Chlorine

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar53.3176 ± 0.0024cal/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar53.317cal/mol*KReviewChase, 1998Data last reviewed in June, 1982

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1000.1000. to 3000.3000. to 6000.
A 7.89928310.20012-10.17053
B 2.922897-1.1973169.963122
C -2.8836290.455215-1.703354
D 1.048120-0.0395890.092696
E -0.038120-0.50154924.17400
F -2.589580-4.13236231.73136
G 61.9094264.4933163.28537
H 0.0000000.0000000.000000
ReferenceChase, 1998Chase, 1998Chase, 1998
Comment Data last reviewed in June, 1982 Data last reviewed in June, 1982 Data last reviewed in June, 1982

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director

Quantity Value Units Method Reference Comment
Tboil239.5KN/AThiele and Schulte, 1920Uncertainty assigned by TRC = 0.6 K; TRC
Quantity Value Units Method Reference Comment
Ttriple172.17 ± 0.05KN/AAngus, Armstrong, et al., 1984Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple172.12KN/AGiauque and Powell, 1939Uncertainty assigned by TRC = 0.15 K; mean of 5 measurements with thermocouple and Pt res. therm., To = 273.10 K; TRC
Quantity Value Units Method Reference Comment
Ptriple0.01374 ± 0.00003atmN/AAngus, Armstrong, et al., 1984Uncertainty assigned by TRC = 0.00003 atm; TRC
Quantity Value Units Method Reference Comment
Tc416.956KN/AAngus, Armstrong, et al., 1984TRC
Tc416.9KN/AAmbrose, Hall, et al., 1979Uncertainty assigned by TRC = 0.5 K; TRC
Quantity Value Units Method Reference Comment
Pc78.869atmN/AAngus, Armstrong, et al., 1984TRC
Pc78.73atmN/AAmbrose, Hall, et al., 1979Uncertainty assigned by TRC = 0.49 atm; Visual, uncertain because of reactivity of element.; TRC
Quantity Value Units Method Reference Comment
ρc8.1344mol/lN/AAngus, Armstrong, et al., 1984TRC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
155. to 239.43.0156530.591-64.639Stull, 1947Coefficents calculated by NIST from author's data.
239.4 to 400.34.28243969.992-12.791Stull, 1947Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Chlorine anion + Chlorine = Cl3-

By formula: Cl- + Cl2 = Cl3-

Quantity Value Units Method Reference Comment
Δr23.7 ± 1.2kcal/molCIDTNizzi, Pommerening, et al., 1998gas phase; B
Δr16.70kcal/molTherRobbiani and Franklin, 1979gas phase; ΔG≈+1 kcal for Cl- + SO2Cl2 <=> Cl3- + SO2; B
Δr<43.60kcal/molPDisLee, Smith, et al., 1979gas phase; B

Tetrachloroethylene + Chlorine = Ethane, hexachloro-

By formula: C2Cl4 + Cl2 = C2Cl6

Quantity Value Units Method Reference Comment
Δr-36.70 ± 0.60kcal/molCmKirkbride, 1956liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -37. kcal/mol; ALS

Chlorine anion + Chlorine = (Chlorine anion • Chlorine)

By formula: Cl- + Cl2 = (Cl- • Cl2)

Quantity Value Units Method Reference Comment
Δr17.0kcal/molSAMSRobbiani and Franklin, 1979, 2gas phase; based on Cl- + SO2Cl2 <--> Cl3- + SO2; National Bureau of Standards, 1968; M

Cyclobutene, hexafluoro- + Chlorine = Cyclobutane, 1,2-dichloro-1,2,3,3,4,4-hexafluoro-

By formula: C4F6 + Cl2 = C4Cl2F6

Quantity Value Units Method Reference Comment
Δr-37.38 ± 0.99kcal/molCmLacher, McKinley, et al., 1949gas phase; Heat of chlorination at 363 °K; ALS

Propene, hexafluoro- + Chlorine = 1,2-Dichlorohexafluoropropane

By formula: C3F6 + Cl2 = C3Cl2F6

Quantity Value Units Method Reference Comment
Δr-47.15 ± 0.12kcal/molCmLacher, McKinley, et al., 1949gas phase; Heat of chlorination at 363 °K; ALS

Chlorine + Ethene, chlorotrifluoro- = Ethane, 1,1,2-trichloro-1,2,2-trifluoro-

By formula: Cl2 + C2ClF3 = C2Cl3F3

Quantity Value Units Method Reference Comment
Δr-48.82 ± 0.48kcal/molCmLacher, McKinley, et al., 1949gas phase; Heat of Chlorination at 363 °K; ALS

