Benzene, fluoro-
- Formula: C6H5F
- Molecular weight: 96.1023
- IUPAC Standard InChIKey: PYLWMHQQBFSUBP-UHFFFAOYSA-N
- CAS Registry Number: 462-06-6
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Fluorobenzene; Monofluorobenzene; Phenyl fluoride; UN 2387; Fluorobenzenes
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -150.8 ± 1.4 | kJ/mol | Ccr | Good, Scott, et al., 1956 | Corrected for CODATA value of ΔfH; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3103.9 ± 1.2 | kJ/mol | Ccr | Good, Scott, et al., 1956 | Corrected for CODATA value of ΔfH; ALS |
ΔcH°liquid | -3126. | kJ/mol | Ccb | Swarts, 1919 | Not corrected for CODATA value of ΔfH; ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 205.94 | J/mol*K | N/A | Scott, McCullough, et al., 1956 | DH |
S°liquid | 195.0 | J/mol*K | N/A | Stull, 1937 | Extrapolation below 91 K, 42.55 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
146.29 | 298.15 | Roux, Grolier, et al., 1984 | DH |
146.36 | 298.15 | Scott, McCullough, et al., 1956 | T = 14 to 350 K.; DH |
146.57 | 298.1 | Stull, 1937 | T = 90 to 320 K.; DH |
Phase change data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 358.0 ± 0.3 | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 230.96 | K | N/A | Goates, Ott, et al., 1976 | Uncertainty assigned by TRC = 0.06 K; TRC |
Tfus | 231.25 | K | N/A | Timmermans, 1952 | Uncertainty assigned by TRC = 0.5 K; TRC |
Tfus | 231.3 | K | N/A | Timmermans, 1935 | Uncertainty assigned by TRC = 1. K; TRC |
Tfus | 231.25 | K | N/A | Timmermans, 1934 | Uncertainty assigned by TRC = 0.4 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 230.92 | K | N/A | Scott, McCullough, et al., 1956, 2 | Uncertainty assigned by TRC = 0.08 K; by extrapolation of 1/f to 0.0; TRC |
Ttriple | 230.94 | K | N/A | Scott, McCullough, et al., 1956, 2 | Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 231.1 | K | N/A | Stull, 1937, 2 | Uncertainty assigned by TRC = 0.2 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 560.1 | K | N/A | Majer and Svoboda, 1985 | |
Tc | 560.1 | K | N/A | Ambrose, Cox, et al., 1960 | Uncertainty assigned by TRC = 0.2 K; Visual, PRT, IPTS-48; TRC |
Tc | 560.070 | K | N/A | Douslin, Moore, et al., 1958 | Uncertainty assigned by TRC = 0.07 K; TRC |
Tc | 559.7 | K | N/A | Young, 1889 | Uncertainty assigned by TRC = 0.6 K; by visual observation of meniscus; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 45.505 | bar | N/A | Douslin, Moore, et al., 1958 | Uncertainty assigned by TRC = 0.0506 bar; TRC |
Pc | 45.2123 | bar | N/A | Young, 1889 | Uncertainty assigned by TRC = 0.3999 bar; vapor pressure at critical temperature; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.269 | l/mol | N/A | Douslin, Moore, et al., 1958 | Uncertainty assigned by TRC = 0.008 l/mol; TRC |
Vc | 0.462 | l/mol | N/A | Young, 1889 | Uncertainty assigned by TRC = 0.004 l/mol; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 34.68 | kJ/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 34.5 | kJ/mol | N/A | Boublik, Fried, et al., 1984 | Based on data from 255. to 360. K. See also Basarová and Svoboda, 1991.; AC |
ΔvapH° | 34.53 | kJ/mol | V | Findlay, 1969 | ALS |
ΔvapH° | 34.6 | kJ/mol | V | Scott, McCullough, et al., 1956, 3 | ALS |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
31.19 | 357.9 | N/A | Majer and Svoboda, 1985 | |
31.9 | 373. | A | Stephenson and Malanowski, 1987 | Based on data from 358. to 530. K.; AC |
31.8 | 388. | A | Stephenson and Malanowski, 1987 | Based on data from 373. to 419. K.; AC |
31.0 | 429. | A | Stephenson and Malanowski, 1987 | Based on data from 414. to 501. K.; AC |
30.9 | 512. | A | Stephenson and Malanowski, 1987 | Based on data from 497. to 561. K.; AC |
33.6 | 327. | EB | Stephenson and Malanowski, 1987 | Based on data from 312. to 394. K. See also Scott, McCullough, et al., 1956.; AC |
33.5 ± 0.1 | 318. | C | Scott, McCullough, et al., 1956 | AC |
32.4 ± 0.1 | 337. | C | Scott, McCullough, et al., 1956 | AC |
31.2 ± 0.1 | 358. | C | Scott, McCullough, et al., 1956 | AC |
29.7 ± 0.1 | 382. | C | Scott, McCullough, et al., 1956 | AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kJ/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
318. to 382. | 49.8 | 0.2823 | 560.1 | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
255.30 to 357.00 | 4.36225 | 1409.848 | -34.792 | Young, 1889, 2 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
11.305 | 230.94 | Scott, McCullough, et al., 1956 | DH |
11.31 | 230.9 | Domalski and Hearing, 1996 | AC |
10.397 | 231.10 | Stull, 1937 | DH |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
48.95 | 230.94 | Scott, McCullough, et al., 1956 | DH |
44.99 | 231.10 | Stull, 1937 | DH |
Reaction thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C6H4F- + =
