Hydrogen iodide
- Formula: HI
- Molecular weight: 127.91241
- IUPAC Standard InChIKey: XMBWDFGMSWQBCA-UHFFFAOYSA-N
- CAS Registry Number: 10034-85-2
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 26.50 ± 0.10 | kJ/mol | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
ΔfH°gas | 26.36 | kJ/mol | Review | Chase, 1998 | Data last reviewed in September, 1961 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 206.59 | J/mol*K | Review | Chase, 1998 | Data last reviewed in September, 1961 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1400. | 1400. to 6000. |
---|---|---|
A | 26.04540 | 35.44358 |
B | 4.689678 | 1.414708 |
C | 4.911765 | -0.182088 |
D | -2.654397 | 0.011768 |
E | 0.121419 | -4.054561 |
F | 18.75499 | 7.919099 |
G | 237.2018 | 240.1097 |
H | 26.35903 | 26.35903 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in September, 1961 | Data last reviewed in September, 1961 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tfus | 222.15 | K | N/A | Beckmann and Waentig, 1910 | Uncertainty assigned by TRC = 1.5 K; TRC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
19.8 | 238. | C | Giauque and Wiebe, 1929 | AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
149.8 to 238.1 | 4.26854 | 939.994 | -18.012 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: I- + HI = (I- • HI)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 71.1 ± 8.4 | kJ/mol | TDEq | Caldwell and Kebarle, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 102. | J/mol*K | PHPMS | Caldwell and Kebarle, 1985 | gas phase; switching reaction(I-)SO2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 41. ± 11. | kJ/mol | TDEq | Caldwell and Kebarle, 1985 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
41. | 300. | PHPMS | Caldwell and Kebarle, 1985 | gas phase; switching reaction(I-)SO2; M |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1315.24 ± 0.084 | kJ/mol | D-EA | Pelaez, Blondel, et al., 2009 | gas phase; Given: 3.0590463(38) eV; B |
ΔrH° | 1312.1 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; Fe(CO)2-(q); ; ΔS(EA)=5.0; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1294.03 ± 0.25 | kJ/mol | H-TS | Pelaez, Blondel, et al., 2009 | gas phase; Given: 3.0590463(38) eV; B |
ΔrG° | 1290.8 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; Fe(CO)2-(q); ; ΔS(EA)=5.0; B |
By formula: HI + C3H5I = C3H6 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -33.3 ± 1.4 | kJ/mol | Eqk | Rodgers, Golden, et al., 1966 | gas phase; ALS |
ΔrH° | -39.7 ± 4.2 | kJ/mol | Eqk | Rodgers, Golden, et al., 1966 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -34.9 ± 0.96 kJ/mol; At 527 K; ALS |
By formula: HI + CH3I = CH4 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -52.55 ± 0.54 | kJ/mol | Eqk | Golden, Walsh, et al., 1965 | gas phase; ALS |
ΔrH° | -53.0 ± 0.2 | kJ/mol | Eqk | Goy and Pritchard, 1965 | gas phase; ALS |
ΔrH° | -46.2 ± 5.6 | kJ/mol | Cm | Nichol and Ubbelohde, 1952 | gas phase; ALS |
By formula: C5HMnO5 (l) + I2 (cr) = HI (g) + C5IMnO5 (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -108. ± 8. | kJ/mol | RSC | Connor, Zafarani-Moattar, et al., 1982 | The reaction enthalpy relies on -25. ± 5. kJ/mol for the enthalpy of solution of HI(g) in benzene Connor, Zafarani-Moattar, et al., 1982.; MS |
By formula: C2H3IO + H2O = HI + C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -93.97 | kJ/mol | Cm | Devore and O'Neal, 1969 | liquid phase; Heat of hydrolysis; ALS |
ΔrH° | -90.33 | kJ/mol | Cm | Carson and Skinner, 1949 | liquid phase; Heat of hydrolysis; ALS |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -81. ± 2. | kJ/mol | Eqk | Benson and Amano, 1962 | gas phase; ALS |
ΔrH° | -80.1 ± 4.2 | kJ/mol | Eqk | Jones and Ogg, 1937 | gas phase; At 408-464 K; ALS |
By formula: HI + C6H11I = C6H12 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -32.6 ± 8.4 | kJ/mol | Cm | Brennan and Ubbelohde, 1956 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -28. ± 4.2 kJ/mol; ALS |
By formula: C2H3F3 + I2 = HI + C2H2F3I
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -64. ± 2. | kJ/mol | Eqk | Wu and Rodgers, 1974 | gas phase; Heat of formation Unpublished results by B.J. Zwolinski; ALS |
By formula: C7H9NO + C7H5IO = HI + C14H13NO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -185. ± 2. | kJ/mol | Cac | Kiselev, Khuzyasheva, et al., 1979 | liquid phase; solvent: Benzene; ALS |