Chlorine + Ethene, 1,1-dichloro-2,2-difluoro- = Ethane, 1,1,1,2-tetrachloro-2,2-difluoro-

By formula: Cl2 + C2Cl2F2 = C2Cl4F2

Quantity Value Units Method Reference Comment
Δr-41.08 ± 0.56kcal/molCmLacher, McKinley, et al., 1949gas phase; Heat of chlorination at 363 °K; ALS

Ethene, tetrafluoro- + Chlorine = Ethane, 1,2-dichloro-1,1,2,2-tetrafluoro-

By formula: C2F4 + Cl2 = C2Cl2F4

Quantity Value Units Method Reference Comment
Δr-57.32 ± 0.20kcal/molCmLacher, McKinley, et al., 1949, 2gas phase; Chlorination at 90 C; ALS

Ethane, 1,2-dichloro- + Chlorine = Hydrogen chloride + Ethane, 1,1,2-trichloro-

By formula: C2H4Cl2 + Cl2 = HCl + C2H3Cl3

Quantity Value Units Method Reference Comment
Δr-27.8kcal/molCmKirkbride, 1956liquid phase; Heat of chlorination; ALS

Trichloromethane + Chlorine = Carbon Tetrachloride + Hydrogen chloride

By formula: CHCl3 + Cl2 = CCl4 + HCl

Quantity Value Units Method Reference Comment
Δr-22.30kcal/molCmKirkbride, 1956liquid phase; Heat of chlorination; ALS

Ethylene + Chlorine = Ethane, 1,2-dichloro-

By formula: C2H4 + Cl2 = C2H4Cl2

Quantity Value Units Method Reference Comment
Δr-43.65 ± 0.15kcal/molCmConn, Kistiakowsky, et al., 1938gas phase; At 355 °K; ALS

Ethylene, 1,2-dichloro-, (Z)- + Chlorine = Ethane, 1,1,2,2-tetrachloro-

By formula: C2H2Cl2 + Cl2 = C2H2Cl4

Quantity Value Units Method Reference Comment
Δr-40.4kcal/molCmKirkbride, 1956liquid phase; Heat of chlorination; ALS

bromine chloride + Chlorotrifluoromethane = Bromotrifluoromethane + Chlorine

By formula: BrCl + CClF3 = CBrF3 + Cl2

Quantity Value Units Method Reference Comment
Δr10.69 ± 0.15kcal/molEqkCoomber and Whittle, 1967gas phase; ALS

bromine chloride + Pentafluoroethyl chloride = C2BrF5 + Chlorine

By formula: BrCl + C2ClF5 = C2BrF5 + Cl2

Quantity Value Units Method Reference Comment
Δr10.3 ± 0.6kcal/molEqkCoomber and Whittle, 1967gas phase; ALS

Ethylene, 1,2-dichloro-, (Z)- = Acetylene + Chlorine

By formula: C2H2Cl2 = C2H2 + Cl2

Quantity Value Units Method Reference Comment
Δr5.1kcal/molKinLaursen and Pimentel, 1989gas phase; Photolyses; ALS

1-Butene, 1,1,2,3,3,4,4,4-octafluoro- + Chlorine = Butane, 1,2-dichlorooctafluoro-

By formula: C4F8 + Cl2 = C4Cl2F8

Quantity Value Units Method Reference Comment
Δr-44.97 ± 0.31kcal/molCmLacher, Kianpour, et al., 1957gas phase; ALS

C5F10 + Chlorine = C5Cl2F10

By formula: C5F10 + Cl2 = C5Cl2F10

Quantity Value Units Method Reference Comment
Δr-45.61 ± 0.40kcal/molCmLacher, Kianpour, et al., 1957, 2gas phase; ALS

Ethane, hexachloro- = Tetrachloroethylene + Chlorine

By formula: C2Cl6 = C2Cl4 + Cl2

Quantity Value Units Method Reference Comment
Δr31.7 ± 1.0kcal/molEqkPuyo, Balesdent, et al., 1963gas phase; ALS

1,1,3,3,3-Pentafluoro-2-(trifluoromethyl)-1-propene + Chlorine = Propane, 1,2-dichloropentafluoro-2-(trifluoromethyl)-

By formula: C4F8 + Cl2 = C4Cl2F8

Quantity Value Units Method Reference Comment
Δr-42.22 ± 0.51kcal/molCmLacher, Kianpour, et al., 1957, 2gas phase; ALS