By formula: C6H4F- + H+ = C6H5F
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1618. ± 8.8 | kJ/mol | G+TS | Buker, Nibbering, et al., 1997 | gas phase; B |
ΔrH° | 1620. ± 8.8 | kJ/mol | G+TS | Andrade and Riveros, 1996 | gas phase; B |
ΔrH° | 1620. ± 10. | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B |
ΔrH° | 1620. ± 10. | kJ/mol | Bran | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
ΔrH° | 1620. ± 23. | kJ/mol | G+TS | Briscese and Riveros, 1975 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1584. ± 8.4 | kJ/mol | IMRE | Buker, Nibbering, et al., 1997 | gas phase; B |
ΔrG° | 1586. ± 8.4 | kJ/mol | IMRE | Andrade and Riveros, 1996 | gas phase; B |
ΔrG° | 1585. ± 8.4 | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B |
ΔrG° | 1586. ± 11. | kJ/mol | H-TS | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
ΔrG° | 1586. ± 22. | kJ/mol | IMRB | Briscese and Riveros, 1975 | gas phase; B |
By formula: Br- + C6H5F = (Br- • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.4 ± 6.7 | kJ/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.8 ± 4.2 | kJ/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
8.8 | 423. | PHPMS | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
By formula: C6H5F+ + C6H5F = (C6H5F+ • C6H5F)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30. | kJ/mol | PI | Ruhl, Bisling, et al., 1986 | gas phase; from vIP of perpendicular dimer; M |
ΔrH° | 59.0 | kJ/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
22. | 356. | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; Entropy change calculated or estimated; M |
By formula: C6H6+ + C6H5F = (C6H6+ • C6H5F)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28. | kJ/mol | PI | Ruhl, Bisling, et al., 1986 | gas phase; from vIP of perpendicular dimer; M |
ΔrH° | 71.1 | kJ/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 130. | J/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
C6H4F- + =
By formula: C6H4F- + H+ = C6H5F
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1671.9 ± 3.8 | kJ/mol | Bran | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1639. ± 4.2 | kJ/mol | H-TS | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
C6H4F- + =
By formula: C6H4F- + H+ = C6H5F
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1654. ± 8.4 | kJ/mol | Bran | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1619. ± 8.8 | kJ/mol | H-TS | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
By formula: C6H7N+ + C6H5F = (C6H7N+ • C6H5F)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 49.0 | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 111. | J/mol*K | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
By formula: NO- + C6H5F = (NO- • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 158. | kJ/mol | ICR | Reents and Freiser, 1981 | gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M |
By formula: Cl- + C6H5F = (Cl- • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 24.7 | kJ/mol | TDEq | French, Ikuta, et al., 1982 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
25. | 300. | PHPMS | French, Ikuta, et al., 1982 | gas phase; M |
By formula: C7H8+ + C6H5F = (C7H8+ • C6H5F)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16. | kJ/mol | PI | Ruhl, Bisling, et al., 1986 | gas phase; from vIP of perpendicular dimer; M |
By formula: H4N+ + C6H5F = (H4N+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 60.2 | kJ/mol | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 75.3 | J/mol*K | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
By formula: (V- • C6H5F) + C6H6 = (V- • C6H6 • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10. ± 63. | kJ/mol | N/A | Judai, Hirano, et al., 1997 | gas phase; B |
By formula: V- + C6H5F = (V- • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 60. ± 16. | kJ/mol | N/A | Judai, Hirano, et al., 1997 | gas phase; B |
By formula: (Li+ • C6H5F) + C6H5F = (Li+ • 2C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 95. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Na+ • C6H5F) + C6H5F = (Na+ • 2C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66. ± 4. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Cs+ • C6H5F) + C6H5F = (Cs+ • 2C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.8 ± 4.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Rb+ • C6H5F) + C6H5F = (Rb+ • 2C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47.3 ± 5.0 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (K+ • C6H5F) + C6H5F = (K+ • 2C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Li+ + C6H5F = (Li+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 147. ± 21. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Na+ + C6H5F = (Na+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Cs+ + C6H5F = (Cs+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.2 ± 5.0 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Rb+ + C6H5F = (Rb+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 53.6 ± 5.4 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: K+ + C6H5F = (K+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 55. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Cr+ + C6H5F = (Cr+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 164. | kJ/mol | RAK | Ryzhov, 1999 | RCD |