By formula: C7H9N + C7H5IO = HI + C14H13NO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -168. ± 2. | kJ/mol | Cac | Kiselev, Khuzyasheva, et al., 1979 | liquid phase; solvent: Benzene; ALS |
By formula: C7H5IO + C6H7N = HI + C13H11NO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -166. ± 2. | kJ/mol | Cac | Kiselev, Khuzyasheva, et al., 1979 | liquid phase; solvent: Benzene; ALS |
(cr) + (solution) = (solution) + C8H5IO3W (solution)
By formula: C8H6O3W (cr) + I2 (solution) = HI (solution) + C8H5IO3W (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -67.4 ± 3.8 | kJ/mol | RSC | Landrum and Hoff, 1985 | solvent: Dichloromethane; MS |
C8H6MoO3 (cr) + (solution) = C8H5IMoO3 (solution) + (solution)
By formula: C8H6MoO3 (cr) + I2 (solution) = C8H5IMoO3 (solution) + HI (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -75.3 ± 2.5 | kJ/mol | RSC | Landrum and Hoff, 1985 | solvent: Dichloromethane; MS |
By formula: 2C3H8S + I2 = 2HI + C6H14S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -124.9 | kJ/mol | Cm | Sunner, 1955 | liquid phase; solvent: Ethanol/water(90/10); ALS |
By formula: 2C5H12S + I2 = 2HI + C10H22S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -124.9 | kJ/mol | Cm | Sunner, 1955 | liquid phase; solvent: Ethanol/water(90/10); ALS |
By formula: C4H10S2 + I2 = 2HI + C4H8S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -123.2 | kJ/mol | Cm | Sunner, 1955 | liquid phase; solvent: Ethanol/water(90/10); ALS |
By formula: C8H16O2S2 + I2 = 2HI + C8H14O2S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -109.6 | kJ/mol | Cm | Sunner, 1955 | liquid phase; solvent: Ethanol/water(90/10); ALS |
By formula: C3H8S2 + I2 = 2HI + C3H6S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -107.7 | kJ/mol | Cm | Sunner, 1955 | liquid phase; solvent: Ethanol/water(90/10); ALS |
By formula: HI + C7H7I = C7H8 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -33. ± 4.6 | kJ/mol | Cm | Graham, Nichol, et al., 1955 | liquid phase; solvent: p-Xylene; ALS |
By formula: C3H5I + H2O = HI + C3H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -8.79 | kJ/mol | Cm | Gellner and Skinner, 1949 | liquid phase; Heat of hydrolysis; ALS |
By formula: C7H7I + H2O = HI + C7H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -12.6 | kJ/mol | Cm | Gellner and Skinner, 1949 | liquid phase; Heat of hydrolysis; ALS |
By formula: C7H5IO + H2O = HI + C7H6O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -102.4 | kJ/mol | Cm | Carson, Pritchard, et al., 1950 | liquid phase; Heat of hydrolysis; ALS |
C3H9ISn (l) + (l) = ( • 55) (solution) + C3H10OSn (cr)
By formula: C3H9ISn (l) + H2O (l) = (HI • 55H2O) (solution) + C3H10OSn (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -17.6 ± 0.4 | kJ/mol | RSC | Baldwin, Lappert, et al., 1972 | MS |
By formula: HI + CH3IS = CH4S + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -12.0 ± 2.3 | kJ/mol | Eqk | Shum and Benson, 1983 | gas phase; ALS |
By formula: C3H6O + I2 = HI + C3H5IO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.6 ± 5.0 | kJ/mol | Eqk | Solly, Golden, et al., 1970 | gas phase; ALS |
By formula: C2H4O + I2 = HI + C2H3IO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3. ± 2. | kJ/mol | Eqk | Walsh and Benson, 1966 | gas phase; ALS |
By formula: HI + C7H7IO = C7H8O + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -29. ± 5.0 | kJ/mol | Cm | Brennan and Ubbelohde, 1956 | gas phase; ALS |
By formula: HI + C2H5IS = C2H6S + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -28. ± 4.6 | kJ/mol | Kin | Shum and Benson, 1985 | gas phase; ALS |
C10H12W (cr) + 2 (cr) = C10H10I2W (cr) + 2 (g)
By formula: C10H12W (cr) + 2I2 (cr) = C10H10I2W (cr) + 2HI (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -104.3 ± 5.5 | kJ/mol | RSC | Calado, Dias, et al., 1979 | MS |
By formula: HI + C7H5IO = C7H6O + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -13. ± 4.2 | kJ/mol | Eqk | Solly and Benson, 1971 | gas phase; ALS |
C10H11ClZr (cr) + (cr) = C10H10ClIZr (cr) + (g)
By formula: C10H11ClZr (cr) + I2 (cr) = C10H10ClIZr (cr) + HI (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -78.1 ± 2.4 | kJ/mol | RSC | Diogo, Simoni, et al., 1993 | MS |
C10H12Mo (cr) + 2 (cr) = C10H10I2Mo (cr) + 2 (g)