Cyclohexane, chloro- + Hydrogen chloride = Cyclohexane + Chlorine

By formula: C6H11Cl + HCl = C6H12 + Cl2

Quantity Value Units Method Reference Comment
Δr-34.20kcal/molCmKirkbride, 1956liquid phase; ALS

Benzene + Chlorine = Benzene, chloro- + Hydrogen chloride

By formula: C6H6 + Cl2 = C6H5Cl + HCl

Quantity Value Units Method Reference Comment
Δr-32.0kcal/molCmKirkbride, 1956liquid phase; ALS

Chlorine + Trichloroethylene = Ethane, pentachloro-

By formula: Cl2 + C2HCl3 = C2HCl5

Quantity Value Units Method Reference Comment
Δr-36.2kcal/molCmKirkbride, 1956liquid phase; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0952100.LN/A 
0.0932600.QN/AOnly the tabulated data between T = 273. K and T = 303. K from missing citation was used to derive kH and -Δ kH/R. Above T = 303. K the tabulated data could not be parameterized by equation (reference missing) very well. The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by missing citation. The quantities A and α from missing citation were assumed to be identical.
0.0612800.TN/A 
0.0852000.XN/A 
0.0912500.LN/A 
0.0623200.LN/A 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess

View reactions leading to Cl2+ (ion structure unspecified)

Electron affinity determinations

EA (eV) Method Reference Comment
2.50 ± 0.20NBIEBowen, Liesegang, et al., 1983B
2.33004ECDAyala, Wentworth, et al., 1981Vertical Detachment Energy: 1.02 eV; B
2.40 ± 0.20NBIEDispert and Lacmann, 1977B
2.32 ± 0.10EndoHughes, Lifschitz, et al., 1973B
2.45 ± 0.15NBIEBaeda, 1972B
2.46 ± 0.14IMRBDunkin, Fehsenfeld, et al., 1972B
2.38 ± 0.10EndoChupka, Berkowitz, et al., 1971B
2.52 ± 0.17EIAEDeCorpo and Franklin, 1971From CCl4; B
1.020 ± 0.050NBIEHubers, Kleyn, et al., 1976Stated electron affinity is the Vertical Detachment Energy; B
3.20 ± 0.20NBIELacmann and Herschbach, 1970B

Ionization energy determinations

IE (eV) Method Reference Comment
11.481 ± 0.003TEYencha, Hopkirk, et al., 1995LL
11.480 ± 0.005PEVan Lonkhuyzen and De Lange, 1984LBLHLM
11.50EVALHuber and Herzberg, 1979LLK
11.51 ± 0.01PEPotts and Price, 1971LLK
11.48 ± 0.01PIDibeler, Walker, et al., 1971LLK
11.49PECornford, Frost, et al., 1971LLK
11.49PEAnderson, Mamantov, et al., 1971LLK
11.48 ± 0.01PIWatanabe, 1957RDSH
11.49PEDyke, Josland, et al., 1984Vertical value; LBLHLM
11.59PEKimura, Katsumata, et al., 1981Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
Cl+11.86 ± 0.04Cl-EIFrost and McDowell, 1959RDSH

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Chlorine anion + Chlorine = (Chlorine anion • Chlorine)

By formula: Cl- + Cl2 = (Cl- • Cl2)

Quantity Value Units Method Reference Comment
Δr17.0kcal/molSAMSRobbiani and Franklin, 1979, 2gas phase; based on Cl- + SO2Cl2 <--> Cl3- + SO2; National Bureau of Standards, 1968; M

Chlorine anion + Chlorine = Cl3-

By formula: Cl- + Cl2 = Cl3-

Quantity Value Units Method Reference Comment
Δr23.7 ± 1.2kcal/molCIDTNizzi, Pommerening, et al., 1998gas phase; B
Δr16.70kcal/molTherRobbiani and Franklin, 1979gas phase; ΔG≈+1 kcal for Cl- + SO2Cl2 <=> Cl3- + SO2; B
Δr<43.60kcal/molPDisLee, Smith, et al., 1979gas phase; B

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Crystal Harrison, SCOTT SPECIALTY GASES Inc., NJ
NIST MS number 245871