Gas phase ion energetics data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
LL - Sharon G. Lias and Joel F. Liebman
View reactions leading to C6H5F+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.20 ± 0.01 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 755.9 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 726.6 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.20 | PE | Fujisawa, Ohno, et al., 1986 | LBLHLM |
9.20 | PE | Kimura, Katsumata, et al., 1981 | LLK |
9.22 | PE | Sell, Mintz, et al., 1978 | LLK |
9.17 | PE | Behan, Johnstone, et al., 1976 | LLK |
9.75 | EI | Baldwin, Loudon, et al., 1976 | LLK |
9.11 | PE | Debies and Rabalais, 1973 | LLK |
9.20 | S | Smith and Raymonda, 1971 | LLK |
9.20 | S | Gilbert and Sandorfy, 1971 | LLK |
9.182 | PI | Momigny, Goffart, et al., 1968 | RDSH |
9.21 ± 0.04 | PE | Clark and Frost, 1967 | RDSH |
9.20 ± 0.01 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
9.20 | PI | Bralsford, Harris, et al., 1960 | RDSH |
9.200 ± 0.005 | S | Hammond, Price, et al., 1950 | RDSH |
9.22 | PE | Sell and Kupperman, 1978 | Vertical value; LLK |
9.37 | PE | Kobayashi, 1978 | Vertical value; LLK |
9.19 | PE | Streets and Ceasar, 1973 | Vertical value; LLK |
9.35 ± 0.03 | PE | Klessinger, 1972 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C2H3F+ | 16.13 ± 0.13 | C4H2 | PIPECO | Nishimura, Meisels, et al., 1991 | LL |
C3H2F+ | 15.13 ± 0.13 | C3H3 | PIPECO | Nishimura, Meisels, et al., 1991 | LL |
C3H2F+ | 15.8 ± 0.1 | ? | EI | Momigny, 1959 | RDSH |
C3H3+ | 15.13 ± 0.13 | C3H2F | PIPECO | Nishimura, Meisels, et al., 1991 | LL |
C3H3+ | 14.3 ± 0.1 | ? | EI | Momigny, 1959 | RDSH |
C4H2+ | 15.13 ± 0.13 | C2H3F | PIPECO | Nishimura, Meisels, et al., 1991 | LL |
C4H3F+ | 13.14 ± 0.05 | C2H2 | PIPECO | Nishimura, Meisels, et al., 1991 | LL |
C4H3F+ | 14.73 | C2H2 | EI | Howe and Williams, 1969 | RDSH |
C4H4+ | 15.90 ± 0.09 | C2HF | PIPECO | Nishimura, Meisels, et al., 1991 | LL |
C4H4+ | 17.0 ± 0.1 | ? | EI | Momigny, 1959 | RDSH |
C5H2F+ | 16.13 ± 0.13 | CH3 | PIPECO | Nishimura, Meisels, et al., 1991 | LL |
C5H3+ | 15.13 ± 0.13 | CH2F | PIPECO | Nishimura, Meisels, et al., 1991 | LL |
C6H4+ | 15.4 ± 0.1 | HF | EI | Momigny, 1959 | RDSH |
C6H4F+ | 14.1 | H | EI | Yeo and Williams, 1970 | RDSH |
C6H5+ | 13.10 ± 0.05 | F | PIPECO | Nishimura, Meisels, et al., 1991 | LL |
C6H5+ | 14.5 ± 0.1 | F | EI | Majer and Patrick, 1962 | RDSH |
De-protonation reactions
C6H4F- + =
By formula: C6H4F- + H+ = C6H5F
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1618. ± 8.8 | kJ/mol | G+TS | Buker, Nibbering, et al., 1997 | gas phase; B |
ΔrH° | 1620. ± 8.8 | kJ/mol | G+TS | Andrade and Riveros, 1996 | gas phase; B |
ΔrH° | 1620. ± 10. | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B |
ΔrH° | 1620. ± 10. | kJ/mol | Bran | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
ΔrH° | 1620. ± 23. | kJ/mol | G+TS | Briscese and Riveros, 1975 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1584. ± 8.4 | kJ/mol | IMRE | Buker, Nibbering, et al., 1997 | gas phase; B |
ΔrG° | 1586. ± 8.4 | kJ/mol | IMRE | Andrade and Riveros, 1996 | gas phase; B |
ΔrG° | 1585. ± 8.4 | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B |
ΔrG° | 1586. ± 11. | kJ/mol | H-TS | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
ΔrG° | 1586. ± 22. | kJ/mol | IMRB | Briscese and Riveros, 1975 | gas phase; B |
C6H4F- + =
By formula: C6H4F- + H+ = C6H5F
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1671.9 ± 3.8 | kJ/mol | Bran | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1639. ± 4.2 | kJ/mol | H-TS | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
C6H4F- + =
By formula: C6H4F- + H+ = C6H5F
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1654. ± 8.4 | kJ/mol | Bran | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1619. ± 8.8 | kJ/mol | H-TS | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
Ion clustering data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Br- + C6H5F = (Br- • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.4 ± 6.7 | kJ/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.8 ± 4.2 | kJ/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
8.8 | 423. | PHPMS | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
