Amylene hydrate

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-78.70kcal/molN/AChao and Rossini, 1965Value computed using ΔfHliquid° value of -379.5±0.54 kj/mol from Chao and Rossini, 1965 and ΔvapH° value of 50.17 kj/mol from missing citation.; DRB
Quantity Value Units Method Reference Comment
gas86.7 ± 1.6cal/mol*KN/AWilhoit R.C., 1973Other third-law value of entropy at 298.15 K is 366.85 J/mol*K [ Stull D.R., 1969].; GT

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
40.08 ± 0.99381.35Stromsoe E., 1970Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 4.14 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%.; GT
40.30 ± 0.99384.65
40.49 ± 0.99387.45
41.07 ± 0.99396.05
41.21 ± 0.99398.05
43.10 ± 0.99425.95
46.43 ± 0.99475.25
49.52 ± 0.99520.85
53.25 ± 0.99576.05

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-90.71 ± 0.13kcal/molCcbChao and Rossini, 1965ALS
Quantity Value Units Method Reference Comment
Δcliquid-789.45 ± 0.11kcal/molCcbChao and Rossini, 1965Corresponding Δfliquid = -90.70 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid54.80cal/mol*KN/AParks, Huffman, et al., 1933Extrapolation below 90 K, 46.78 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
59.070298.15Piekarski and Somsen, 1988DH
59.479298.15Benson and D'Arcy, 1986DH
59.479298.15Benson and D'Arcy, 1986, 2DH
59.11298.15D'Aprano, DeLisi, et al., 1983Data given at 288 and 298 K.; DH
58.351294.4Parks, Huffman, et al., 1933T = 92 to 294 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil375.1 ± 0.9KAVGN/AAverage of 38 out of 42 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus264.2KN/ACostello and Bowden, 1958Uncertainty assigned by TRC = 0.5 K; TRC
Tfus263.95KN/AWibaut, Hoog, et al., 1939Uncertainty assigned by TRC = 0.5 K; TRC
Tfus262.75KN/AWibaut, Hoog, et al., 1939Uncertainty assigned by TRC = 0.6 K; TRC
Quantity Value Units Method Reference Comment
Ttriple264.0KN/AParks, Huffman, et al., 1933, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc543.7 ± 0.5KN/AGude and Teja, 1995 
Tc543.7KN/AQuadri, Khilar, et al., 1991Uncertainty assigned by TRC = 0.7 K; TRC
Tc545.KN/AMajer and Svoboda, 1985 
Tc544.9KN/ABrown, 1906TRC
Quantity Value Units Method Reference Comment
Pc36.6 ± 0.2atmN/AGude and Teja, 1995 
Pc36.61atmN/AQuadri, Khilar, et al., 1991Uncertainty assigned by TRC = 0.39 atm; TRC
Quantity Value Units Method Reference Comment
Δvap12.0 ± 0.3kcal/molAVGN/AAverage of 6 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
9.331375.4N/AMajer and Svoboda, 1985 
12.2318.EBGierycz, Kosowski, et al., 2009Based on data from 303. to 373. K.; AC
11.3323.N/AAucejo, Burguet, et al., 1994Based on data from 308. to 375. K.; AC
11.7295.AStephenson and Malanowski, 1987Based on data from 280. to 375. K.; AC
10.9338.AStephenson and Malanowski, 1987Based on data from 323. to 376. K.; AC
11.6 ± 0.05313.CMajer, Svoboda, et al., 1985AC
11.1 ± 0.05328.CMajer, Svoboda, et al., 1985AC
10.6 ± 0.02343.CMajer, Svoboda, et al., 1985AC
10.0 ± 0.02358.CMajer, Svoboda, et al., 1985AC
9.63 ± 0.02368.CMajer, Svoboda, et al., 1985AC
12.6313.N/AWilhoit and Zwolinski, 1973Based on data from 298. to 375. K.; AC
11.6313.N/AButler, Ramchandani, et al., 1935Based on data from 298. to 364. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 368.
A (kcal/mol) 13.97
α -1.4989
β 1.2301
Tc (K) 545.
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
298.12 to 363.984.46101261.658-91.953Butler, Ramchandani, et al., 1935, 2Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Method Reference Comment
0.535262.7ACTONG, TAN, et al., 2008AC
0.48264.7ACStraka, van Genderen, et al., 2007Based on data from 84. to 301. K.; AC
1.07264.N/ADomalski and Hearing, 1996See also Parks, Huffman, et al., 1933.; AC

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
3.212146.Domalski and Hearing, 1996CAL
0.19213.
4.034264.

