data]

Chung, Yung, et al., 2001
Chung, H.Y.; Yung, I.K.S.; Kim, J.-S., Comparison of volatile components in dried scallops (Chlamys farreri and Patinopecten yessoensis) prepared by boiling and steaming methods, J. Agric. Food Chem., 2001, 49, 1, 192-202, https://doi.org/10.1021/jf000692a . [all data]

Chung and Cadwallader, 1993
Chung, H.Y.; Cadwallader, K.R., Volatile components in blue crab (Callinectes sapidus) meat and processing by-product, J. Food Sci., 1993, 58, 6, 1203-1207, https://doi.org/10.1111/j.1365-2621.1993.tb06148.x . [all data]

Umano, Hagi, et al., 1992
Umano, K.; Hagi, Y.; Nakahara, K.; Shoji, A.; Shibamoto, T., Volatile constituents of green and ripened pineapple (Aanas comosus [L.] Merr.), J. Agric. Food Chem., 1992, 40, 4, 599-603, https://doi.org/10.1021/jf00016a014 . [all data]

Frohlich and Schreier, 1990
Frohlich, O.; Schreier, P., Volatile Constituents of Loquat (Eriobotrya japonica Lindl.) Fruit, J. Food Sci., 1990, 55, 1, 176-180, https://doi.org/10.1111/j.1365-2621.1990.tb06046.x . [all data]

Lebrón-Aguilar, Quintanilla-López, et al., 2007
Lebrón-Aguilar, R.; Quintanilla-López, J.E.; Tello, A.M.; Santiuste, J.M., Isothermal retention indices on poly (3,3,3-trifluoropropylmethylsiloxane) stationary phases, J. Chromatogr. A, 2007, 1160, 1-2, 276-288, https://doi.org/10.1016/j.chroma.2007.05.025 . [all data]

Shimadzu, 2003, 2
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 3), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Anderson, 1968
Anderson, D.G., USe of Kovats retention indices and response factors for the qualitative and quantitative analysis of coating solvents, J. Paint Technol., 1968, 40, 527, 549-557. [all data]

Radulovic, Blagojevic, et al., 2010
Radulovic, N.; Blagojevic, P.; Palic, R., Comparative study of the leaf volatiles of Arctostaphylos uva-ursi (L.) Spreng. and Vaccinium vitis-idaea L. (Ericaceae), Molecules, 2010, 15, 9, 6168-6185, https://doi.org/10.3390/molecules15096168 . [all data]

Li and Zhao, 2009
Li, L.; Zhao, J., Determination of the volatile composition of Rhodobryum giganteum (Schwaegr.) Par. (Bryaceae) using solid-phase microextraction and gas chromatography / mass spectrometry (GC/MS), Molecules, 2009, 14, 6, 2195-2201, https://doi.org/10.3390/molecules14062195 . [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Zenkevich, Korolenko, et al., 1995
Zenkevich, I.G.; Korolenko, L.I.; Khralenkova, N.B., Desorption with solvent vapor as a method of sample preparation in the sorption preconcentration of organic-compounds from the air of a working area and from industrial-waste gases, J. Appl. Chem. USSR (Engl. Transl.), 1995, 50, 10, 937-944. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Kawai, Ishida, et al., 1991
Kawai, T.; Ishida, Y.; Kakiuchi, H.; Ikeda, N.; Higashida, T.; Nakamura, S., Flavor components of dried squid, J. Agric. Food Chem., 1991, 39, 4, 770-777, https://doi.org/10.1021/jf00004a031 . [all data]

Weller and Wolf, 1989
Weller, J.-P.; Wolf, M., Massenspektroskopie und Headspace-GC, Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]

Shimadzu, 2012
Shimadzu, Pharmaceutical Related, Analysis of pharmaceutical residual solvent (observation of separation) (1) - GC, 2012, retrieved from www.shimadzu.ru/applications/Applicationspdf/GC/Pharma/Pharmaceutical residual solvents GC.pdf. [all data]

Shimadzu Corporation, 2003
Shimadzu Corporation, Analysis of pharmaceutical residual solvent (observation of separation), 2003, retrieved from http://www.shimadzu.com.br/analitica/aplicacoes/book/pharm69.pdf. [all data]

Kubota, Matsujage, et al., 1996
Kubota, K.; Matsujage, Y.; Sekiwa, Y.; Kobayashi, A., Identification of the characteristic volatile flavor compounds formed by cooking squid (Todarodes pacificus Steenstrup), Food Sci. Technol., 1996, 2, 3, 163-166. [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]

Vernin, 1991
Vernin, G., Volatile constituents of the essential oil of Santolina chamaecyparissus L., J. Essent. Oil Res., 1991, 3, 1, 49-53, https://doi.org/10.1080/10412905.1991.9697907 . [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]


Notes

Go To: Top, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References