By formula: C6H5F+ + C6H5F = (C6H5F+ • C6H5F)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30. | kJ/mol | PI | Ruhl, Bisling, et al., 1986 | gas phase; from vIP of perpendicular dimer; M |
ΔrH° | 59.0 | kJ/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
22. | 356. | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; Entropy change calculated or estimated; M |
By formula: C6H6+ + C6H5F = (C6H6+ • C6H5F)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28. | kJ/mol | PI | Ruhl, Bisling, et al., 1986 | gas phase; from vIP of perpendicular dimer; M |
ΔrH° | 71.1 | kJ/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 130. | J/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
By formula: C6H7N+ + C6H5F = (C6H7N+ • C6H5F)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 49.0 | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 111. | J/mol*K | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
By formula: C7H8+ + C6H5F = (C7H8+ • C6H5F)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16. | kJ/mol | PI | Ruhl, Bisling, et al., 1986 | gas phase; from vIP of perpendicular dimer; M |
By formula: Cl- + C6H5F = (Cl- • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 24.7 | kJ/mol | TDEq | French, Ikuta, et al., 1982 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
25. | 300. | PHPMS | French, Ikuta, et al., 1982 | gas phase; M |
By formula: Cr+ + C6H5F = (Cr+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 164. | kJ/mol | RAK | Ryzhov, 1999 | RCD |
By formula: Cs+ + C6H5F = (Cs+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.2 ± 5.0 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Cs+ • C6H5F) + C6H5F = (Cs+ • 2C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.8 ± 4.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: H4N+ + C6H5F = (H4N+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 60.2 | kJ/mol | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 75.3 | J/mol*K | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
By formula: K+ + C6H5F = (K+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 55. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (K+ • C6H5F) + C6H5F = (K+ • 2C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Li+ + C6H5F = (Li+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 147. ± 21. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Li+ • C6H5F) + C6H5F = (Li+ • 2C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 95. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: NO- + C6H5F = (NO- • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 158. | kJ/mol | ICR | Reents and Freiser, 1981 | gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M |
By formula: Na+ + C6H5F = (Na+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Na+ • C6H5F) + C6H5F = (Na+ • 2C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66. ± 4. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Rb+ + C6H5F = (Rb+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 53.6 ± 5.4 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Rb+ • C6H5F) + C6H5F = (Rb+ • 2C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47.3 ± 5.0 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: V- + C6H5F = (V- • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 60. ± 16. | kJ/mol | N/A | Judai, Hirano, et al., 1997 | gas phase; B |
Gas Chromatography
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | C78, Branched paraffin | 130. | 664.9 | Dallos, Sisak, et al., 2000 | He; Column length: 3.3 m |
Packed | OV-101 | 100. | 671.5 | Righezza, Hassani, et al., 1996 | N2, Chromosorb G HP; Column length: 5. m |
Packed | OV-101 | 110. | 672.6 | Righezza, Hassani, et al., 1996 | N2, Chromosorb G HP; Column length: 5. m |
Packed | OV-101 | 80. | 663.2 | Righezza, Hassani, et al., 1996 | N2, Chromosorb G HP; Column length: 5. m |
Packed | OV-101 | 90. | 668. | Righezza, Hassani, et al., 1996 | N2, Chromosorb G HP; Column length: 5. m |
Packed | OV-101 | 120. | 673.9 | Hassani and Meklati, 1992 | N2, Chromosorb G HP; Column length: 5. m |
Packed | C78, Branched paraffin | 130. | 664.6 | Reddy, Dutoit, et al., 1992 | Chromosorb G HP; Column length: 3.3 m |
Packed | Apolane | 130. | 666. | Dutoit, 1991 | Column length: 3.7 m |
Packed | Apolane | 150. | 680. | Evans and Haken, 1987 | He, Chromosorb G AW DCMS; Column length: 3.7 m |
Packed | Apolane | 150. | 680. | Haken and Vernon, 1986 | Chromosorb G AW DCMS; Column length: 3.7 m |
Packed | SE-30 | 180. | 671. | Oszczapowicz, Osek, et al., 1984 | N2, Chromosorb W AW; Column length: 3. m |
Packed | Apolane | 70. | 651.3 | Riedo, Fritz, et al., 1976 | He, Chromosorb; Column length: 2.4 m |
Packed | Squalane | 100. | 643. | Vernon and Edwards, 1975 | N2, DCMS-treated Celite; Column length: 1. m |