By formula: C10H12Mo (cr) + 2I2 (cr) = C10H10I2Mo (cr) + 2HI (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -87.8 ± 5.1 | kJ/mol | RSC | Calado, Dias, et al., 1979 | MS |
By formula: C2H4F2 + I2 = HI + C2H3BrF2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.0 ± 0.8 | kJ/mol | Eqk | Pickard and Rodgers, 1977 | gas phase; ALS |
By formula: C7H6O + I2 = HI + C7H5IO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13. ± 4.2 | kJ/mol | Eqk | Solly and Benson, 1971 | gas phase; ALS |
By formula: HI + C6H5I = C6H6 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -22. ± 5.9 | kJ/mol | Cm | Graham, Nichol, et al., 1955 | gas phase; ALS |
C10H11IW (cr) + (cr) = C10H10I2W (cr) + (g)
By formula: C10H11IW (cr) + I2 (cr) = C10H10I2W (cr) + HI (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -84.6 ± 4.1 | kJ/mol | RSC | Calhorda, Dias, et al., 1987 | MS |
By formula: I (g) + H4Ge (g) = HI (g) + H3Ge (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47.0 ± 4.1 | kJ/mol | KinG | Noble and Walsh, 1983 | MS |
By formula: C5H10 + I2 = 2HI + C5H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 102.1 | kJ/mol | Eqk | Furuyama, Golden, et al., 1970 | gas phase; ALS |
By formula: HI + C4H7IO = I2 + C4H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -42.7 | kJ/mol | Kin | Solly, Golden, et al., 1970, 2 | gas phase; ALS |
By formula: 2HI + C5H6 = C5H8 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -89.5 | kJ/mol | Eqk | Furuyama, Golden, et al., 1970 | gas phase; ALS |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -86.27 | kJ/mol | Eqk | Furuyama, Golden, et al., 1969 | gas phase; ALS |
(g) + C3H10Ge (g) = C3H9Ge (g) + (g)
By formula: I (g) + C3H10Ge (g) = C3H9Ge (g) + HI (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.0 ± 1.8 | kJ/mol | KinG | Doncaster and Walsh, 1979 | MS |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
2.5×10+9/KA | 9800. | T | N/A | For strong acids, the solubility is often expressed as kH = ([H+] * [A-]) / p(HA). To obtain the physical solubility of HA, the value has to be divided by the acidity constant KA. missing citation corrects erroneous data from missing citation. |
2.2×10+9/KA | 9800. | T | N/A |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to HI+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.386 ± 0.001 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 627.5 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 601.3 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.38 | PE | Kimura, Katsumata, et al., 1981 | LLK |
10.386 ± 0.001 | S | Eland and Berkowitz, 1977 | LLK |
10.38 ± 0.01 | PE | Lempka, Passmore, et al., 1968 | RDSH |
10.42 ± 0.01 | PE | Frost, McDowell, et al., 1967 | RDSH |
10.38 ± 0.02 | PI | Watanabe, 1957 | RDSH |
10.3 ± 0.1 | EI | Friedman, 1955 | RDSH |
~10.39 | S | Price, 1938 | RDSH |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
I+ | 13.49 ± 0.13 | ? | PI | Eland and Berkowitz, 1977 | LLK |
De-protonation reactions
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1315.24 ± 0.084 | kJ/mol | D-EA | Pelaez, Blondel, et al., 2009 | gas phase; Given: 3.0590463(38) eV; B |
ΔrH° | 1312.1 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; Fe(CO)2-(q); ; ΔS(EA)=5.0; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1294.03 ± 0.25 | kJ/mol | H-TS | Pelaez, Blondel, et al., 2009 | gas phase; Given: 3.0590463(38) eV; B |
ΔrG° | 1290.8 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; Fe(CO)2-(q); ; ΔS(EA)=5.0; B |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: I- + HI = (I- • HI)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 71.1 ± 8.4 | kJ/mol | TDEq | Caldwell and Kebarle, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 102. | J/mol*K | PHPMS | Caldwell and Kebarle, 1985 | gas phase; switching reaction(I-)SO2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 41. ± 11. | kJ/mol | TDEq | Caldwell and Kebarle, 1985 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
41. | 300. | PHPMS | Caldwell and Kebarle, 1985 | gas phase; switching reaction(I-)SO2; M |
Constants of diatomic molecules
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Klaus P. Huber and Gerhard H. Herzberg
Data collected through September, 1976
Symbol | Meaning |
---|---|
State | electronic state and / or symmetry symbol |
Te | minimum electronic energy (cm-1) |
