Methyl Alcohol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Phase change data

Go To: Top, Henry's Law data, Gas phase ion energetics data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil337.8 ± 0.3KAVGN/AAverage of 154 out of 171 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus176. ± 1.KAVGN/AAverage of 13 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple175.5 ± 0.5KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Tc513. ± 1.KAVGN/AAverage of 27 out of 31 values; Individual data points
Quantity Value Units Method Reference Comment
Pc79. ± 1.atmAVGN/AAverage of 17 out of 20 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.117l/molN/AGude and Teja, 1995 
Vc0.113024l/molN/ACraven and de Reuck, 1986TRC
Vc0.118l/molN/AFrancesconi, Lentz, et al., 1981Uncertainty assigned by TRC = 0.004 l/mol; TRC
Vc0.11663l/molN/AZubarev and Bagdonas, 1969Uncertainty assigned by TRC = 0.0035 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc8.51 ± 0.07mol/lAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap9.0 ± 0.1kcal/molAVGN/AAverage of 11 out of 12 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
8.415337.7N/AMajer and Svoboda, 1985 
9.37258.AStephenson and Malanowski, 1987Based on data from 175. to 273. K.; AC
8.82353.AStephenson and Malanowski, 1987Based on data from 338. to 487. K.; AC
10.4213.AStephenson and Malanowski, 1987Based on data from 188. to 228. K.; AC
9.30275.AStephenson and Malanowski, 1987Based on data from 224. to 290. K.; AC
9.15300.AStephenson and Malanowski, 1987Based on data from 285. to 345. K.; AC
8.84350.AStephenson and Malanowski, 1987Based on data from 335. to 376. K.; AC
8.63388.AStephenson and Malanowski, 1987Based on data from 373. to 458. K.; AC
8.39468.AStephenson and Malanowski, 1987Based on data from 453. to 513. K.; AC
7.82373.CYerlett and Wormald, 1986AC
6.72423.CYerlett and Wormald, 1986AC
4.92473.CYerlett and Wormald, 1986AC
1.8510.CYerlett and Wormald, 1986AC
8.96331.EBCervenkova and Boublik, 1984Based on data from 316. to 336. K.; AC
9.15303.N/AGibbard and Creek, 1974Based on data from 288. to 337. K. See also Boublik, Fried, et al., 1984.; AC
8.41 ± 0.02338.CCounsell and Lee, 1973AC
8.51 ± 0.02331.CCounsell and Lee, 1973AC
8.65 ± 0.02321.CCounsell and Lee, 1973AC
8.84 ± 0.02306.CCounsell and Lee, 1973AC
8.77 ± 0.02313.CSvoboda, Veselý, et al., 1973AC
8.65 ± 0.02323.CSvoboda, Veselý, et al., 1973AC
8.51 ± 0.02333.CSvoboda, Veselý, et al., 1973AC
8.44 ± 0.02338.CSvoboda, Veselý, et al., 1973AC
8.29 ± 0.02343.CSvoboda, Veselý, et al., 1973AC
8.84352.N/AWilhoit and Zwolinski, 1973Based on data from 337. to 383. K.; AC
9.25290.EBBoublík and Aim, 1972Based on data from 275. to 336. K. See also Stephenson and Malanowski, 1987.; AC
9.15303.EBAmbrose and Sprake, 1970Based on data from 288. to 357. K.; AC
8.68368.N/AHirata, Suda, et al., 1967Based on data from 353. to 483. K.; AC
9.18293.N/AKlyueva, Mischenko, et al., 1960Based on data from 278. to 323. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 477.
A (kcal/mol) 10.8
α -0.31
β 0.4241
Tc (K) 512.6
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
353.5 to 512.635.152821569.613-34.846Ambrose, Sprake, et al., 1975Coefficents calculated by NIST from author's data.
288.1 to 356.835.198381581.341-33.50Ambrose and Sprake, 1970Coefficents calculated by NIST from author's data.
353. to 483.5.307301676.569-21.728Hirata and Suda, 1967Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
0.760175.3Domalski and Hearing, 1996AC
0.5249176.Maass and Walbauer, 1925DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
2.99176.Maass and Walbauer, 1925DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
0.88161.1Domalski and Hearing, 1996CAL
4.33175.3
0.96157.3
4.37175.6

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.1520157.34crystaline, IIcrystaline, ICarlson and Westrum, 1971DH
0.76850175.59crystaline, IliquidCarlson and Westrum, 1971DH
0.3681103.crystalineglassSugisaki, Suga, et al., 1968Glass transition.; DH
0.170157.8crystaline, IIcrystaline, IStaveley and Gupta, 1949DH
0.7550175.4crystaline, IliquidStaveley and Gupta, 1949DH
0.1543157.4crystaline, IIcrystaline, IKelley, 1929DH
0.7569175.2crystaline, IliquidKelley, 1929DH
0.141161.1crystaline, IIcrystaline, IParks, 1925DH
0.7591175.3crystaline, IliquidParks, 1925DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
0.966157.34crystaline, IIcrystaline, ICarlson and Westrum, 1971DH
4.376175.59crystaline, IliquidCarlson and Westrum, 1971DH
3.573103.crystalineglassSugisaki, Suga, et al., 1968Glass; DH
1.08157.8crystaline, IIcrystaline, IStaveley and Gupta, 1949DH
4.304175.4crystaline, IliquidStaveley and Gupta, 1949DH
0.980157.4crystaline, IIcrystaline, IKelley, 1929DH
4.321175.2crystaline, IliquidKelley, 1929DH
0.875161.1crystaline, IIcrystaline, IParks, 1925DH
4.331175.3crystaline, IliquidParks, 1925DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Henry's Law data

Go To: Top, Phase change data, Gas phase ion energetics data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
140. QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
220. XN/A 
220.5200.MN/A 
220. XN/AValue given here as quoted by missing citation.
160.5600.XN/A 
230. MN/A 
210. M,XTimmermans, 1960Value given here as quoted by missing citation.
230. MButler, Ramchandani, et al., 1935This paper supersedes earlier work with more concentrated solutions Butler, Thomson, et al., 1933.