Packed | Apiezon L | 130. | 681. | Wehrli and Kováts, 1959 | Celite; Column length: 2.25 m |
Kovats' RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Packed | Apiezon M | 664.1 | Jalali-Heravi and Garkani-Nejad, 1993 | Chromosorb W; Column length: 2. m; Program: not specified |
Kovats' RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | Carbowax 20M | 150. | 996. | Haken and Vernon, 1986 | Chromosorb G AW DCMS; Column length: 3.7 m; Column diameter: 6.4 mm |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | SPB-5 | 674. | Engel and Ratel, 2007 | 60. m/0.32 mm/1. μm, 40. C @ 2. min, 3. K/min, 230. C @ 10. min |
Capillary | SPB-5 | 674. | Deport, Ratel, et al., 2006 | 60. m/0.32 mm/1. μm, He, 40. C @ 5. min, 3. K/min, 230. C @ 5. min |
Capillary | Petrocol DH | 659.4 | Censullo, Jones, et al., 2003 | 50. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min |
Capillary | OV-1 | 654.4 | Gautzsch and Zinn, 1996 | 8. K/min; Tstart: 35. C; Tend: 300. C |
Packed | SE-30 | 664. | Peng, Ding, et al., 1988 | He, Supelcoport and Chromosorb, 40. C @ 4. min, 10. K/min, 250. C @ 60. min; Column length: 3.05 m |
Packed | SE-30 | 664. | Buchman, Cao, et al., 1984 | He, Chromosorb AW, 40. C @ 10. min, 10. K/min, 210. C @ 30. min; Column length: 3.05 m |
Van Den Dool and Kratz RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Packed | Carbowax 20M | 992. | Buchman, Cao, et al., 1984 | He, Supelcoport, 40. C @ 10. min, 10. K/min, 210. C @ 30. min; Column length: 3.05 m |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | OV-101 | 663. | Zenkevich, 2005 | 25. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | OV-101 | 674. | Ebrahimi and Hadjmohammadi, 2006 | Program: not specified |
Capillary | Methyl Silicone | 681. | N/A | Program: not specified |
Capillary | DB-5 | 684. | Sorimachi, Tanabe, et al., 1995 | He; Column length: 30. m; Program: not specified |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Good, Scott, et al., 1956
Good, W.D.; Scott, D.W.; Waddington, G.,
Combustion calorimetry of organic fluorine compounds by a rotating-bomb method,
J. Phys. Chem., 1956, 60, 1080-1089. [all data]
Swarts, 1919
Swarts, F.,
Etudes thermochimiques sur les combinaisons organiques fluorees,
J. Chim. Phys., 1919, 17, 3-70. [all data]
Scott, McCullough, et al., 1956
Scott, D.W.; McCullough, J.P.; Good, W.D.; Messerly, J.F.; Pennington, R.E.; Kincheloe, T.C.; Hossenlopp, I.A.; Douslin, D.R.; Waddington, G.,
Fluorobenzene: Thermodynamic properties in the solid, liquid and vapor states, a revised vibrational assignment,
J. Am. Chem. Soc., 1956, 78, 5457-5463. [all data]
Stull, 1937
Stull, D.R.,
A semi-micro calorimeter for measuring heat capacities at low temperatures,
J. Am. Chem. Soc., 1937, 59, 2726-2733. [all data]
Roux, Grolier, et al., 1984
Roux, A.H.; Grolier, J.-P.E.; Inglese, A.; Wilhelm, E.,
Excess molar enthalpies, excess molar heat capacities and excess molar volumes of (fluorobenzene + an n-alkane),
Ber. Bunsenges. Phys. Chem., 1984, 88, 986-992. [all data]
Goates, Ott, et al., 1976
Goates, J.R.; Ott, J.B.; Moellmer, J.F.,
Solid + Liquid Phase Equilibria and Solid-compound Formation in Halobenzenes + Aromatic Hydrocarbons,
J. Chem. Thermodyn., 1976, 8, 217. [all data]
Timmermans, 1952
Timmermans, J.,
Freezing points of organic compounds. VVI New determinations.,
Bull. Soc. Chim. Belg., 1952, 61, 393. [all data]
Timmermans, 1935
Timmermans, J.,
Researches in Stoichiometry. I. The Heat of Fusion of Organic Compounds.,
Bull. Soc. Chim. Belg., 1935, 44, 17-40. [all data]
Timmermans, 1934
Timmermans, J.,
Theory of Concentrated Solutions XII.,
Bull. Soc. Chim. Belg., 1934, 43, 626. [all data]
Scott, McCullough, et al., 1956, 2
Scott, D.W.; McCullough, J.P.; Good, W.D.; Messerly, J.F.; Pennington, R.E.; Kincheloe, T.C.; Hossenlopp, I.A.; Douslin, D.R.; Waddington, G.,
Fluorobenzene: Thermodynamic Properties in the Solid, Liquid and Vapor States; A Revised Vibrational Assignment,
J. Am. Chem. Soc., 1956, 78, 5457-63. [all data]
Stull, 1937, 2
Stull, D.R.,
A Semi-micro Calorimeter for Measuring Heat Capacities at Low Temp.,
J. Am. Chem. Soc., 1937, 59, 2726. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Ambrose, Cox, et al., 1960
Ambrose, D.; Cox, J.D.; Townsend, R.,
The critical temperatures of forty organic compounds,
Trans. Faraday Soc., 1960, 56, 1452. [all data]
Douslin, Moore, et al., 1958
Douslin, D.R.; Moore, R.T.; Dawson, J.P.; Waddington, G.,
Pressure-Volume-Temperature Properties of Fluorobenzene,
J. Am. Chem. Soc., 1958, 80, 2031. [all data]
Young, 1889
Young, S.,
On the Vapor Pressures and SPecific Volumes of Similar Compounds of Elements in Relation to the Position of Those Elements in the Periodic Table,
J. Chem. Soc., Trans., 1889, 55, 486. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Basarová and Svoboda, 1991