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through September, 1976

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 35Cl2
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Rydberg series joining on to P: v(1-0) = 93200 - R / (n-0.54)2, n = 3...7; fragmentary vibrational structure.
Iczkowski, Margrave, et al., 1960
Fragments of additional band systems in absorption at v > 65000 cm-1.
Lee and Walsh, 1959; Iczkowski, Margrave, et al., 1960
Emission continua in the ultraviolet with maxima at 32640, 33810, 34700, 35450, 36220, 36820, 38970, 41140, 42500, 43710, 45500, 46610, 47670; 50060, 51850, 53890 cm-1. 1
Asundi and Venkateswarlu, 1947
P (74405) (621) (3)        P ← X 74436
Lee and Walsh, 1959; Iczkowski, Margrave, et al., 1960
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
O     [0.1840] 2      O → X R 74018.5 2 Z
missing citation
N     [0.1193] 2      N → X R 73363.3 2 Z
missing citation
M (72853) (636) (4)        M ← X 72891
Lee and Walsh, 1959
K (64024) (460)         K → X 3 63975
Haranath and Rao, 1958
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
J (61638) (520) (3)        J ← X 61618
Lee and Walsh, 1959
I 61438 262.3 H 0.812        I → B V 43632 H
Khanna, 1959
H (59432) (510)         H ← X 59408
Lee and Walsh, 1959
G (58629) (208)         G → X 3 R 58454
Haranath and Rao, 1958
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
F (58263) (442)         F ← X 58205
Lee and Walsh, 1959
E 57953 249.75 H 0.875        E ↔ B R 40140.0 H
Venkateswarlu and Khanna, 1959; missing citation; Wieland, Tellinghuisen, et al., 1972
D (53568) (440) (1.5)        D ← X 53508
Lee and Walsh, 1959
4           
Cordes and Sponer, 1930; Lee and Walsh, 1959
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
C 1Πu 5          C ↔ X 6 
Gibson and Bayliss, 1933; Sulzer and Wieland, 1952; Jacobs and Giedt, 1965; Clyne and Stedman, 1968; Palmer and Carabetta, 1968
B 3Π0+u 17809 259.5 7 H 5.3 8  0.16256 9 0.00212 -0.000091 2.365E-7 10  2.4354 B ↔ X 11 12 R 17658 7 H
missing citation; missing citation; missing citation
A (3Π1u) (17440) (265) H (5)        A → X 11 13 
Coxon, 1973
A' (3Π2u) (17160) 14 (280) 15         A' → X 16 
Bondybey and Fletcher, 1976
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
X 1Σg+ 0 559.72 17 18 2.675 -0.0067 0.24399 17 0.00149 -0.0000017 1.86E-7  1.9879 19  
Winkel, Hunt, et al., 1969
Raman sp.
Holzer, Murphy, et al., 1970; Hochenbleicher and Schrotter, 1971; Hendra and Vear, 1972; Wallart, 1972; Edwards, Good, et al., 1976