Gas phase ion energetics data

Go To: Top, Phase change data, Henry's Law data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to CH4O+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.84 ± 0.01eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)180.3kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity173.2kcal/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
10.85 ± 0.03PITao, Klemm, et al., 1992LL
10.82 ± 0.05EIHolmes and Lossing, 1991LL
10.84 ± 0.07EIBowen and Maccoll, 1984LBLHLM
10.9EIMishchanchuk, Pokrovskii, et al., 1982LBLHLM
10.84 ± 0.08EIAllam, Migahed, et al., 1982LBLHLM
10.90 ± 0.03EISahini, Constantin, et al., 1978LLK
10.85 ± 0.01PIBerkowitz, 1978LLK
10.846 ± 0.002PEMacNeil and Dixon, 1977LLK
10.90 ± 0.12EIFinney and Harrison, 1972LLK
10.83 ± 0.03PIWarneck, 1971LLK
10.85 ± 0.02PECocksey, Eland, et al., 1971LLK
10.85PEBaker, Betteridge, et al., 1971LLK
10.85PEBaker, Betteridge, et al., 1971LLK
10.829 ± 0.015PIOmura, Kaneko, et al., 1969RDSH
10.85EILifshitz, Shapiro, et al., 1969RDSH
10.83PEDewar and Worley, 1969RDSH
10.84 ± 0.02PIRefaey and Chupka, 1968RDSH
10.85CICermak, 1968RDSH
10.83PEAl-Joboury and Turner, 1964RDSH
10.85 ± 0.02PIWatanabe, 1954RDSH
10.96EIVorob'ev, Furlei, et al., 1989Vertical value; LL
11.0PEVon Niessen, Bieri, et al., 1980Vertical value; LLK
10.95PEUtsunomiya, Kobayashi, et al., 1980Vertical value; LLK
10.95PEKobayashi, 1978Vertical value; LLK
10.86PEBenoit and Harrison, 1977Vertical value; LLK
10.97 ± 0.03PEPeel and Willett, 1975Vertical value; LLK
10.96PERobin and Kuebler, 1973Vertical value; LLK
10.95PEOgata, Onizuka, et al., 1973Vertical value; LLK
10.94PEKatsumata, Iwai, et al., 1973Vertical value; LLK
10.95PEOgata, Onizuka, et al., 1972Vertical value; LLK
10.96PEBaker, Betteridge, et al., 1971Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH+22.31 ± 0.09?EIReed and Snedden, 1956RDSH
CHO+13.06 ± 0.10H2+HPIWarneck, 1971LLK
CHO+14.0 ± 0.2H2+HEILifshitz, Shapiro, et al., 1969RDSH
CH2+14.05 ± 0.05H2OPIWarneck, 1971LLK
CH2+15.3H2OEIHaney and Franklin, 1968RDSH
CH2O+10.9H2EIMishchanchuk, Pokrovskii, et al., 1982LBLHLM
CH2O+12.05 ± 0.12H2PIWarneck, 1971LLK
CH2O+12.45H2PIRefaey and Chupka, 1968RDSH
CH3+13.82 ± 0.04OHPIWarneck, 1971LLK
CH3+13.5OHEIFriedman, Long, et al., 1957RDSH
CH3O+11.67 ± 0.09HEIBowen and Maccoll, 1984LBLHLM
CH3O+10.4HEIMishchanchuk, Pokrovskii, et al., 1982LBLHLM
CH3O+11.85 ± 0.08HEIAllam, Migahed, et al., 1982LBLHLM
CH3O+11.88 ± 0.05HEISelim and Helal, 1981LLK
CH3O+11.69HEILossing, 1977LLK
CH3O+11.76 ± 0.11HEIFinney and Harrison, 1972LLK
CH3O+11.55 ± 0.03HPIWarneck, 1971LLK
CH3O+11.66 ± 0.04HPIOmura, Kaneko, et al., 1969RDSH
CH3O+11.67HEILifshitz, Shapiro, et al., 1969RDSH
CH3O+11.67 ± 0.03HPIRefaey and Chupka, 1968RDSH
CH3O+[CH2OH+]11.649 ± 0.003HPIBerkowitz, Ellison, et al., 1994Unpublished results of B. Ruscic and J. Berkowitz; LL
CO+13.72H2EIFriedman, Long, et al., 1957RDSH
CO+14.31 ± 0.052H2EIFriedland and Strakna, 1956RDSH

De-protonation reactions

CH3O- + Hydrogen cation = Methyl Alcohol

By formula: CH3O- + H+ = CH4O

Quantity Value Units Method Reference Comment
Δr382. ± 2.kcal/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr376.02 ± 0.62kcal/molH-TSNee, Osterwalder, et al., 2006gas phase; B
Δr376.04 ± 0.55kcal/molH-TSOsborn, Leahy, et al., 1998gas phase; B
Δr374.0 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; The acidity is 1.2 kcal/mol stronger than that from the D-EA cycle, due to the multi-compound fit for the acidity scale.; value altered from reference due to change in acidity scale; B
Δr374.6 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr375.10 ± 0.60kcal/molTDEqMeot-ner and Sieck, 1986gas phase; Experimental entropy: 21.5 eu, 0.6 less than H2O; B