Basarová, Pavlína; Svoboda, Václav,
Calculation of heats of vaporization of halogenated hydrocarbons from saturated vapour pressure data,
Fluid Phase Equilibria, 1991, 68, 13-34, https://doi.org/10.1016/0378-3812(91)85008-I
. [all data]
Findlay, 1969
Findlay, T.J.V.,
Vapor pressures of fluorobenzenes from 5° to 50°C,
J. Chem. Eng. Data, 1969, 14, 229. [all data]
Scott, McCullough, et al., 1956, 3
Scott, D.W.; McCullough, J.P.; Good, W.D.; Messerly, J.F.; Pennington, R.E.; Kincheloe, T.C.; Hossenlopp, I.A.; Douslin, D.R.; Waddington, G.,
Fluorobenzene: Thermodynamic properties in the solid, liquid and vapor states; a revised vibrational assignment,
J. Am. Chem. Soc., 1956, 78, 5457-54. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Young, 1889, 2
Young, S.,
On the Vapour-Pressures and Specific Volumes of Similar Compounds of Elements in Relation to the Position of those Elements in the Periodic Table,
J. Chem. Soc., 1889, 55, 486-521, https://doi.org/10.1039/ct8895500486
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Buker, Nibbering, et al., 1997
Buker, H.H.; Nibbering, N.M.M.; Espinosa, D.; Mongin, F.; Schlosser, M.,
Additivity of substituent effects in the fluoroarene series: Equilibrium acidity in the gas phase and deprotonation rates in ethereal solution,
Tetrahed. Lett., 1997, 38, 49, 8519-8522, https://doi.org/10.1016/S0040-4039(97)10303-3
. [all data]
Andrade and Riveros, 1996
Andrade, P.B.M.; Riveros, J.M.,
Relative Gas-phase Acidities of Fluoro- and Chlorobenzene,
J. Mass Spectrom., 1996, 31, 7, 767, https://doi.org/10.1002/(SICI)1096-9888(199607)31:7<767::AID-JMS345>3.0.CO;2-Q
. [all data]
Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A.,
Carbon Acidities of Aromatic Compounds,
J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003
. [all data]
Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B.,
Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine,
J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z
. [all data]
Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R.,
Determination of the gas-phase acidities of halogen-substituted aromatic compounds using the silane-cleavage method,
J. Mass Spectrom., 1995, 30, 1, 17, https://doi.org/10.1002/jms.1190300105
. [all data]
Briscese and Riveros, 1975
Briscese, S.M.J.; Riveros, J.M.,
Gas phase nucleophilic reactions of aromatic systems,
J. Am. Chem. Soc., 1975, 97, 230. [all data]
Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P.,
Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-,
J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014
. [all data]
Ruhl, Bisling, et al., 1986
Ruhl, E.; Bisling, P.G.F.; Brutschy, B.; Baumgartel, H.,
Photoionization of Aromatic van der Waals Complexes in a Supersonic Jet,
Chem. Phys. Lett., 1986, 126, 3-4, 232, https://doi.org/10.1016/S0009-2614(86)80075-6
. [all data]
Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H.,
Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies,
J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034
. [all data]
Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S.,
Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems,
J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026
. [all data]
Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S.,
Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes,
J. Am. Chem. Soc., 1981, 103, 2791. [all data]
Farid and McMahon, 1978
Farid, R.; McMahon, T.B.,
Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy,
Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0
. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M.,
Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives,
J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034
. [all data]
Judai, Hirano, et al., 1997
Judai, K.; Hirano, M.; Kawamata, H.; Yabushita, S.; Nakajima, A.; Kaya, K.,
Formation of Vanadium-Arene Complex Anions and Their Photoelectron Spectroscopy,
Chem. Phys. Lett., 1997, 270, 1-2, 23, https://doi.org/10.1016/S0009-2614(97)00336-9
. [all data]
Amunugama and Rodgers, 2002
Amunugama, R.; Rodgers, M.T.,
Influence of substituents on cation-pi interactions. 2. Absolute binding energies of alkali metal cation-fluorobenzene complexes determined by threshold collision-induced dissociation and theoretical studies,
J. Phys. Chem. A, 2002, 106, 39, 9092, https://doi.org/10.1021/jp020459a
. [all data]
Ryzhov, 1999
Ryzhov, V.,
Binding Energies of Chromium Cations with Fluorobenzenes from Radiative Association Kinetics,
Int. J. Mass Spectrom., 1999, 185/186/187, 913. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Fujisawa, Ohno, et al., 1986
Fujisawa, S.; Ohno, K.; Masuda, S.; Harada, Y.,
Penning ionization electron spectroscopy of monohalogenobenzenes: C6H5F, C6H5Cl, C6H5Br, and C6H5I,