Notes

1They have been interpreted Asundi and Venkateswarlu, 1947 as being due to transitions from stable excited states at 58000 (possibly F), 67700 and 75000 cm-1 to the repulsive states arising from 2P + 2P. The upper states at 67700 and 75000 cm-1 are considered to be 1g states and, therefore, are not observed in absorption from the ground state.
2Upper levels of four extensive resonance series Rao and Venkateswarlu, 1962, Douglas and Hoy, 1975. The v' values are uncertain. The resonance fluorescence spectrum is excited by the Cl I lines at 73983 and 73344 cm-1 in a discharge through Cl2 and involves transitions to ground state levels with v"≤59. The ground state dissociation energy derived from these resonance series Douglas and Hoy, 1975 agrees now very well with the more accurate value from the B-X system.
3These systems [called J-X and H-X by Haranath and Rao, 1958] have not been observed in absorption. For this reason Lee and Walsh, 1959 suggest that they may actually be due to Cl2+.
4Continuous absorption above ~52600 cm-1 at high pressure.
5Continuous absorption with maximum at 30500 cm-1.
6The angular distribution of photo-fragments confirms the assignment of the upper state of the continuum to 1Πu Busch, Mahoney, et al., 1969; see also Child and Bernstein, 1973 and Brith, Rowe, et al., 1975. The B ← X transition, however, contributes to the weak low-frequency region of the continuum; for a discussion of quantitative data see Coxon, 1973.
7Since high resolution data Douglas, Moller, et al., 1963, Clyne and Coxon, 1970 are available only for v≥5, the constants given here are from the low resolution emission work of Clyne and Coxon, 1967 (band heads); they are valid only for 0≤v≤6. For 6<v<22, Richards and Barrow, 1962 give ωe = 259.57, ωexe = 4.753, ωeye = -0.0677, ωeze = +0.00212. The band origin of the 6-0 band is at 18993.79 cm-1.
8Convergence limit 20879.64 ± 0.14 cm-1 Le Roy, 1973, LeRoy, 1974. See LeRoy and Bernstein, 1971, Goscinski, 1972, LeRoy, 1972, Yee and Stone, 1973, LeRoy, 1974 and the review in Le Roy, 1973 for relation of high vibrational levels to long-range internuclear potential.
9These constants are based on bands with 5≤v'≤13 Clyne and Coxon, 1970. Bv values up to v=31 have been determined Douglas, Moller, et al., 1963, Clyne and Coxon, 1970.
10+0.225E-7(v+1/2) + 0.015E-7(v+1/2)2 See 9 .
11Estimated radiative lifetimes in Coxon, 1973.
12Franck-Condon factors from RKR potentia1s Coxon, 1971. For a discussion of the repulsive part of the potential see Child and Bernstein, 1973.
13Two weak progressions, not belonging to B-X and tentatively assigned as 1-v" and 2-v" with v" = 8,9,..., were observed in the chlorine atom recombination spectrum and in the spectrum of the nitrogen trichloride decomposition flame; see references in Coxon, 1973.
14Not observed in the gas phase (see 16); in an Ar matrix this new state is located 650 cm-1 below the B 3Π0+u state.
15Estimated from isotope shifts.
16Long-lived (~76 ms in Ar) emission in rare gas matrices from v=0 of a new low-lying state following excitation into the B or C state; see Bondybey and Fletcher, 1976.
17These constants are based on the lowest six vibrational levels Clyne and Coxon, 1970. The following Dunham coefficients have been derived by Douglas and Hoy, 1975 from a detailed analysis at high resolution of the resonance series excited by the Cl I lines at 1351.7 and 1363.5 ; they represent all levels up to v=40: Y10 = 559.7507 Y01 = 0.244153 Y20 = -2.694271 Y11 = -0.0015163 Y30 = -3.32527E-3 Y21 = -3.9078E-6 Y40 = -2.27337E-4 Y31 = 7.0811E-8 Y50 = -3.92041E-6 Y41 = -5.5875E-9 Y60 = -6.02984E-8 Y02 = -1.9195E-7 Y00 = -0.0351 Y32 = -3.1678E-12 The same authors give, in addition, G(v) and Bv values up to v=59 and have determined an accurate RKR potential function. The long-range portion agrees very well with that predicted from theory.
18550.8 in liquid Cl2 Wallart, 1972; 554.6 in solid argon Ault, Howard, et al., 1975, Bondybey and Fletcher, 1976.
19Pressure induced IR absorption at 549 cm-1
20From the convergence limit in B 3Π0+ (see 8). From the same limit Le Roy, 1973 gives D00 = 19997.l4 cm-1 or 2.479349 eV presumably by using a different value for the 2P1/2 - 2P3/2 energy difference in Cl I. Here we used 882.36 cm-1 from Radziemski and Kaufman, 1969.
21From the photoelectron spectrum; average of Cornford, Frost, et al., 1971 and Potts and Price, 1971. Photoionization Watanabe, Nakayama, et al., 1962, in agreement with the Rydberg series, yields 11.48 eV.

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Thiele and Schulte, 1920
Thiele, A.; Schulte, E., Binary equilibrium systems with solid carbon dioxide, Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1920, 96, 312-42. [all data]

Angus, Armstrong, et al., 1984
Angus, S.; Armstrong, B.; de Reuck, K.M., International Thermodynamic Tables of the Fluid State - Chlorine, Pergamon, Oxford, 1984. [all data]

Giauque and Powell, 1939
Giauque, W.F.; Powell, T.M., Chlorine. The Heat Capacity, Vapor Pressure, Heats of Fusion and Vaporiza- tion, and Entropy, J. Am. Chem. Soc., 1939, 61, 1970. [all data]

Ambrose, Hall, et al., 1979
Ambrose, D.; Hall, D.J.; Lee, D.A.; Lewis, G.B., Vapor pressure of chlorine, J. Chem. Thermodyn., 1979, 11, 1089. [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Nizzi, Pommerening, et al., 1998
Nizzi, K.E.; Pommerening, C.A.; Sunderlin, L.S., Gas-phase thermochemistry of polyhalide anions, J. Phys. Chem. A, 1998, 102, 39, 7674-7679, https://doi.org/10.1021/jp9824508 . [all data]

Robbiani and Franklin, 1979
Robbiani, R.; Franklin, J.L., Formation of the trihalide ion Cl3- in the gas phase, J. Am. Chem. Soc., 1979, 101, 764. [all data]