Gas Chromatography

Go To: Top, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillarySE-30140.340.Haken and Korhonen, 1985Column length: 25. m; Column diameter: 0.33 mm
PackedSE-30100.384.Winskowski, 1983Gaschrom Q; Column length: 2. m
PackedSE-30150.356.Haken, Nguyen, et al., 1979Celatom AW silanized; Column length: 3.7 m
PackedApiezon L120.336.Bogoslovsky, Anvaer, et al., 1978Celite 545
PackedSE-30100.373.Pías and Gascó, 1975Ar, Chromosorb W AW DMCS HP (80-100 mesh); Column length: 1. m
PackedApiezon L100.355.Brown, Chapman, et al., 1968N2, DCMS-treated Chromosorb W; Column length: 2.3 m
PackedSE-3080.330.Viani, Müggler-Chavan, et al., 1965He, Chromosorb P; Column length: 6. m

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH-100380.Haagen-Smit Laboratory, 1997He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min)

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-351100.917.Haken and Korhonen, 1985N2; Column length: 25. m; Column diameter: 0.32 mm
CapillaryOV-35180.891.Haken and Korhonen, 1985N2; Column length: 25. m; Column diameter: 0.32 mm
PackedPEG-2000152.860.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000179.881.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedCarbowax 20M100.892.Zarazir, Chovin, et al., 1970Chromosorb W; Column length: 2. m
PackedPolyethylene Glycol 4000100.904.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 4000120.897.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 4000140.886.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 400080.914.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCBP-20899.Shimadzu, 200325. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C
CapillaryDB-Wax888.Shimoda and Shibamoto, 1990He, 40. C @ 6. min, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 190. C

Kovats' RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedCarbowax 20M869.Kevei and Kozma, 1976Chromosorb; Program: not specified

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH372.7Censullo, Jones, et al., 200350. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min
CapillaryPetrocol DH378.2Censullo, Jones, et al., 200350. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min
CapillarySE-30400.0Golovnya, Kuz'menko, et al., 200025. m/0.32 mm/1. μm, He, 4. K/min; Tstart: 60. C
CapillarySE-30400.0Golovnya, Kuz'menko, et al., 2000, 225. m/0.32 mm/1. μm, He, 4. K/min; Tstart: 60. C
CapillaryDB-1361.Bartelt, 199730. m/0.32 mm/5. μm, He, 35. C @ 1. min, 10. K/min; Tend: 270. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedSE-30368.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax910.4Censullo, Jones, et al., 200360. m/0.25 mm/0.5 μm, He, 50. C @ 10. min, 5. K/min, 250. C @ 10. min
CapillaryFFAP916.Ott, Fay, et al., 199730. m/0.25 mm/0.25 μm, He, 20. C @ 1. min, 4. K/min, 200. C @ 1. min
PackedCarbowax 20M866.van den Dool and Kratz, 1963Celite 545, 4.6 K/min; Tstart: 75. C; Tend: 228. C

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryDB-160.382.Shimadzu, 2003, 260. m/0.32 mm/1. μm, He
PackedSqualane100.338.Vernon, 1971N2
PackedDC-400150.370.Anderson, 1968Helium, Gas-Pak (60-80 mesh); Column length: 3.0 m
PackedSqualane125.348.Cremer and Nonn, 1964H2, Chromosorb W (80-100 mesh); Column length: 3. m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPolydimethyl siloxane: CP-Sil 5 CB395.Bramston-Cook, 201360. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min
CapillaryPetrocol DH379.Supelco, 2012100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min
CapillaryHP-5367.5Leffingwell and Alford, 200560. m/0.32 mm/0.25 μm, He, 30. C @ 2. min, 2. K/min, 260. C @ 28. min
CapillaryOV-101381.Zenkevich, 200525. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C
CapillaryBP-1370.Health Safety Executive, 200050. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C
CapillaryDB-5MS353.5Shoenmakers, Oomen, et al., 200030. m/0.25 mm/0.25 μm, He, 40. C @ 1. min, 3. K/min; Tend: 250. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS381.Kotowska, Zalikowski, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryMethyl Silicone373.Chen and Feng, 2007Program: not specified
CapillaryMethyl Silicone373.Kou, Zhang, et al., 2006Program: not specified
CapillaryMethyl Silicone408.Blunden, Aneja, et al., 200560. m/0.32 mm/1.0 μm, Helium; Program: -50 0C (2 min) 8 0C/min -> 200 0C (7.75 min) 25 0C -> 225 0C (8 min)
CapillaryMethyl Silicone373.Fu and Wang, 2004Program: not specified
CapillaryMethyl Silicone362.N/AProgram: not specified
CapillaryPolydimethyl siloxanes381.Zenkevich, 2001Program: not specified
CapillaryPolydimethyl siloxanes381.Zenkevich, 2001, 2Program: not specified
CapillaryMethyl Silicone381.Zenkevich, 1999Program: not specified
CapillarySPB-1353.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryPolydimethyl siloxanes381.Zenkevich and Chupalov, 1996Program: not specified
CapillaryMethyl Silicone381.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillaryDB-1348.Schuberth, 199430. m/0.25 mm/1. μm, He; Program: 40C (4min) => 10C/min => 200C => 50C/min => 250C
CapillarySPB-1353.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1391.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryCP Sil 8 CB404.Weller and Wolf, 198940. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.384.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified

Normal alkane RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryCarbowax 20M100.892.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium
CapillaryCarbowax 20M60.899.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium
CapillaryCarbowax 20M80.895.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium
CapillaryDB-Wax60.921.Shimadzu, 2003, 250. m/0.32 mm/1. μm, He