ωe | vibrational constant – first term (cm-1) |
ωexe | vibrational constant – second term (cm-1) |
ωeye | vibrational constant – third term (cm-1) |
Be | rotational constant in equilibrium position (cm-1) |
αe | rotational constant – first term (cm-1) |
γe | rotation-vibration interaction constant (cm-1) |
De | centrifugal distortion constant (cm-1) |
βe | rotational constant – first term, centrifugal force (cm-1) |
re | internuclear distance (Å) |
Trans. | observed transition(s) corresponding to electronic state |
ν00 | position of 0-0 band (units noted in table) |
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
L | [100640] 1 | L ← X | 99500 | |||||||||
↳Terwilliger and Smith, 1975 | ||||||||||||
H (1) | [75435] 2 | H ← X | 74290 | |||||||||
↳missing citation; missing citation | ||||||||||||
F 1Δ | [71372.8] | [6.335] 3 | [2.3E-4] 3 | [1.631] | F ← X R | 70228.2 Z | ||||||
↳missing citation | ||||||||||||
f1 3Δ1 | [70831.5] | [6.015] 4 | [1.674] | f1 ← X R | 69686.9 Z | |||||||
↳missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
D 1Π | [70389.0] | [6.198] 5 | [2.1E-4] 5 | [1.649] | D ← X R | 69244.4 Z | ||||||
↳missing citation | ||||||||||||
d0 3Π0 | [70302.4] | [6.117] 6 | [2.1E-4] 6 | [1.660] | d0 ← X R | 69157.8 6 Z | ||||||
↳missing citation | ||||||||||||
7 | ||||||||||||
↳Ginter, Tilford, et al., 1975 | ||||||||||||
G 1 | [70136.4] | [6.406] 8 | [3.2E-4] 8 | [1.622] | G ← X R | 68991.8 Z | ||||||
↳missing citation; missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
V 1Σ+ | [2.84] 9 | [2.0E-4] 9 | [2.44] 9 | V ← X R | 68004.4 9 Z | |||||||
↳missing citation | ||||||||||||
E 1Σ+ | (66326) | [1681.8] Z | [6.110] | 10 | [2.5E-4] 10 | [1.6611] | E ← X R | 66022.6 Z | ||||
↳missing citation; missing citation | ||||||||||||
f2 3Δ2 | [65838.6] | [6.757] 11 | [12.3E-4] 11 | [1.580] | f2 ← X V | 64694.0 Z | ||||||
↳missing citation | ||||||||||||
f3 3Δ3 | [65717.5] | [5.706] 12 | [-8.3E-4] 12 | [1.719] | f3 ← X R | 64572.9 Z | ||||||
↳missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
e 3Σ+ | [65345] 13 | e ← X | 64200 | |||||||||
↳missing citation | ||||||||||||
d1 3Π1 | [65028] 14 | d1 ← X | 63883 HQ | |||||||||
↳missing citation | ||||||||||||
d2 3Π2 | (63922) | [2154.4] Z | [6.065] | 15 | 1.7E-4 | [1.6673] | d2 ← X R | 63854.9 Z | ||||
↳missing citation | ||||||||||||
C 1Π | (62378) | [2183] HQ 16 | C ← X | 62325 HQ | ||||||||
↳Price, 1938; Tilford, Ginter, et al., 1970 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
b0 3Π0+ | 60858.7 | 2314.7 17 Z | 54.3 17 | 6.493 17 | 0.118 17 | 1.6114 | b0 ← X | 60857.9 Z | ||||
↳missing citation; missing citation | ||||||||||||
b0 3Π0- | (60840) 18 | 2314.7 17 Z | 54.3 17 | 6.493 17 | 0.118 17 | 1.6114 | b0 ← X | 60839 HQ | ||||
↳missing citation | ||||||||||||
b1 3Π1 | (56783) | [2200] | [6.427] 19 | [1.6196] | b1 ← X | 56738.3 Z | ||||||
↳Price, 1938; Tilford, Ginter, et al., 1970 | ||||||||||||
b2 3Π2 | (55874) | [2207.4] Z | 6.436 | 0.175 | 1.6185 | b2 ← X | 55833.1 Z | |||||
↳missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
A (1Π) | 20 | A ← X 21 | ||||||||||
↳Goodeve and Taylor, 1936; Datta and Kundu, 1941; Romand, 1949; Huebert and Martin, 1968; Ogilvie, 1971 | ||||||||||||
20 | a ← X 21 | |||||||||||
↳Goodeve and Taylor, 1936; Datta and Kundu, 1941; Romand, 1949; Huebert and Martin, 1968; Ogilvie, 1971 | ||||||||||||
(3Π0+) | 20 | A ← X 21 | ||||||||||
↳Goodeve and Taylor, 1936; Datta and Kundu, 1941; Romand, 1949; Huebert and Martin, 1968; Ogilvie, 1971 | ||||||||||||
(3Π1) | 20 | a ← X 21 | ||||||||||
↳Goodeve and Taylor, 1936; Datta and Kundu, 1941; Romand, 1949; Huebert and Martin, 1968; Ogilvie, 1971 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
X 1Σ+ | 0 | 2309.014 Z | 39.6435 22 | -0.0200 | [6.4263650] 23 24 | 0.16886 25 | -0.00095 | [2.069E-4] 23 | 1.60916 26 | |||
↳Boyd and Thompson, 1952; Haeusler, Meyer, et al., 1964; Hurlock, Alexander, et al., 1971; Bernage, Niay, et al., 1974 | ||||||||||||
27 | ||||||||||||
↳Czerny, 1927; Palik, 1955; Cowan and Gordy, 1956; De Lucia, Helminger, et al., 1971 | ||||||||||||
28 | ||||||||||||
↳Cherlow, Hyatt, et al., 1975 |
Notes
1 | Broad absorption peak (width ~4500 cm-1). 31 |
2 | First member of a Rydberg series converging to X 2 Π1/2 (v=0) of HI+ (I.P. = 11.05 eV); fragments of additional series. 32 |