Lee, Smith, et al., 1979
Lee, L.C.; Smith, G.P.; Moseley, J.T.; Cosby, P.C.; Guest, J.A., Photodissociation and photodetachment of Cl2-, ClO-, Cl3-, and BrCl2-, J. Chem. Phys., 1979, 70, 3237. [all data]

Kirkbride, 1956
Kirkbride, F.W., The heats of chlorination of some hydrocarbons and their chloro-derivatives, J. Appl. Chem., 1956, 6, 11-21. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Robbiani and Franklin, 1979, 2
Robbiani, R.; Franklin, J.L., Negative ion-molecule reaction in sulfuryl halides, J. Am. Chem. Soc., 1979, 101, 3709. [all data]

National Bureau of Standards, 1968
National Bureau of Standards, US, Technical Note 270 - 3 in The NBS Tables of Chemical Thermodynamic Properties, 1968. [all data]

Lacher, McKinley, et al., 1949
Lacher, J.R.; McKinley, J.J.; Walden, C.; Lea, K.; Park, J.D., Reaction heats of organic fluorine compounds. II. The vapor phase heats of chlorination of some simple fluoroolefins, J. Am. Chem. Soc., 1949, 71, 1334-1337. [all data]

Lacher, McKinley, et al., 1949, 2
Lacher, J.R.; McKinley, J.J.; Snow, C.M.; Michel, L.; Nelson, G.; Park, J.D., Reaction heats of organic fluorine compounds. I. Apparatus and the heat of chlorination of tetrafluoroethylene, J. Am. Chem. Soc., 1949, 71, 1330-1334. [all data]

Conn, Kistiakowsky, et al., 1938
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VII. Addition of halogens to olefins, J. Am. Chem. Soc., 1938, 60, 2764-2771. [all data]

Coomber and Whittle, 1967
Coomber, J.W.; Whittle, E., Bond dissociation energies from equilibrium studies. Part 3.-D(CF3-Cl), D(C2F5-Cl) and the enthalpy of formation of CF3Cl, Trans. Faraday Soc., 1967, 63, 2656-2667. [all data]

Laursen and Pimentel, 1989
Laursen, S.L.; Pimentel, G.C., Matrix-induced intersystem crossing in the photochemistry of the 1,2-dichloroethenes, J. Phys. Chem., 1989, 93, 2328-2333. [all data]

Lacher, Kianpour, et al., 1957
Lacher, J.R.; Kianpour, A.; Park, J.D., Reaction heats of organic halogen compounds. X. Vapor phase heats of hydrobromination of cyclopropane and propylene, J. Phys. Chem., 1957, 61, 1124-1125. [all data]

Lacher, Kianpour, et al., 1957, 2
Lacher, J.R.; Kianpour, A.; Park, J.D., Reaction heats of organic halogen compounds. VIII. The heats of chlorination of perfluorinated butene-1 pentene-1 and isobutene, J. Phys. Chem., 1957, 61, 584-586. [all data]

Puyo, Balesdent, et al., 1963
Puyo, J.; Balesdent, D.; Niclause, M.; Dzierzynski, M., Etude analytique et thermodynamique de la pyrolyse de l'hexachloroethane en phase gazeuse., Compt. Rend., 1963, 256, 3471-3473. [all data]

Bowen, Liesegang, et al., 1983
Bowen, K.H.; Liesegang, G.W.; Sanders, R.A.; Herschbach, D.W., Electron Attachment to Molecular Clusters by Collisional Charge Transfer, J. Phys. Chem., 1983, 87, 4, 557-565, https://doi.org/10.1021/j100227a009 . [all data]

Ayala, Wentworth, et al., 1981
Ayala, J.A.; Wentworth, W.E.; Chen, E.C.M., Electron attachment to halogens, J. Phys. Chem., 1981, 85, 768. [all data]

Dispert and Lacmann, 1977
Dispert, H.; Lacmann, K., Chemiionization in alkali-halogen reactions: Evidence for ion formation by alkali dimers, Chem. Phys. Lett., 1977, 47, 533. [all data]

Hughes, Lifschitz, et al., 1973
Hughes, B.M.; Lifschitz, C.; Tiernan, T.O., Electron affinities from endothermic negative-ion charge-transfer reactions. III. NO, NO2, S2, CS2, Cl2, Br2, I2, and C2H, J. Chem. Phys., 1973, 59, 3162. [all data]