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax911.Shimadzu, 201230. m/0.32 mm/0.50 μm, Helium, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-Wax907.Chida, Sone, et al., 200460. m/0.25 mm/0.5 μm, 35. C @ 5. min, 4. K/min, 240. C @ 10. min
CapillaryDB-Wax911.Shimadzu Corporation, 200330. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-Wax903.Tanaka, Yamauchi, et al., 200330. m/0.25 mm/0.25 μm, 30. C @ 1. min, 4. K/min; Tend: 250. C
CapillaryDB-Wax905.Tanaka, Yamauchi, et al., 200330. m/0.25 mm/0.25 μm, 30. C @ 1. min, 4. K/min; Tend: 250. C
CapillaryTC-Wax898.Suhardi, Suzuki, et al., 200260. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min, 230. C @ 10. min
CapillaryDB-Wax905.Duque, Bonilla, et al., 200130. m/0.25 mm/0.25 μm, Helium, 4. K/min, 220. C @ 30. min; Tstart: 25. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax 20M920.Vinogradov, 2004Program: not specified
CapillaryPolyethylene Glycol897.Zenkevich, Korolenko, et al., 1995Program: not specified
CapillaryDB-Wax909.Peng, Yang, et al., 1991Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.907.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.920.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 20M883.Ramsey and Flanagan, 1982Program: not specified

References

Go To: Top, Phase change data, Henry's Law data, Gas phase ion energetics data, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Craven and de Reuck, 1986
Craven, R.J.B.; de Reuck, K.M., Ideal-Gas and Saturation Properties of Methanol, Int. J. Thermophys., 1986, 7, 541. [all data]

Francesconi, Lentz, et al., 1981
Francesconi, A.Z.; Lentz, H.; Franck, E.U., Phase Equilibriums and PVT Data for the Methane-Methanol System to 300 MPa and 240 degree C, J. Phys. Chem., 1981, 85, 3303. [all data]

Zubarev and Bagdonas, 1969
Zubarev, V.N.; Bagdonas, A., Saturation Curve Properties and Specific Volumes of Methanol, Teploenergetika (Moscow), 1969, 16, 88-91. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Yerlett and Wormald, 1986
Yerlett, T.K.; Wormald, C.J., The enthalpy of methanol, The Journal of Chemical Thermodynamics, 1986, 18, 8, 719-726, https://doi.org/10.1016/0021-9614(86)90105-9 . [all data]

Cervenkova and Boublik, 1984
Cervenkova, Irena; Boublik, Tomas, Vapor pressure, refractive indexes and densities at 20.0.degree.C, and vapor-liquid equilibrium at 101.325 kPa in the tert-amyl methyl ether-methanol system, J. Chem. Eng. Data, 1984, 29, 4, 425-427, https://doi.org/10.1021/je00038a017 . [all data]

Gibbard and Creek, 1974
Gibbard, H. Frank; Creek, Jefferson L., Vapor pressure of methanol from 288.15 to 337.65.deg.K, J. Chem. Eng. Data, 1974, 19, 4, 308-310, https://doi.org/10.1021/je60063a013 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Counsell and Lee, 1973
Counsell, J.F.; Lee, D.A., Thermodynamic properties of organic oxygen compounds 31. Vapour heat capacity and enthalpy of vaporization of methanol, The Journal of Chemical Thermodynamics, 1973, 5, 4, 583-589, https://doi.org/10.1016/S0021-9614(73)80107-7 . [all data]

Svoboda, Veselý, et al., 1973
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J., Enthalpy data of liquids. II. The dependence of heats of vaporization of methanol, propanol, butanol, cyclohexane, cyclohexene, and benzene on temperature, Collect. Czech. Chem. Commun., 1973, 38, 12, 3539-3543, https://doi.org/10.1135/cccc19733539 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Boublík and Aim, 1972
Boublík, T.; Aim, K., Heats of vaporization of simple non-spherical molecule compounds, Collect. Czech. Chem. Commun., 1972, 37, 11, 3513-3521, https://doi.org/10.1135/cccc19723513 . [all data]

Ambrose and Sprake, 1970
Ambrose, D.; Sprake, C.H.S., Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols, The Journal of Chemical Thermodynamics, 1970, 2, 5, 631-645, https://doi.org/10.1016/0021-9614(70)90038-8 . [all data]

Hirata, Suda, et al., 1967
Hirata, Mitsuho; Suda, Seijiro; Onodera, Yutaka, Vapor Pressure of Methanol in High Pressure Regions, Chemical engineering, 1967, 31, 4, 339-342,a1, https://doi.org/10.1252/kakoronbunshu1953.31.339 . [all data]

Klyueva, Mischenko, et al., 1960
Klyueva, M.L.; Mischenko, K.P.; Fedorov, M.K., Zh. Prikl. Khim. (S.-Peterburg), 1960, 3, 473. [all data]

Ambrose, Sprake, et al., 1975
Ambrose, D.; Sprake, C.H.S.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds. XXXVII. Vapour Pressures of Methanol, Ethanol, Pentan-1-ol, and Octan-1-ol from the Normal Boiling Temperature to the Critical Temperature, J. Chem. Thermodyn., 1975, 7, 2, 185-190, https://doi.org/10.1016/0021-9614(75)90267-0 . [all data]

Hirata and Suda, 1967
Hirata, M.; Suda, S., Vapor Pressure on Methanol in High Pressure Regions, Kagaku Kogaku, 1967, 31, 4, 339-342, https://doi.org/10.1252/kakoronbunshu1953.31.339 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Maass and Walbauer, 1925
Maass, O.; Walbauer, L.J., The specific heats and latent heats of fusion of ice and of several organic compounds, J. Am. Chem. Soc., 1925, 47, 1-9. [all data]

Carlson and Westrum, 1971
Carlson, H.G.; Westrum, E.F., Jr., Methanol: heat capacity, enthalpies of transition and melting, and thermodynamic properties from 5-300K, J. Chem. Phys., 1971, 54, 1464-1471. [all data]