3 | Average B and D, B(2+) - B(2-)= -0.05. |
4 | Average of B value, B(1+) - B(1-) = +0.240. |
5 | Refers to the 1+ component; B(1-) ~ 6.25. |
6 | Constants refer to the 0+ component; for 0- B0 = 6.091, v00 = 69149.5. |
7 | Additional unclassified absorption bands between 68100 and 69000 cm-1. |
8 | missing note |
9 | Vibrational numbering uncertain; the numbers given refer to the lowest level observed in absorption for which v is probably fairly high. Several higher vibrational levels have been found; strong perturbations. |
10 | B1 = 5.62, D1= 28E-4, perturbed at high J. |
11 | Average B and D, B(2+) - B(2-) = -0.040. |
12 | Average B and D, B(3+) - B(3-) = +0.018. |
13 | Very diffuse feature. |
14 | Diffuse feature. |
15 | B1(3Π2)= -5.923. |
16 | Diffuse, no rotational structure. |
17 | From v=0, 1, 3 only; γre = -0.0317. |
18 | Diffuse Q head only. |
19 | (v=1 diffuse Q head) |
20 | Continuous absorption starting at ~28000 with maximum at ~46000 cm-1. |
21 | Photofragment spectroscopy at 37550 cm-1 Clear, Riley, et al., 1975 shows that the continuum is of composite nature; 36% of the absorption is due to 3Π0+ yielding H + I(2P1/2). Clear, Riley, et al., 1975 have analyzed the continuum in terms of three overlapping transitions 1Π, 3Π0+, 3Π1 ← X. A very weak continuum with maximum at 23500 cm-1 was reported by Datta and Kundu, 1941. |
22 | weze = +0.01621, from the 1-0,...,4-0 vibrational-rotational bands Hurlock, Alexander, et al., 1971; very slightly different constants are given by Bernage, Niay, et al., 1974 who have measured the 5-0 and 6-0 bands. |
23 | Microwave value De Lucia, Helminger, et al., 1971. |
24 | Dunham potential coefficients Ogilvie and Koo, 1976. |
25 | γe from Hurlock, Alexander, et al., 1971, see 22. |
26 | Rot.-vib. sp. 34 |
27 | Rotation sp. 35 36 |
28 | Raman sp. 37 |
29 | From D00(H2), D00(I2), and ΔHf0(HI, from gaseous H2,I2). |
30 | From photoionization studies by Watanabe, Nakayama, et al., 1962; refers to X 2Π3/2 of HI+. Lempka, Passmore, et al., 1968 give the same value, Frost, McDowell, et al., 1967 give 10.42 eV from the photoelectron spectrum. |
31 | Diffuse on account of predissociation and preionization; presumably first member of a Rydberg series converging to A 2Σ+ of HI+ Terwilliger and Smith, 1975. |
32 | Above the first ionization limit (X 2Π3/2) the members of the series are subject to preionization and are seen as photoionization peaks Tsai and Baer, 1974. |
33 | Average B and D, B(1+) - B(1-) = +0.107. |
34 | The 1-0,...,6-0 bands have been observed in absorption. Absolute intensities, dipole moment function Ameer and Beneschi, 1962, Benesch, 1963, Meyer, Haeusler, et al., 1965, Jacobi, 1967, Tipping and Forbes, 1971. The R branch of the fundamental is much stronger than the P branch on account of rotation-vibration interaction; for the overtones this effect is very small Benesch, 1963, Meyer, Haeusler, et al., 1965. The overall intensities decrease rather slowly in the series 1-0, 2-0, 3-0 Benesch, 1963, Meyer, Haeusler, et al., 1965. Line width, pressure broadening studied by Ameer and Beneschi, 1962, Meyer, Haeusler, et al., 1965. |
35 | From the hfs of the microwave spectrum Van Dijk and Dymanus, 1968 derive nuclear quadrupole (I) and other hyperfine coupling constants; see also De Lucia, Helminger, et al., 1971. From the Stark effect in the hfs of the 1-0 transition van Dijk and Dymanus, 1970 obtain μel(v=0) = 0.4477. |
36 | Absolute intensities Chamberlain and Gebbie, 1965. |
37 | Vibrational Raman cross sections. |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A.,
CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Beckmann and Waentig, 1910
Beckmann, E.; Waentig, P.,
Cryoscopic Measurements at Low Temperatures,
Z. Anorg. Chem., 1910, 67, 17. [all data]
Giauque and Wiebe, 1929
Giauque, W.F.; Wiebe, R.,
THE HEAT CAPACITY OF HYDROGEN IODIDE FROM 15°K. TO ITS BOILING POINT AND ITS HEAT OF VAPORIZATION. THE ENTROPY FROM SPECTROSCOPIC DATA,
J. Am. Chem. Soc., 1929, 51, 5, 1441-1449, https://doi.org/10.1021/ja01380a019
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Caldwell and Kebarle, 1985
Caldwell, G.; Kebarle, P.,
The hydrogen bond energies of the bihalide ions XHX- and YHX-,
Can. J. Chem., 1985, 63, 1399. [all data]
Pelaez, Blondel, et al., 2009
Pelaez, R.J.; Blondel, C.; Delsart, C.; Drag, C.,
