1-Butanol, 3,3-dimethyl-
- Formula: C6H14O
- Molecular weight: 102.1748
- IUPAC Standard InChIKey: DUXCSEISVMREAX-UHFFFAOYSA-N
- CAS Registry Number: 624-95-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: 3,3-Dimethyl-1-butanol; 3,3-dimethylbutan-1-ol
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, Gas phase ion energetics data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C6H13O- + =
By formula: C6H13O- + H+ = C6H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 371.6 ± 2.1 | kcal/mol | G+TS | Higgins and Bartmess, 1998 | gas phase |
ΔrH° | 373.0 ± 2.0 | kcal/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrH° | 372.5 ± 2.8 | kcal/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 365.0 ± 2.0 | kcal/mol | IMRE | Higgins and Bartmess, 1998 | gas phase |
ΔrG° | 366.4 ± 2.1 | kcal/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrG° | 365.9 ± 2.7 | kcal/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
Gas phase ion energetics data
Go To: Top, Reaction thermochemistry data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C2H5O+ | 10.14 | C4H9 | EI | Holmes, Lossing, et al., 1991 | LL |
De-protonation reactions
C6H13O- + =
By formula: C6H13O- + H+ = C6H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 371.6 ± 2.1 | kcal/mol | G+TS | Higgins and Bartmess, 1998 | gas phase; B |
ΔrH° | 373.0 ± 2.0 | kcal/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 372.5 ± 2.8 | kcal/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 365.0 ± 2.0 | kcal/mol | IMRE | Higgins and Bartmess, 1998 | gas phase; B |
ΔrG° | 366.4 ± 2.1 | kcal/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 365.9 ± 2.7 | kcal/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
Gas Chromatography
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | OV-101 | 80. | 815.5 | Boneva, 1987 | N2; Column length: 100. m; Column diameter: 0.27 mm |
Capillary | OV-101 | 90. | 816.7 | Boneva, 1987 | N2; Column length: 100. m; Column diameter: 0.27 mm |
Kovats' RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Carbowax 20M | 80. | 1276. | Boneva, 1987 | N2; Column length: 50. m; Column diameter: 0.23 mm |
Capillary | Carbowax 20M | 90. | 1276. | Boneva, 1987 | N2; Column length: 50. m; Column diameter: 0.23 mm |
Normal alkane RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | DB-5 | 120. | 796. | Verevkin, Krasnykh, et al., 2003 | 60. m/0.32 mm/0.25 μm, Nitrogen |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Methyl Silicone | 779. | Feng and Mu, 2007 | Program: not specified |
Capillary | Polydimethyl siloxane | 779. | Junkes, Castanho, et al., 2003 | Program: not specified |
Capillary | Methyl Silicone | 779. | Estrada and Gutierrez, 1999 | Program: not specified |
Normal alkane RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 1249. | Peng, Yang, et al., 1991 | Program: not specified |
References
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Higgins and Bartmess, 1998
Higgins, P.R.; Bartmess, J.E.,
The Gas Phase Acidities of Long Chain Alcohols.,
Int. J. Mass Spectrom., 1998, 175, 1-2, 71-79, https://doi.org/10.1016/S0168-1176(98)00125-6
. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T.,
The gas phase acidity of aliphatic alcohols,
J. Am. Chem. Soc., 1983, 105, 2203. [all data]
Holmes, Lossing, et al., 1991
Holmes, J.L.; Lossing, F.P.; Mayer, P.M.,
Heats of formation of oxygen-containing organic free radicals from appearance energy measurements,
J. Am. Chem. Soc., 1991, 113, 9723. [all data]
Boneva, 1987
Boneva, S.,
Gas Chromatographic Retention Indices for C6 Alkanols on OV-101 and Carbowax 20M Capillary Columns,
Chromatographia, 1987, 23, 1, 50-52, https://doi.org/10.1007/BF02310419
. [all data]
Verevkin, Krasnykh, et al., 2003
Verevkin, Sergey P.; Krasnykh, Eugen L.; Vasiltsova, Tatiana V.; Heintz, Andreas,
Determination of Ambient Temperature Vapor Pressures and Vaporization Enthalpies of Branched Ethers,
J. Chem. Eng. Data, 2003, 48, 3, 591-599, https://doi.org/10.1021/je0255980
. [all data]
Feng and Mu, 2007
Feng, H.; Mu, L.-L.,
Quantitative structure-retention relationships for alkane and its derivatives based on electrotopological state index and molecular shape index,
Chem. Ind. Engineering (Chinese), 2007, 24, 2, 161-168. [all data]
Junkes, Castanho, et al., 2003
Junkes, B.S.; Castanho, R.D.M.; Amboni, C.; Yunes, R.A.; Heinzen, V.E.F.,
Semiempirical Topological Index: A Novel Molecular Descriptor for Quantitative Structure-Retention Relationship Studies,
Internet Electronic Journal of Molecular Design, 2003, 2, 1, 33-49. [all data]
Estrada and Gutierrez, 1999
Estrada, E.; Gutierrez, Y.,
Modeling chromatographic parameters by a novel graph theoretical sub-structural approach,
J. Chromatogr. A, 1999, 858, 2, 187-199, https://doi.org/10.1016/S0021-9673(99)00808-0
. [all data]
Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F.,
Prediction of rentention idexes. II. Structure-retention index relationship on polar columns,
J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F
. [all data]
Notes
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References
- Symbols used in this document:
AE Appearance energy ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.