Sugisaki, Suga, et al., 1968
Sugisaki, M.; Suga, H.; Seki, S., Calorimetric study of the glassy state. III. Novel type calorimeter for study of glassy state and heat capacity of glassy methanol, Bull. Chem. Soc. Japan, 1968, 41, 2586-2591. [all data]

Staveley and Gupta, 1949
Staveley, L.A.K.; Gupta, A.K., A semi-micro low-temperature calorimeter, and a comparison of some thermodynamic properties of methyl alcohol and methyl deuteroxide, Trans. Faraday Soc., 1949, 45, 50-61. [all data]

Kelley, 1929
Kelley, K.K., The heat capacity of methyl alcohol from 16K to 298K and the corresponding entropy and free energy, J. Am. Chem. Soc., 1929, 51, 180-187. [all data]

Parks, 1925
Parks, G.S., Thermal data on organic compounds I. The heat capacities and free energies of methyl, ethyl and normal-butyl alcohols, J. Am. Chem. Soc., 1925, 47, 338-345. [all data]

Timmermans, 1960
Timmermans, J., The Physico-Chemical Constants of Binary Systems in Conc-- entrated Solutions, Wiley-Interscience, New York, 1960. [all data]

Butler, Ramchandani, et al., 1935
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W., The Solubility of Non-Electrolytes. Part 1. The Free Energy of Hydration of Some Alphatic Alcohols, J. Chem. Soc., 1935, 280-285, https://doi.org/10.1039/jr9350000280 . [all data]

Butler, Thomson, et al., 1933
Butler, J.A.V.; Thomson, D.W.; Maclennan, W.H., The Free Energy of the Normal Aliphatic Alcohols in Aqueous Solution. Part I. The Partial Vapor Pressures of Aqueous Solutions of Methyl, n-Propyl, and n-Butyl Alcohols. Part II. THe Solubilities of, J. Chem. Soc., 1933, 1933, 674-686. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Tao, Klemm, et al., 1992
Tao, W.; Klemm, R.B.; Nesbitt, F.L.; Stief, J.L., A discharge flow-photoionization mass spectrometric study of hydroxymethyl radicals (H2COH and H2COD): Photoionization spectrum and ionization energy, J. Phys. Chem., 1992, 96, 104. [all data]

Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P., Ionization energies of homologous organic compounds and correlation with molecular size, Org. Mass Spectrom., 1991, 26, 537. [all data]

Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A., Low energy, low temperature mass spectra, Org. Mass Spectrom., 1984, 19, 379. [all data]

Mishchanchuk, Pokrovskii, et al., 1982
Mishchanchuk, B.G.; Pokrovskii, V.A.; Shabel'nikov, V.P.; Korol, E.N., Mass spectrometric study of energy characteristics of methanol and ethanol ions during ionization by a strong electric field, Teor. Eksp. Khim., 1982, 18, 307. [all data]

Allam, Migahed, et al., 1982
Allam, S.H.; Migahed, M.D.; El-Khodary, A., Electron impact ionization and dissociation of deuterated and non-deuterated methanol, methyl cyanide, nitromethane and nitrobenzene, Egypt. J. Phys., 1982, 13, 167. [all data]

Sahini, Constantin, et al., 1978
Sahini, V.E.; Constantin, V.; Serban, I., Determination of ionization potentials using a MI-1305 mass spectrometer, Rev. Roum. Chim., 1978, 23, 479. [all data]

Berkowitz, 1978
Berkowitz, J., Photoionization of CH3OH, CD3OH, and CH3OD: Dissociative ionization mechanisms and ionic structures, J. Chem. Phys., 1978, 69, 3044. [all data]

MacNeil and Dixon, 1977
MacNeil, K.A.G.; Dixon, R.N., High-resolution photoelectron spectroscopy of methanol and its deuterated derivatives: Internal rotation in the ground ionic state, J. Electron Spectrosc. Relat. Phenom., 1977, 11, 315. [all data]

Finney and Harrison, 1972
Finney, C.D.; Harrison, A.G., A third-derivative method for determining electron-impact onset potentials, Int. J. Mass Spectrom. Ion Phys., 1972, 9, 221. [all data]

Warneck, 1971
Warneck, P., Photoionisation von methanol und formaldehyd, Z. Naturforsch. A:, 1971, 26, 2047. [all data]

Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J., The effect of alkyl substitution on ionisation potential, J. Chem. Soc., 1971, (B), 790. [all data]

Baker, Betteridge, et al., 1971
Baker, A.D.; Betteridge, D.; Kemp, N.R.; Kirby, R.E., Application of photoelectron spectrometry to pesticide analysis. II.Photoelectron spectra of hydroxy-, and halo-alkanes and halohydrins, Anal. Chem., 1971, 43, 375. [all data]

Omura, Kaneko, et al., 1969
Omura, I.; Kaneko, T.; Yamada, Y.; Tanaka, K., Mass spectrometric studies of photoionization. V. Methanol and methanol-d, J. Phys. Soc. Japan, 1969, 27, 981. [all data]

Lifshitz, Shapiro, et al., 1969
Lifshitz, C.; Shapiro, M.; Sternberg, R., Isotopic effects on metastable transitions. IV. Isotopic methanols, Israel J. Chem., 1969, 7, 391. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Refaey and Chupka, 1968
Refaey, K.M.A.; Chupka, W.A., Photoionization of the lower aliphatic alcohols with mass analysis, J. Chem. Phys., 1968, 48, 5205. [all data]

Cermak, 1968
Cermak, V., Penning ionization electron spectroscopy. I. Determination of ionization potentials of polyatomic molecules, Collection Czech. Chem. Commun., 1968, 33, 2739. [all data]

Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W., Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials, J. Chem. Soc., 1964, 4434. [all data]

Watanabe, 1954
Watanabe, K., Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO, J. Chem. Phys., 1954, 22, 1564. [all data]