Pulsed photodetachment microscopy and the electron affinity of iodine,
J. Phys. B: Atom. Mol. Opt. Phys., 2009, 42, 12, 125001, https://doi.org/10.1088/0953-4075/42/12/125001
. [all data]
Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S.,
Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements,
J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l
. [all data]
Rodgers, Golden, et al., 1966
Rodgers, A.S.; Golden, D.M.; Benson, S.W.,
The thermochemistry of the gas phase equilibrium I2 + C3H6 = C3H5I + HI,
J. Am. Chem. Soc., 1966, 88, 3194-3196. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Golden, Walsh, et al., 1965
Golden, D.M.; Walsh, R.; Benson, S.W.,
The thermochemistry of the gas phase equilibrium I2 + CH4 «=» CH3I + HI and the heat of formation of the methyl radical,
J. Am. Chem. Soc., 1965, 87, 4053-4057. [all data]
Goy and Pritchard, 1965
Goy, C.A.; Pritchard, H.O.,
Kinetics and thermodynamics of the reaction between iodine and methane and the heat of formation of methyl iodide,
J. Phys. Chem., 1965, 69, 3040-3041. [all data]
Nichol and Ubbelohde, 1952
Nichol, R.J.; Ubbelohde, A.R.,
A thermochemical evaluation of bond strengths in some carbon compounds. part II. Bond strengths based on the reaction CH3I + HI = CH4 + I2,
J. Am. Chem. Soc., 1952, 415-421. [all data]
Connor, Zafarani-Moattar, et al., 1982
Connor, J.A.; Zafarani-Moattar, M.T.; Bickerton, J.; El-Saied, N.I.; Suradi, S.; Carson, R.; Al Takkhin, G.; Skinner, H.A.,
Organomet., 1982, 1, 1166. [all data]
Devore and O'Neal, 1969
Devore, J.A.; O'Neal, H.E.,
Heats of formation of the acetyl halides and of the acetyl radical,
J. Phys. Chem., 1969, 73, 2644-2648. [all data]
Carson and Skinner, 1949
Carson, A.S.; Skinner, H.A.,
201. Carbon-halogen bond energies in the acetyl halides,
J. Chem. Soc., 1949, 936-939. [all data]
Benson and Amano, 1962
Benson, S.W.; Amano, A.,
Thermodynamic properties of tertiary iodides,
J. Chem. Phys., 1962, 37, 197-198. [all data]
Jones and Ogg, 1937
Jones, J.L.; Ogg, R.A., Jr.,
The equilibrium (CH3)3CI = (CH3)2C = CH2 + HI,
J. Am. Chem. Soc., 1937, 59, 1943-1945. [all data]
Brennan and Ubbelohde, 1956
Brennan, D.; Ubbelohde, A.R.,
A thermochemical evaluation of bond strengths in some carbon compounds. Part IV. Bond-strength differences based on the reaction: RI + HI = RH + I2, where R = p-methoxyphenyl and cyclohexyl,
J. Chem. Soc., 1956, 3011-3016. [all data]
Wu and Rodgers, 1974
Wu, E.; Rodgers, A.S.,
Thermochemistry of gas-phase equilibrium CF3CH3 + I2 = CF3CH2I + HI. The carbon-hydrogen bond dissociation energy in 1,1,1-trifluoroethane and the heat of formation of the 2,2,2-trifluoroethyl radical,
J. Phys. Chem., 1974, 78, 2315-2317. [all data]
Kiselev, Khuzyasheva, et al., 1979
Kiselev, V.D.; Khuzyasheva, d.G.; Konovalov, A.I.,
Thermochemical study of the acylation of para-substituted anilines,
J. Gen. Chem. USSR, 1979, 49, 2273-2276. [all data]
Landrum and Hoff, 1985
Landrum, J.T.; Hoff, C.D.,
J. Organometal. Chem., 1985, 282, 215. [all data]
Sunner, 1955
Sunner, S.,
Strain in 6,8-thioctic acid,
Nature (London), 1955, 176, 217. [all data]
Graham, Nichol, et al., 1955
Graham, W.S.; Nichol, R.J.; Ubbelohde, A.R.,
A thermochemical evaluation of bond strengths in some carbon compounds. Part III. Bond strengths based on the reactions: (a) Ph·CH2I + HI=Ph·CH3 + I2 and (b) PhI + HI=PhH + I2,
J. Chem. Soc., 1955, 115-121. [all data]
Gellner and Skinner, 1949
Gellner, O.H.; Skinner, H.A.,
Dissociation energies of carbon-halogen bonds. The bond strengths allyl-X and benzyl-X,
J. Chem. Soc., 1949, 1145-1148. [all data]
Carson, Pritchard, et al., 1950
Carson, A.S.; Pritchard, H.O.; Skinner, H.A.,
The heats of hydrolysis of the benzoyl halides,
J. Chem. Soc., 1950, 656-659. [all data]
Baldwin, Lappert, et al., 1972
Baldwin, J.C.; Lappert, M.F.; Pedley, J.B.; Poland, J.S.,
J. Chem. Soc., Dalton Trans., 1972, 1943.. [all data]
Shum and Benson, 1983
Shum, L.G.S.; Benson, S.W.,
Thermochemnistry and kinetics of the reaction of methyl mercaptan with iodine,
Int. J. Chem. Kinet., 1983, 15, 433-453. [all data]
Solly, Golden, et al., 1970
Solly, R.K.; Golden, D.M.; Benson, S.W.,
Thermochemical properties of iodoacetone. Intramolecular electrostatic interactions in polar molecules,
J. Am. Chem. Soc., 1970, 92, 4653-4656. [all data]
Walsh and Benson, 1966