Baeda, 1972
Baeda, A.P.M., The adiabatic electron affinities of Cl2, Br2, I2, IBr, NO2, and O2, Physica, 1972, 59, 541. [all data]

Dunkin, Fehsenfeld, et al., 1972
Dunkin, D.B.; Fehsenfeld, F.C.; Ferguson, F.E., Thermal energy rate constants for the reactions NO2- + Cl2 → Cl2-, Cl2- + NO2 Ü Cl-, HS- + NO2 Ü NO2-, HS- + Cl2 Ü Cl2-, and S- + NO2 Ü NO2-, Chem. Phys. Lett., 1972, 15, 257. [all data]

Chupka, Berkowitz, et al., 1971
Chupka, W.A.; Berkowitz, J.; Gutman, D., Electron Affinities of Halogen Diatomic Molecules as Determined by Endoergic Charge Exchange, J. Chem. Phys., 1971, 55, 6, 2724, https://doi.org/10.1063/1.1676487 . [all data]

DeCorpo and Franklin, 1971
DeCorpo, J.J.; Franklin, J.L., Electron affinities of the halogen molecules by dissociative electron attachment, J. Chem. Phys., 1971, 54, 1885. [all data]

Hubers, Kleyn, et al., 1976
Hubers, M.M.; Kleyn, A.W.; Los, J., Ion pair formation in alkali-halogen collisions at high velocities, Chem. Phys., 1976, 17, 303. [all data]

Lacmann and Herschbach, 1970
Lacmann, K.; Herschbach, D.R., Collisional Excitation and Ionization of K Atoms by Diatomic Molecules: Role of Ion-pair States, Chem. Phys. Lett., 1970, 6, 2, 106, https://doi.org/10.1016/0009-2614(70)80144-0 . [all data]

Yencha, Hopkirk, et al., 1995
Yencha, A.J.; Hopkirk, A.; Hiraya, A.; Donovan, R.J.; Goode, J.G.; Maier, R.R.J.; King, G.C.; Kvaran, A., Threshold photoelectron spectroscopy of Cl2 and Br2 up to 35 eV, J. Phys. Chem., 1995, 99, 7231. [all data]

Van Lonkhuyzen and De Lange, 1984
Van Lonkhuyzen, H.; De Lange, C.A., High-resolution UV photoelectron spectroscopy of diatomic halogens, Chem. Phys., 1984, 89, 313. [all data]

Huber and Herzberg, 1979
Huber, K.P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules,, Van Nostrand Reinhold Co., 1979, ,1. [all data]

Potts and Price, 1971
Potts, A.W.; Price, W.C., Photoelectron spectra of the halogens and mixed halides ICI and lBr, J. Chem. Soc. Faraday Trans., 1971, 67, 1242. [all data]

Dibeler, Walker, et al., 1971
Dibeler, V.H.; Walker, J.A.; McCulloh, K.E.; Rosenstock, H.M., Effect of hot bands on the ionization threshold of some diatomic halogen molecules, Intern. J. Mass Spectrom. Ion Phys., 1971, 7, 209. [all data]

Cornford, Frost, et al., 1971
Cornford, A.B.; Frost, D.C.; McDowell, C.A.; Ragle, J.L.; Stenhouse, I.A., Photoelectron spectra of the halogens, J. Chem. Phys., 1971, 54, 2651. [all data]

Anderson, Mamantov, et al., 1971
Anderson, C.P.; Mamantov, G.; Bull, W.E.; Grimm, F.A.; Carver, J.C.; Carlson, T.A., Photoelectron spectrum of chlorine monofluoride, Chem. Phys. Lett., 1971, 12, 137. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Dyke, Josland, et al., 1984
Dyke, J.M.; Josland, G.D.; Snijders, J.G.; Boerrigter, P.M., Ionization energies of the diatomic halogens and interhalogens studied with relativistic hartree-fock-slater calculations, Chem. Phys., 1984, 91, 419. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Frost and McDowell, 1959
Frost, D.C.; McDowell, C.A., Recent electron impact studies on simple molecules (O2, Cl2, I2), Advan. Mass Spectrom., 1959, 1, 413. [all data]

Iczkowski, Margrave, et al., 1960
Iczkowski, R.P.; Margrave, J.L.; Green, J.W., Absorption spectrum of chlorine in the vacuum ultraviolet, J. Chem. Phys., 1960, 33, 1261. [all data]

Lee and Walsh, 1959
Lee, J.; Walsh, A.D., The vacuum ultra-violet absorption spectra of the halogen molecules, Trans. Faraday Soc., 1959, 55, 1281. [all data]