Vorob'ev, Furlei, et al., 1989
Vorob'ev, A.S.; Furlei, I.I.; Sultanov, A.S.; Khvostenko, V.I.; Leplyanin, G.V.; Derzhinskii, A.R.; Tolstikov, G.A., Mass spectrometry of reasonance capture of electrons and photoelectron spectroscopy of molecules of ethylene oxide, ethylene sulfide, and their derivatives, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1989, 1388. [all data]

Von Niessen, Bieri, et al., 1980
Von Niessen, W.; Bieri, G.; Asbrink, L., 30.4 nm He(II) photoelectron spectra of organic molecules. Part III. Oxo-compounds (C,H,O), J. Electron Spectrosc. Relat. Phenom., 1980, 21, 175. [all data]

Utsunomiya, Kobayashi, et al., 1980
Utsunomiya, C.; Kobayashi, T.; Nagakura, S., Photoelectron angular distribution measurements for some aliphatic alcohols, amines, halides, Bull. Chem. Soc. Jpn., 1980, 53, 1216. [all data]

Kobayashi, 1978
Kobayashi, T., A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes, Phys. Lett., 1978, 69, 105. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Peel and Willett, 1975
Peel, J.B.; Willett, G.D., Photoelectron spectroscopic studies of the higher alcohols, Aust. J. Chem., 1975, 28, 2357. [all data]

Robin and Kuebler, 1973
Robin, M.B.; Kuebler, N.A., Excited electronic states of the simple alcohols, J. Electron Spectrosc. Relat. Phenom., 1973, 1, 13. [all data]

Ogata, Onizuka, et al., 1973
Ogata, H.; Onizuka, H.; Nihei, Y.; Kamada, H., The photoelectron spectra of alcohols, mercaptans and amines, Bull. Chem. Soc. Jpn., 1973, 46, 3036. [all data]

Katsumata, Iwai, et al., 1973
Katsumata, S.; Iwai, T.; Kimura, K., Photoelectron spectra and sum rule consideration. Higher alkyl amines and alcohols, Bull. Chem. Soc. Jpn., 1973, 46, 3391. [all data]

Ogata, Onizuka, et al., 1972
Ogata, H.; Onizuka, H.; Nihei, Y.; Kamada, H., On the first bands of the photoelectron spectra of amines, alcohols, and mercaptans, Chem. Lett., 1972, 895. [all data]

Reed and Snedden, 1956
Reed, R.I.; Snedden, W., Studies in electron impact methods. Part 6.-The formation of the methine and carbon ions, J. Chem. Soc. Faraday Trans., 1956, 55, 876. [all data]

Haney and Franklin, 1968
Haney, M.A.; Franklin, J.L., Correlation of excess energies of electron-impact dissociations with the translational energies of the products, J.Chem. Phys., 1968, 48, 4093. [all data]

Friedman, Long, et al., 1957
Friedman, L.; Long, F.A.; Wolfsberg, M., Study of the mass spectra of the lower aliphatic alcohols, J. Chem. Phys., 1957, 27, 613. [all data]

Selim and Helal, 1981
Selim, E.T.M.; Helal, A.I., Heat of formation of CH2=OH+ fragment ion, Indian J. Pure Appl. Phys., 1981, 19, 977. [all data]

Lossing, 1977
Lossing, F.P., Heats of formation of some isomeric [CnH2n+1]+ ions. Substitutional effects on ion stability, J. Am. Chem. Soc., 1977, 99, 7526. [all data]

Berkowitz, Ellison, et al., 1994
Berkowitz, J.; Ellison, G.B.; Gutman, D., Three methods to measure RH bond energies, J. Phys. Chem., 1994, 98, 2744. [all data]

Friedland and Strakna, 1956
Friedland, S.S.; Strakna, R.E., Appearance potential studies. I, J. Phys. Chem., 1956, 60, 815. [all data]

Nee, Osterwalder, et al., 2006
Nee, M.J.; Osterwalder, A.; Zhou, J.; Neumark, D.M., Slow electron velocity-map imaging photoelectron spectra of the methoxide anion, J. Chem. Phys., 2006, 125, 1, 014306, https://doi.org/10.1063/1.2212411 . [all data]

Osborn, Leahy, et al., 1998
Osborn, D.L.; Leahy, D.J.; Kim, E.H.; deBeer, E.; Neumark, D.M., Photoelectron spectroscopy of CH3O- and CD3O-, Chem. Phys. Lett., 1998, 292, 4-6, 651-655, https://doi.org/10.1016/S0009-2614(98)00717-9 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W., Relative acidities of water and methanol, and the stabilities of the dimer adducts, J. Phys. Chem., 1986, 90, 6687. [all data]

Haken and Korhonen, 1985
Haken, J.K.; Korhonen, I.O.O., Gas chromatography of homologous esters. XXVII. Retention increments of C1-C18 primary alkanols and their 2-chloropropanoyl and 3-chloropropanoyl derivatives on SE-30 and OV-351 capillary columns, J. Chromatogr., 1985, 319, 131-142, https://doi.org/10.1016/S0021-9673(01)90548-5 . [all data]

Winskowski, 1983
Winskowski, J., Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren, Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041 . [all data]

Haken, Nguyen, et al., 1979
Haken, J.K.; Nguyen, A.; Wainwright, M.S., Application of linear extrathermodynamic relationships to alcohols, aldehydes, ketones, amd ethoxy alcohols, J. Chromatogr., 1979, 179, 1, 75-85, https://doi.org/10.1016/S0021-9673(00)80658-5 . [all data]

Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S., Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]

Pías and Gascó, 1975
Pías, J.B.; Gascó, L., GC Retention Data of Alcohols and Benzoyl Derivatives of Alcohols, J. Chromatogr. - Chrom. Data, 1975, d14-d16. [all data]