Walsh, R.; Benson, S.W.,
The heats of formation of acetyl iodide and the acetyl radical,
J. Phys. Chem., 1966, 70, 3751-3753. [all data]
Shum and Benson, 1985
Shum, L.G.S.; Benson, S.W.,
Iodine catalyzed pyrolysis of dimethyl sulfide. Heats of formaton of CH3SCH2I, the CH3SCH2 radical, and the pibond energy in CH2S,
Int. J. Chem. Kinet., 1985, 17, 277-292. [all data]
Calado, Dias, et al., 1979
Calado, J.C.G.; Dias, A.R.; Martinho Simões, J.A.; Ribeiro da Silva, M.A.V.,
Rev. Port. Quím., 1979, 21, 129. [all data]
Solly and Benson, 1971
Solly, R.K.; Benson, S.W.,
Thermochemistry of the reaction of benzaldehyde with iodine. The enthalpy of formation of benzaldehyde and benzoyl iodide,
J. Chem. Thermodyn., 1971, 3, 203-209. [all data]
Diogo, Simoni, et al., 1993
Diogo, H.P.; Simoni, J.A.; Minas da Piedade, M.E.; Dias, A.R.; Martinho Simões, J.A.,
J. Am. Chem. Soc., 1993, 115, 2764. [all data]
Pickard and Rodgers, 1977
Pickard, J.M.; Rodgers, A.S.,
The kinetics and thermochemistry of the reaction of 1,1-difluoroethane with iodine. The difluoromethylene-hydrogen bond dissociation energy in 1,1-difluoroethane and the heat of formation of 1,1-difluoroethyl,
J. Am. Chem. Soc., 1977, 99, 691-694. [all data]
Calhorda, Dias, et al., 1987
Calhorda, M.J.; Dias, A.R.; Minas da Piedade M.E.; Salema, M.S.; Martinho Simões J.A.,
Organometallics, 1987, 6, 734. [all data]
Noble and Walsh, 1983
Noble, P.N.; Walsh, R.,
Kinetics of the gas phase reaction between iodine and monogermane and the bond dissociation energy D(H3Ge-H),
Int. J. Chem. Kinet., 1983, 15, 547. [all data]
Furuyama, Golden, et al., 1970
Furuyama, S.; Golden, D.M.; Benson, S.W.,
Thermochemistry of cyclopentene and cyclopentadiene from studies of gas-phase equilibria,
J. Chem. Thermodyn., 1970, 2, 161-169. [all data]
Solly, Golden, et al., 1970, 2
Solly, R.K.; Golden, D.M.; Benson, S.W.,
Kinetics and thermochemistry of the gas phase reaction of methyl ethyl ketone with iodine. II. The heat of formation and unimolecular decomposition of 2-iodo-3-butanone,
Int. J. Chem. Kinet., 1970, 2, 393-407. [all data]
Furuyama, Golden, et al., 1969
Furuyama, S.; Golden, D.M.; Benson, S.W.,
Thermochemistry of the gas phase equilibria i-C3H7I = C3H6 + HI, n-C3H7I = i-C3H7I, and C3H6 + 2HI = C3H8 + I2,
J. Chem. Thermodyn., 1969, 1, 363-375. [all data]
Doncaster and Walsh, 1979
Doncaster, A.M.; Walsh, R.,
J. Phys. Chem., 1979, 83, 578. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Eland and Berkowitz, 1977
Eland, J.H.D.; Berkowitz, J.,
Photoionization mass spectrometry of HI and DI at high resolution,
J. Chem. Phys., 1977, 67, 5034. [all data]
Lempka, Passmore, et al., 1968
Lempka, H.J.; Passmore, T.R.; Price, W.C.,
The photoelectron spectra and ionized states of the halogen acids,
Proc. Roy. Soc. (London), 1968, A304, 53. [all data]
Frost, McDowell, et al., 1967
Frost, D.C.; McDowell, C.A.; Vroom, D.A.,
Photoelectron spectra of the halogens and the hydrogen halides,
J. Chem. Phys., 1967, 46, 4255. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Friedman, 1955
Friedman, L.,
Mass spectrum of lithium iodide,
J. Chem. Phys., 1955, 23, 477. [all data]
Price, 1938
Price, W.C.,
The absorption spectra of the halogen acids in the vacuum ultra-violet,
Proc. Roy. Soc. (London), 1938, A167, 216. [all data]
Terwilliger and Smith, 1975
Terwilliger, D.T.; Smith, A.L.,
Autoionization in diatomics: measured line shape parameters and predicted photoelectron spectra for some autoionizing states of the hydrogen halides,
J. Chem. Phys., 1975, 63, 1008. [all data]
Ginter, Tilford, et al., 1975
Ginter, M.L.; Tilford, S.G.; Bass, A.M.,
Electronic spectra and structure of the hydrogen halides. States associated with the (σ2π3)cσ and (σ2π3)cπ configurations of HI and DI,
J. Mol. Spectrosc., 1975, 57, 271. [all data]
Tilford, Ginter, et al., 1970
Tilford, S.G.; Ginter, M.L.; Bass, A.M.,
Electronic spectra and structure of the hydrogen halides. The b3Πi and C1Π states of HI and DI,
J. Mol. Spectrosc., 1970, 34, 327. [all data]
Goodeve and Taylor, 1936
Goodeve, C.F.; Taylor, A.W.C.,
The continuous absorption spectrum of hydrogen iodide,
Proc. R. Soc. London A, 1936, 154, 181. [all data]
Datta and Kundu, 1941
Datta, S.; Kundu, D.N.,
The continuous absorption spectra of the hydrogen-halides. Part III - HI,
Proc. Natl. Inst. Sci. India, 1941, 7, 311. [all data]