J. Am. Chem. Soc., 1986, 108, 6505. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Sell, Mintz, et al., 1978
Sell, J.A.; Mintz, D.M.; Kupperman, A.,
Photoelectron angular distributions of carbon-carbon π electrons in ethylene, benzene, and their fluorinated derivatives,
Chem. Phys. Lett., 1978, 58, 601. [all data]
Behan, Johnstone, et al., 1976
Behan, J.M.; Johnstone, R.A.W.; Bentley, T.W.,
An evaluation of empirical methods for calculating the ionization potentials of substituted benzenes,
Org. Mass Spectrom., 1976, 11, 207. [all data]
Baldwin, Loudon, et al., 1976
Baldwin, M.A.; Loudon, A.G.; Maccoll, A.; Webb, K.S.,
The nature and fragmentation pathways of the molecular ions of some arylureas, arylthioureas, acetanilides, thioacetanilides and related compounds,
Org. Mass Spectrom., 1976, 11, 1181. [all data]
Debies and Rabalais, 1973
Debies, T.P.; Rabalais, J.W.,
Photoelectron spectra of substituted benzenes. II. Seven valence electron substituents,
J. Electron Spectrosc. Relat. Phenom., 1973, 1, 355. [all data]
Smith and Raymonda, 1971
Smith, D.R.; Raymonda, J.W.,
Rydberg states in fluorinated benzenes; hexa-, penta-, and mono- fluorobenzene,
Chem. Phys. Lett., 1971, 12, 269. [all data]
Gilbert and Sandorfy, 1971
Gilbert, R.; Sandorfy, C.,
The vacuum-ultraviolet spectrum of fluorobenzene,
Chem. Phys. Lett., 1971, 9, 121. [all data]
Momigny, Goffart, et al., 1968
Momigny, J.; Goffart, C.; D'Or, L.,
Photoionization studies by total ionization measurements. I. Benzene and its monohalogeno derivatives,
Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 53. [all data]
Clark and Frost, 1967
Clark, I.D.; Frost, D.C.,
A study of the energy levels in benzene and some fluorobenzenes by photoelectron spectroscopy,
J. Am. Chem. Soc., 1967, 89, 244. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Bralsford, Harris, et al., 1960
Bralsford, R.; Harris, P.V.; Price, W.C.,
The effect of fluorine on the electronic spectra and ionization potentials of molecules,
Proc. Roy. Soc. (London), 1960, A258, 459. [all data]
Hammond, Price, et al., 1950
Hammond, V.J.; Price, W.C.; Teegan, J.P.; Walsh, A.D.,
The absorption spectra of some substituted benzenes and naphthalenes in the vacuum ultra-violet,
Faraday Discuss. Chem. Soc., 1950, 9, 53. [all data]
Sell and Kupperman, 1978
Sell, J.A.; Kupperman, A.,
Angular distributions in the photoelectron spectra of benzene and its monohalogenated derivatives,
Chem. Phys., 1978, 33, 367. [all data]
Kobayashi, 1978
Kobayashi, T.,
A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes,
Phys. Lett., 1978, 69, 105. [all data]
Streets and Ceasar, 1973
Streets, D.G.; Ceasar, G.P.,
Inductive mesomeric effects on the π orbitals of halobenzenes,
Mol. Phys., 1973, 26, 1037. [all data]
Klessinger, 1972
Klessinger, M.,
Ionization potentials of substituted benzenes,
Angew. Chem. Int. Ed. Engl., 1972, 11, 525. [all data]
Nishimura, Meisels, et al., 1991
Nishimura, T.; Meisels, G.; Niwa, Y.,
Fragmentation of energy-selected fluorobenzene ion,
Bull. Chem. Soc. Jpn., 1991, 64, 2894. [all data]
Momigny, 1959
Momigny, J.,
Determination et discussion des potentials d'apparition d'ions fragmentaires dans le benzene et ses derives monohalogenes,
Bull. Soc. Roy. Sci. Liege, 1959, 28, 251. [all data]
Howe and Williams, 1969
Howe, I.; Williams, D.H.,
Calculation and qualitative predictions of mass spectra. Mono- and paradisubstituted benzenes,
J. Am. Chem. Soc., 1969, 91, 7137. [all data]
Yeo and Williams, 1970
Yeo, A.N.H.; Williams, D.H.,
Rearrangement in the molecular ions of halogenotoluenes prior to fragmentation in the mass spectrometer,
Chem. Commun., 1970, 886. [all data]
Majer and Patrick, 1962
Majer, J.R.; Patrick, C.R.,
Electron impact on some halogenated aromatic compounds,
J. Chem. Soc. Faraday Trans., 1962, 58, 17. [all data]
Dallos, Sisak, et al., 2000
Dallos, A.; Sisak, A.; Kulcsár, Z.; Kováts, E.,
Pair-wise interactions by gas chromatography VII. Interaction free enthalpies of solutes with secondary alcohol groups,
J. Chromatogr. A, 2000, 904, 2, 211-242, https://doi.org/10.1016/S0021-9673(00)00908-0
. [all data]
Righezza, Hassani, et al., 1996
Righezza, M.; Hassani, A.; Meklati, B.Y.; Chrétien, J.R.,
Quantitative structure-retention relationships (QSRR) of congeneric aromatics series studied on phenyl OV phases in gas chromatography,
J. Chromatogr. A, 1996, 723, 1, 77-91, https://doi.org/10.1016/0021-9673(95)00816-0
. [all data]
Hassani and Meklati, 1992
Hassani, A.; Meklati, B.Y.,
Gas chromatographic behaviour of monosubstituted benzenes, benzaldehydes and acetophenones on OV polymethylphenyl-silicone stationary phases,
Chromatographia, 1992, 33, 5/6, 267-271, https://doi.org/10.1007/BF02276193
. [all data]
Reddy, Dutoit, et al., 1992
Reddy, K.S.; Dutoit, J.-Cl.; Kovats, E. sz.,