Brown, Chapman, et al., 1968
Brown, I.; Chapman, I.L.; Nicholson, G.J., Gas chromatography of polar solutes in electron acceptor stationary phases, Aust. J. Chem., 1968, 21, 5, 1125-1141, https://doi.org/10.1071/CH9681125 . [all data]

Viani, Müggler-Chavan, et al., 1965
Viani, R.; Müggler-Chavan, F.; Reymond, D.; Egli, R.H., 196. Sur la composition de l'arôme de café, Helv. Chim. Acta, 1965, 48, 195-196, 1809-1815, https://doi.org/10.1002/hlca.19650480743 . [all data]

Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory, Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]

Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L., Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases, Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]

Zarazir, Chovin, et al., 1970
Zarazir, D.; Chovin, P.; Guiochon, G., Identification of hydroxylic compounds and their derivatives by gas chromatography, Chromatographia, 1970, 3, 4, 180-195, https://doi.org/10.1007/BF02269018 . [all data]

Bonastre and Grenier, 1968
Bonastre, J.; Grenier, P., Contribution à l'étude de la polarité des phases stationnaires en chromatographie gaz-liquide. III. Calcul des coefficients d'activité relatifs et des indices de rétention de quelques alcools aliphatiques, Bull. Soc. Chim. Fr., 1968, 1, 118-125. [all data]

Shimadzu, 2003
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 2), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Shimoda and Shibamoto, 1990
Shimoda, M.; Shibamoto, T., Isolation and identification of headspace volatiles from brewed coffee with an on-column GC/MS method, J. Agric. Food Chem., 1990, 38, 3, 802-804, https://doi.org/10.1021/jf00093a045 . [all data]

Kevei and Kozma, 1976
Kevei, E.; Kozma, E., Gaschromatographische Untersuchungsmethoden zur Aromaprüfung in gekochtem Schweinefleisch (M. semimembranosus), Nahrung, 1976, 20, 3, 243-252, https://doi.org/10.1002/food.19760200303 . [all data]

Censullo, Jones, et al., 2003
Censullo, A.C.; Jones, D.R.; Wills, M.T., Speciation of the volatile organic compounds (VOCs) in solventborne aerosol coatings by solid phase microextraction-gas chromatography, J. Coat. Technol., 2003, 75, 936, 47-53, https://doi.org/10.1007/BF02697922 . [all data]

Golovnya, Kuz'menko, et al., 2000
Golovnya, R.V.; Kuz'menko, T.e.; Samusenko, A.L., Method for prediction of the ability of analyte for self-association in pure liquid, Proceedings 23rd ISCC; CD-ROM, 2000, retrieved from http://www.richrom.com/assets/CD23PDF/a09.pdf. [all data]

Golovnya, Kuz'menko, et al., 2000, 2
Golovnya, R.V.; Kuz'menko, T.E.; Samusenko, A.L., Gas-chromatographic method of evaluation of n-alkanol ability for self-association in pure liquid, Russ. Chem. Bull. (Engl. Transl.), 2000, 49, 2, 317-320, https://doi.org/10.1007/BF02494680 . [all data]

Bartelt, 1997
Bartelt, R.J., Calibration of a commercial solid-phase microextraction device for measuring headspace concentrations of organic volatiles, Anal. Chem., 1997, 69, 3, 364-372, https://doi.org/10.1021/ac960820n . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Ott, Fay, et al., 1997
Ott, A.; Fay, L.B.; Chaintreau, A., Determination and origin of the aroma impact compounds of yogurt flavor, J. Agric. Food Chem., 1997, 45, 3, 850-858, https://doi.org/10.1021/jf960508e . [all data]

van den Dool and Kratz, 1963
van den Dool, H.; Kratz, P. Dec., A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography, J. Chromatogr., 1963, 11, 463-471, https://doi.org/10.1016/S0021-9673(01)80947-X . [all data]

Shimadzu, 2003, 2
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 3), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Vernon, 1971
Vernon, F., An investigation into hydrogen bonding in gas-liquid chromatography, J. Chromatogr., 1971, 63, 249-257, https://doi.org/10.1016/S0021-9673(01)85637-5 . [all data]

Anderson, 1968
Anderson, D.G., USe of Kovats retention indices and response factors for the qualitative and quantitative analysis of coating solvents, J. Paint Technol., 1968, 40, 527, 549-557. [all data]

Cremer and Nonn, 1964
Cremer, E.; Nonn, H., Kennzahlen zur Identifizierung chromatographisch getrennter Komponenten, Monatsh. Chem., 1964, 3, 3, 910-921, https://doi.org/10.1007/BF00908804 . [all data]

Bramston-Cook, 2013
Bramston-Cook, R., Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]

Supelco, 2012
Supelco, CatalogNo. 24160-U, Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]

Leffingwell and Alford, 2005
Leffingwell, J.C.; Alford, E.D., Volatile constituents of Perique tobacco, Electron. J. Environ. Agric. Food Chem., 2005, 4, 2, 899-915. [all data]

Zenkevich, 2005
Zenkevich, I.G., Experimentally measured retention indices., 2005. [all data]

Health Safety Executive, 2000
Health Safety Executive, MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]

Shoenmakers, Oomen, et al., 2000
Shoenmakers, P.J.; Oomen, J.L.M.M.; Blomberg, J.; Genuit, W.; van Velzen, G., Comparison of comprehensive two-dimensional gas chromatography and gas chromatography-mass spectrometry for the characterization of complex hydrocarbon mixtures, J. Chromatogr. A, 2000, 892, 1-2, 29-46, https://doi.org/10.1016/S0021-9673(00)00744-5 . [all data]