Romand, 1949
Romand, J.,
Absorption ultraviolette dans la region de Schumann etude de: ClH, BrH et lH gazeux,
Ann. Phys. (Paris), 1949, 4, 527. [all data]
Huebert and Martin, 1968
Huebert, B.J.; Martin, R.M.,
Gas-phase far-ultraviolet absorption spectrum of hydrogen bromide and hydrogen iodide,
J. Phys. Chem., 1968, 72, 3046. [all data]
Ogilvie, 1971
Ogilvie, J.F.,
Semi-experimental determination of a repulsive potential curve for hydrogen iodide,
Trans. Faraday Soc., 1971, 67, 2205. [all data]
Boyd and Thompson, 1952
Boyd, D.R.J.; Thompson, H.W.,
The fundamental vibration band of hydrogen iodide,
Spectrochim. Acta, 1952, 5, 308. [all data]
Haeusler, Meyer, et al., 1964
Haeusler, C.; Meyer, C.; Barchewitz, P.,
Constantes de vibration et de rotation de l'acide iodhydrique gazeux etude des bandes d'absorption v0-2 et v0-4,
J. Phys. (Paris), 1964, 25, 961. [all data]
Hurlock, Alexander, et al., 1971
Hurlock, S.C.; Alexander, R.M.; Rao, K.N.; Dreska, N.,
Infrared bands of HI and DI,
J. Mol. Spectrosc., 1971, 37, 373. [all data]
Bernage, Niay, et al., 1974
Bernage, P.; Niay, P.; Houdart, R.,
Notes des membres et correspondants et notes presentees ou transmises par leurs soins,
C.R. Acad. Sci. Paris, Ser. B, 1974, 278, 235. [all data]
Czerny, 1927
Czerny, M.,
Die rotationsspektren der halogenwasserstoffe,
Z. Phys., 1927, 44, 235. [all data]
Palik, 1955
Palik, E.D.,
The pure rotational spectra of DBr, HI, and DI in the spectral region between 45 and 170 microns,
J. Chem. Phys., 1955, 23, 217. [all data]
Cowan and Gordy, 1956
Cowan, M.; Gordy, W.,
Further extension of microwave spectroscopy in the submillimeter wave region,
Phys. Rev., 1956, 104, 551. [all data]
De Lucia, Helminger, et al., 1971
De Lucia, F.C.; Helminger, P.; Gordy, W.,
Submillimeter-wave spectra and equilibrium structures of the hydrogen halides,
Phys. Rev. A: Gen. Phys., 1971, 3, 1849. [all data]
Cherlow, Hyatt, et al., 1975
Cherlow, J.M.; Hyatt, H.A.; Porto, S.P.S.,
Raman scattering in hydrogen halide gases,
J. Chem. Phys., 1975, 63, 3996. [all data]
Clear, Riley, et al., 1975
Clear, R.D.; Riley, S.J.; Wilson, K.R.,
Energy partitioning and assignment of excited states in the ultraviolet photolysis of HI and DI,
J. Chem. Phys., 1975, 63, 1340. [all data]
Ogilvie and Koo, 1976
Ogilvie, J.F.; Koo, D.,
Dunham potential energy coefficients of the hydrogen halides and carbon monoxide,
J. Mol. Spectrosc., 1976, 61, 332-336. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Tsai and Baer, 1974
Tsai, B.P.; Baer, T.,
Analysis of autoionizing Rydberg states in HI and CH3I. Comments on Rydberg electron wavefunctions,
J. Chem. Phys., 1974, 61, 2047. [all data]
Ameer and Beneschi, 1962
Ameer, G.; Beneschi, W.,
Line strengths and widths in hydrogen iodide,
J. Chem. Phys., 1962, 37, 2699. [all data]
Benesch, 1963
Benesch, W.,
Simultaneous measurement of HI fundamental and overtone lines,
J. Chem. Phys., 1963, 39, 1048. [all data]
Meyer, Haeusler, et al., 1965
Meyer, C.; Haeusler, C.; Barchewitz, P.,
Intensites et largeurs des raies de vibration-rotation de molecules diatomiques,
J. Phys. (Paris), 1965, 26, 305. [all data]
Jacobi, 1967
Jacobi, N.,
Electrical anharmonicities of diatomic molecules,
J. Mol. Spectrosc., 1967, 22, 76. [all data]
Tipping and Forbes, 1971
Tipping, R.H.; Forbes, A.,
Dipole moment function of HI,
J. Mol. Spectrosc., 1971, 39, 65. [all data]
Van Dijk and Dymanus, 1968
Van Dijk, F.A.; Dymanus, A.,
Hyperfine structure of the rotational spectrum of HI in the submillimeter region,
Chem. Phys. Lett., 1968, 2, 235. [all data]
van Dijk and Dymanus, 1970
van Dijk, F.A.; Dymanus, A.,
The electric dipole moment of HI and HBr,
Chem. Phys. Lett., 1970, 5, 387. [all data]
Chamberlain and Gebbie, 1965
Chamberlain, J.E.; Gebbie, H.A.,
Sub-millimetre dispersion and rotational line strengths of the hydrogen halides,
Nature (London), 1965, 208, 480. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, References
- Symbols used in this document:
AE Appearance energy IE (evaluated) Recommended ionization energy S°gas Entropy of gas at standard conditions S°gas,1 bar Entropy of gas at standard conditions (1 bar) T Temperature Tfus Fusion (melting) point d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔvapH Enthalpy of vaporization - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.