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.4689146.0crystaline, IIIcrystaline, IIParks, Huffman, et al., 1933DH
0.0399213.crystaline, IIcrystaline, IParks, Huffman, et al., 1933DH
1.065264.0crystaline, IliquidParks, Huffman, et al., 1933DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
3.212146.0crystaline, IIIcrystaline, IIParks, Huffman, et al., 1933DH
0.19213.crystaline, IIcrystaline, IParks, Huffman, et al., 1933DH
4.034264.0crystaline, IliquidParks, Huffman, et al., 1933DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C5H11O- + Hydrogen cation = Amylene hydrate

By formula: C5H11O- + H+ = C5H12O

Quantity Value Units Method Reference Comment
Δr373.1 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr373.0 ± 2.8kcal/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr366.5 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr366.4 ± 2.7kcal/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B

Acetic acid, trifluoro-, anhydride + Amylene hydrate = Acetic acid, trifluoro-, 2,2-dimethylpropyl ester + Trifluoroacetic acid

By formula: C4F6O3 + C5H12O = C7H11F3O2 + C2HF3O2

Quantity Value Units Method Reference Comment
Δr-21.16 ± 0.02kcal/molCmWiberg and Hao, 1991liquid phase; Trifuoroacetolysis; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
72. MButler, Ramchandani, et al., 1935, 2

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
LL - Sharon G. Lias and Joel F. Liebman
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C5H12O+ (ion structure unspecified)

Ionization energy determinations

IE (eV) Method Reference Comment
9.8PEPeel and Willett, 1975LLK
10.16 ± 0.03PEPeel and Willett, 1975Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H7O+9.83C2H5EIHolmes, Lossing, et al., 1988LL
C3H7O+9.80C2H5EILossing, 1977LLK
C3H7O+10.0C2H5EIHarrison, Ivko, et al., 1966RDSH
C4H9O+9.89CH3EILossing, 1977LLK

De-protonation reactions

C5H11O- + Hydrogen cation = Amylene hydrate

By formula: C5H11O- + H+ = C5H12O

Quantity Value Units Method Reference Comment
Δr373.1 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr373.0 ± 2.8kcal/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr366.5 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr366.4 ± 2.7kcal/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-8469
NIST MS number 228660

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chao and Rossini, 1965
Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, 10, 374-379. [all data]

Wilhoit R.C., 1973
Wilhoit R.C., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data, 1973, 2, Suppl. 1, 1-420. [all data]

Stull D.R., 1969
Stull D.R., Jr., The Chemical Thermodynamics of Organic Compounds. Wiley, New York, 1969. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Parks, Huffman, et al., 1933
Parks, G.S.; Huffman, H.M.; Barmore, M., Thermal data on organic compounds. XI. The heat capacities, entropies and free energies of ten compounds containing oxygen or nitrogen. J. Am. Chem. Soc., 1933, 55, 2733-2740. [all data]

Piekarski and Somsen, 1988
Piekarski, H.; Somsen, G., Heat capacities and volumes of mixtures of N,N-dimethylformamide with isobutanol, sec-butanol and t-pentanol, J. Chem. Soc., Faraday Trans. 1, 1988, 84(2), 529-537. [all data]

Benson and D'Arcy, 1986
Benson, G.C.; D'Arcy, P.J., Excess isobaric heat capacities of some binary mixtures: (a C5-alkanol + n-heptane) at 298.15 K, J. Chem. Thermodynam., 1986, 18, 493-498. [all data]

Benson and D'Arcy, 1986, 2
Benson, G.C.; D'Arcy, P.J., Heat capacities of binary mixtures of n-dodecane with hexane isomers, Thermochim. Acta, 1986, 102, 75-81. [all data]

D'Aprano, DeLisi, et al., 1983
D'Aprano, A.; DeLisi, R.; Donato, D.I., Thermodynamics of binary mixtures: volumes, heat capacities, and dilution enthalpies for the n-pentanol + 2-methyl-2-butanol system, J. Solution Chem., 1983, 12, 383-400. [all data]

Costello and Bowden, 1958
Costello, J.M.; Bowden, S.T., The Temperature Variation of Orthobaric Density Difference in Liquid-Vapor Systems III. Alcohols, Recl. Trav. Chim. Pays-Bas, 1958, 77, 36-46. [all data]

Wibaut, Hoog, et al., 1939
Wibaut, J.P.; Hoog, H.; Langedijk, S.L.; Overhoff, J.; Smittenberg, J.; Benninga, N.; Bouman, G.P.; van Dijk, H.; Gaade, W.; Geldof, H.; Hackmann, J.Th.; Jonker, E.W.; Paap, T.; Zuiderweg, F.J., Study on the Preparation and the Physical Constants of A Number of Alkanes and Cycloalkanes, Recl. Trav. Chim. Pays-Bas, 1939, 58, 329. [all data]