Kotowska, Zalikowski, et al., 2012
Kotowska, U.; Zalikowski, M.; Isidorov, V.A., HS-SPME/GC-MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge, Environ. Monit. Asses., 2012, 184, 5, 2893-2907, https://doi.org/10.1007/s10661-011-2158-8 . [all data]

Chen and Feng, 2007
Chen, Y.; Feng, C., QSPR study on gas chromatography retention index of some organic pollutants, Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]

Kou, Zhang, et al., 2006
Kou, J.; Zhang, S.; Hu, Y.; Qiao, H.; Li, J., Stidy on the relationships between structures and gas chromatographic retention indices of alcohols, Comput. Appl. Chem. (Chinese), 2006, 23, 7, 651-654. [all data]

Blunden, Aneja, et al., 2005
Blunden, J.; Aneja, V.P.; Lonneman, W.A., Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina, Atm. Environ., 2005, 39, 36, 6707-6718, https://doi.org/10.1016/j.atmosenv.2005.03.053 . [all data]

Fu and Wang, 2004
Fu, S.-P.; Wang, Y.-Q., Estimation and prediction of gas chromatographic retention indices of alcohols by molecular electronegativity-distance vector, J. Chongqing Univ., 2004, 27, 6, 106-109. [all data]

Zenkevich, 2001
Zenkevich, I.G., Encyclopedia of Chromatography. Derivatization of Acids for GC Analysis, Marcel Dekker, Inc., New York - Basel, 2001, 221. [all data]

Zenkevich, 2001, 2
Zenkevich, I.G., Encyclopedia of Chromatography. Derivatization of Carbonyls for GC Analysis, MArcel Dekker, Inc., New York - Basel, 2001, 233. [all data]

Zenkevich, 1999
Zenkevich, I.G., New Application of the Retention Index Concept in Gas and High Performance Liquid Chromatography, Fresenius' J. Anal. Chem., 1999, 365, 4, 305-309, https://doi.org/10.1007/s002160051491 . [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Zenkevich and Chupalov, 1996
Zenkevich, I.G.; Chupalov, A.A., New Possibilities of Chromato Mass Pectrometric Identification of Organic Compounds Using Increments of Gas Chromatographic Retention Indices of Molecular Structural Fragments, Zh. Org. Khim. (Rus.), 1996, 32, 5, 656-666. [all data]

Zenkevich, Korolenko, et al., 1995
Zenkevich, I.G.; Korolenko, L.I.; Khralenkova, N.B., Desorption with solvent vapor as a method of sample preparation in the sorption preconcentration of organic-compounds from the air of a working area and from industrial-waste gases, J. Appl. Chem. USSR (Engl. Transl.), 1995, 50, 10, 937-944. [all data]

Schuberth, 1994
Schuberth, J., Joint use of retention index and mass spectrum in postmortem tests for volatile organics by headspace capillary gas chromatography with ion-trap detection, J. Chromatogr. A, 1994, 674, 1-2, 63-71, https://doi.org/10.1016/0021-9673(94)85217-0 . [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Weller and Wolf, 1989
Weller, J.-P.; Wolf, M., Massenspektroskopie und Headspace-GC, Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Sun, Siepmann, et al., 2006
Sun, L.; Siepmann, J.I.; Klotz, W.L.; Schure, M.R., retention in gas-liquid chromatography with a polyethylene oxide stationary phase: molecular simulation and experiment, J. Chromatogr. A, 2006, 1126, 1-2, 373-380, https://doi.org/10.1016/j.chroma.2006.05.084 . [all data]

Shimadzu, 2012
Shimadzu, Pharmaceutical Related, Analysis of pharmaceutical residual solvent (observation of separation) (1) - GC, 2012, retrieved from www.shimadzu.ru/applications/Applicationspdf/GC/Pharma/Pharmaceutical residual solvents GC.pdf. [all data]

Chida, Sone, et al., 2004
Chida, M.; Sone, Y.; Tamura, H., Aroma characteristics of stored tobacco cut leaves analyzed by a high vacuum distillation and canister system, J. Agric. Food Chem., 2004, 52, 26, 7918-7924, https://doi.org/10.1021/jf049223p . [all data]

Shimadzu Corporation, 2003
Shimadzu Corporation, Analysis of pharmaceutical residual solvent (observation of separation), 2003, retrieved from http://www.shimadzu.com.br/analitica/aplicacoes/book/pharm69.pdf. [all data]

Tanaka, Yamauchi, et al., 2003
Tanaka, T.; Yamauchi, T.; Katsumata, R.; Kiuchi, K., Comparison of volatile components in commercial Itohiki-Natto by solid phase microextraction and gas chromatography, Nippon Shokuhin Kagaku Kogaku Kaishi, 2003, 50, 6, 278-285, https://doi.org/10.3136/nskkk.50.278 . [all data]

Suhardi, Suzuki, et al., 2002
Suhardi, S.; Suzuki, M.; Yoshida, K.; Muto, T.; Fujita, A.; Watanbe, N., Changes in the volatile compounds and in the chemical and physical properties of snake fruit (Salacca edulis Reinw) Cv. Pondoh during maturation, J. Agric. Food Chem., 2002, 50, 26, 7627-7633, https://doi.org/10.1021/jf020620e . [all data]

Duque, Bonilla, et al., 2001
Duque, C.; Bonilla, A.; Bautista, E.; Zea, S., Exudation of low molecular wight compounds (thiobismethane, methyl isocyanide, amd methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix, Biochem. Systematics Ecol., 2001, 29, 5, 459-467, https://doi.org/10.1016/S0305-1978(00)00081-8 . [all data]

Vinogradov, 2004
Vinogradov, B.A., Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]


Notes

Go To: Top, Phase change data, Henry's Law data, Gas phase ion energetics data, Gas Chromatography, References