Pair-wise interactions by gas chromatography. I. Interaction free enthalpies of solutes with non-associated primary alcohol groups,
J. Chromatogr., 1992, 609, 1-2, 229-259, https://doi.org/10.1016/0021-9673(92)80167-S
. [all data]
Dutoit, 1991
Dutoit, J.,
Gas chromatographic retention behaviour of some solutes on structurally similar polar and non-polar stationary phases,
J. Chromatogr., 1991, 555, 1-2, 191-204, https://doi.org/10.1016/S0021-9673(01)87179-X
. [all data]
Evans and Haken, 1987
Evans, M.B.; Haken, J.K.,
Dispersion and selectivity indices of the halogenated derivatives of cyclohexane, benzene and anisole,
J. Chromatogr., 1987, 389, 240-244, https://doi.org/10.1016/S0021-9673(01)94428-0
. [all data]
Haken and Vernon, 1986
Haken, J.K.; Vernon, F.,
Gas chromatography of halogenated derivatives of cyclohexane, benzene and anisole,
J. Chromatogr., 1986, 361, 57-61, https://doi.org/10.1016/S0021-9673(01)86893-X
. [all data]
Oszczapowicz, Osek, et al., 1984
Oszczapowicz, J.; Osek, J.; Dolecka, E.,
Retention indices of dimethylformamidines, dimethylacetamidines and tetramethylguanidines on a non-polar column,
J. Chromatogr., 1984, 315, 95-100, https://doi.org/10.1016/S0021-9673(01)90727-7
. [all data]
Riedo, Fritz, et al., 1976
Riedo, F.; Fritz, D.; Tarján, G.; Kováts, E.Sz.,
A tailor-made C87 hydrocarbon as a possible non-polar standard stationary phase for gas chromatography,
J. Chromatogr., 1976, 126, 63-83, https://doi.org/10.1016/S0021-9673(01)84063-2
. [all data]
Vernon and Edwards, 1975
Vernon, F.; Edwards, G.T.,
Gas-liquid chromatography on fluorinated stationary phases. I. Hydrocarbons and fluorocarbons,
J. Chromatogr., 1975, 110, 1, 73-80, https://doi.org/10.1016/S0021-9673(00)91212-3
. [all data]
Wehrli and Kováts, 1959
Wehrli, A.; Kováts, E.,
Gas-chromatographische Charakterisierung ogranischer Verbindungen. Teil 3: Berechnung der Retentionsindices aliphatischer, alicyclischer und aromatischer Verbindungen,
Helv. Chim. Acta, 1959, 7, 7, 2709-2736, https://doi.org/10.1002/hlca.19590420745
. [all data]
Jalali-Heravi and Garkani-Nejad, 1993
Jalali-Heravi, M.; Garkani-Nejad, Z.,
Prediction of gas chromatographic retention indices of some benzene derivatives,
J. Chromatogr., 1993, 648, 2, 389-393, https://doi.org/10.1016/0021-9673(93)80421-4
. [all data]
Engel and Ratel, 2007
Engel, E.; Ratel, J.,
Correction of the data generated by mass spectrometry analyses of biological tissues: Application to food authentication,
J. Chromatogr. A, 2007, 1154, 1-2, 331-341, https://doi.org/10.1016/j.chroma.2007.02.012
. [all data]
Deport, Ratel, et al., 2006
Deport, C.; Ratel, J.; Berdagué, J.-L.; Engel, E.,
Comprehensive combinatory standard correction: A calibration method for handling instrumental drifts of gas chromatography-mass spectrometry systems,
J. Chromatogr. A, 2006, 1116, 1-2, 248-258, https://doi.org/10.1016/j.chroma.2006.03.092
. [all data]
Censullo, Jones, et al., 2003
Censullo, A.C.; Jones, D.R.; Wills, M.T.,
Speciation of the volatile organic compounds (VOCs) in solventborne aerosol coatings by solid phase microextraction-gas chromatography,
J. Coat. Technol., 2003, 75, 936, 47-53, https://doi.org/10.1007/BF02697922
. [all data]
Gautzsch and Zinn, 1996
Gautzsch, R.; Zinn, P.,
Use of incremental models to estimate the retention indexes of aromatic compounds,
Chromatographia, 1996, 43, 3/4, 163-176, https://doi.org/10.1007/BF02292946
. [all data]
Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C.,
Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns,
J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8
. [all data]
Buchman, Cao, et al., 1984
Buchman, O.; Cao, G.-Y.; Peng, C.T.,
Structure assignment by retention index in gas-liquid radiochromatography of substituted cyclohexenes,
J. Chromatogr., 1984, 312, 75-90, https://doi.org/10.1016/S0021-9673(01)92765-7
. [all data]
Zenkevich, 2005
Zenkevich, I.G.,
Experimentally measured retention indices., 2005. [all data]
Ebrahimi and Hadjmohammadi, 2006
Ebrahimi, P.; Hadjmohammadi, M.R.,
Simultaneous modeling of the Kovats retention indices on phenyl OV stationary phases with different polarity using MLR and ANN,
QSAR Comb. Sci., 2006, 25, 10, 836-845, https://doi.org/10.1002/qsar.200530145
. [all data]
Sorimachi, Tanabe, et al., 1995
Sorimachi, J.; Tanabe, A.; Mitobe, H.; Kuniaki, K.; Masaaki, S.,
Programmed temperature retention indices for volatile organic compounds on headspace GC/MS analysis,
Niigata-ken Eisei Kogai Kenkyusho Nenpo, 1995, 11, 75-79. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Gas Chromatography, References
- Symbols used in this document:
AE Appearance energy Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy Pc Critical pressure S°liquid Entropy of liquid at standard conditions T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.