Parks, Huffman, et al., 1933, 2
Parks, G.S.; Huffman, H.M.; Barmore, M., Thermal Data on Organic Compounds. XI. The Heat Capacities, Entropies and Free Energies of Ten Compounds Containing Oxygen or Nitrogen, J. Am. Chem. Soc., 1933, 55, 7, 2733, https://doi.org/10.1021/ja01334a016 . [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Quadri, Khilar, et al., 1991
Quadri, S.K.; Khilar, K.C.; Kudchadker, A.P.; Patni, M.J., Measurement of the critical temperatures and critical pressures of some thermally stable or mildly unstable alkanols, J. Chem. Thermodyn., 1991, 23, 67-76. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Brown, 1906
Brown, J.C., The critical temperature and value of ml/theta of some carbon compounds, J. Chem. Soc., Trans., 1906, 89, 311. [all data]

Gierycz, Kosowski, et al., 2009
Gierycz, Pawel; Kosowski, Andrzej; Swietlik, Ryszard, Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols, J. Chem. Eng. Data, 2009, 54, 11, 2996-3001, https://doi.org/10.1021/je900050z . [all data]

Aucejo, Burguet, et al., 1994
Aucejo, Antonio; Burguet, M.C.; Monton, Juan B.; Munoz, Rosa; Sanchotello, Margarita; Vazquez, M. Isabel, Isothermal Vapor-Liquid Equilibria of 1-Pentanol with 2-Methyl-1-butanol, 2-Methyl-2-butanol, and 3-Methyl-2-butanol, J. Chem. Eng. Data, 1994, 39, 3, 578-580, https://doi.org/10.1021/je00015a040 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Majer, Svoboda, et al., 1985
Majer, V.; Svoboda, V.; Lencka, M., Enthalpies of vaporization and cohesive energies of dimethylpyridines and trimethylpyridines, The Journal of Chemical Thermodynamics, 1985, 17, 4, 365-370, https://doi.org/10.1016/0021-9614(85)90133-8 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Butler, Ramchandani, et al., 1935
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W., 58. The solubility of non-electrolytes. Part I. The free energy of hydration of some aliphatic alcohols, J. Chem. Soc., 1935, 280, https://doi.org/10.1039/jr9350000280 . [all data]

Butler, Ramchandani, et al., 1935, 2
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W., The Solubility of Non-Electrolytes. Part 1. The Free Energy of Hydration of Some Alphatic Alcohols, J. Chem. Soc., 1935, 280-285, https://doi.org/10.1039/jr9350000280 . [all data]

TONG, TAN, et al., 2008
TONG, Bo; TAN, Zhi-Cheng; WANG, Shao-Xu, Low Temperature Heat Capacities and Thermodynamic Properties of 2-Methyl-2-butanol, Chin. J. Chem., 2008, 26, 9, 1561-1566, https://doi.org/10.1002/cjoc.200890282 . [all data]

Straka, van Genderen, et al., 2007
Straka, Martin; van Genderen, Aad; Ruzicka, Kvetoslav; Ruzicka, Vlastimil, Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols, J. Chem. Eng. Data, 2007, 52, 3, 794-802, https://doi.org/10.1021/je060411g . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T., The gas phase acidity of aliphatic alcohols, J. Am. Chem. Soc., 1983, 105, 2203. [all data]

Wiberg and Hao, 1991
Wiberg, K.B.; Hao, S., Enthalpies of hydration of alkenes. 4. Formation of acyclic tert-alcohols, J. Org. Chem., 1991, 56, 5108-5110. [all data]

Peel and Willett, 1975
Peel, J.B.; Willett, G.D., Photoelectron spectroscopic studies of the higher alcohols, Aust. J. Chem., 1975, 28, 2357. [all data]

Holmes, Lossing, et al., 1988
Holmes, J.L.; Lossing, F.P.; Maccoll, A., Heats of formation of alkyl radicals from appearance energies, J. Am. Chem. Soc., 1988, 110, 7339. [all data]

Lossing, 1977
Lossing, F.P., Heats of formation of some isomeric [CnH2n+1]+ ions. Substitutional effects on ion stability, J. Am. Chem. Soc., 1977, 99, 7526. [all data]

Harrison, Ivko, et al., 1966
Harrison, A.G.; Ivko, A.; Van Raalte, D., Energetics of formation of some oxygenated ions and the proton affinities of carbonyl compounds, Can. J. Chem., 1966, 44, 1625. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References