Asundi and Venkateswarlu, 1947
Asundi, R.K.; Venkateswarlu, P., Spectra of the Halogens, I2, Br2 and Cl2, Indian J. Phys., 1947, 21, 101-118. [all data]

Haranath and Rao, 1958
Haranath, P.B.V.; Rao, P.T., Band spectra of iodine, chlorine, and bromine in the spectral region 2400-1400 A, J. Mol. Spectrosc., 1958, 2, 428. [all data]

Khanna, 1959
Khanna, B.N., Emission spectrum of chlorine excited in the presence of argon, Proc. Indian Acad. Sci. Sect. A, 1959, 49, 293-301. [all data]

Venkateswarlu and Khanna, 1959
Venkateswarlu, P.; Khanna, B.N., Emission spectrum of chlorine excited in the presence of argon. Part I. The band system in the region 2600-2390 Å, Proc. Indian Acad. Sci. Sect. A, 1959, 49, 117-127. [all data]

Wieland, Tellinghuisen, et al., 1972
Wieland, K.; Tellinghuisen, J.B.; Nobs, A., The band systems E → B(4000-4360 Å) and F → X(2530-2740 Å) of 127I2 and 129I2, and the corresponding system E = B of Br2 and Cl2, J. Mol. Spectrosc., 1972, 41, 69. [all data]

Cordes and Sponer, 1930
Cordes, H.; Sponer, H., Die molekulabsorption des chlors, broms, jodchlorids und jodbromids im aubersten ultraviolett, Z. Phys., 1930, 63, 334. [all data]

Gibson and Bayliss, 1933
Gibson, G.E.; Bayliss, N.S., Variation with temperature of the continuous absorption spectrum of diatomic molecules: Part I. Experimental, the absorption spectrum of chlorine, Phys. Rev., 1933, 44, 188. [all data]

Sulzer and Wieland, 1952
Sulzer, P.; Wieland, K., Intensitatsverteilung eines kontinuierlichen Absorptions-spectrums in Abhangigkeit von Temperatur und Wellenzahl, Helv. Phys. Acta, 1952, 25, 653-676. [all data]

Jacobs and Giedt, 1965
Jacobs, T.A.; Giedt, R.R., Absorption coefficients of Cl2 at high temperatures, J. Quant. Spectrosc. Radiat. Transfer, 1965, 5, 457. [all data]

Clyne and Stedman, 1968
Clyne, M.A.A.; Stedman, D.H., Recombination of ground-state halogen atoms. Part 1. Radiative recombination of chlorine atoms, Trans. Faraday Soc., 1968, 64, 1816. [all data]

Palmer and Carabetta, 1968
Palmer, H.B.; Carabetta, R.A., Radiative recombination of chlorine atoms in shock waves: a re-examination, J. Chem. Phys., 1968, 49, 2466. [all data]

Coxon, 1973
Coxon, J.A., Chapt. 4. Low-lying electronic states of diatomic halogen molecules in Molecular Spectroscopy. Volume 1, Barrow,R.F.; Long,D.A.; Millen,D.J., ed(s)., The Chemical Society, Burlington House, London, W1V 0BN, 1973, 177-228. [all data]

Bondybey and Fletcher, 1976
Bondybey, V.E.; Fletcher, C., Photophysics of low lying electronic states of Cl2 in rare gas solids, J. Chem. Phys., 1976, 64, 3615. [all data]

Winkel, Hunt, et al., 1969
Winkel, R.G.; Hunt, J.L.; Clouter, M.J., Pressure-induced fundamental infrared absorption band of gaseous chlorine, J. Chem. Phys., 1969, 50, 1298. [all data]

Holzer, Murphy, et al., 1970
Holzer, W.; Murphy, W.F.; Bernstein, H.J., Resonance Raman effect and resonance fluoroscence in halogen gases, J. Chem. Phys., 1970, 52, 399. [all data]

Hochenbleicher and Schrotter, 1971
Hochenbleicher, G.; Schrotter, H.W., Observation of hot bands in the Raman spectra of Cl2 gas and CCl4 vapor, Appl. Spectrosc., 1971, 25, 3, 360-362. [all data]

Hendra and Vear, 1972
Hendra, P.J.; Vear, C.J., The pure rotational laser Raman spectrum of chlorine, Spectrochim. Acta, Part A, 1972, 28, 1949-1961. [all data]

Wallart, 1972
Wallart, F., Study of vibrational hot bands by Raman spectroscopy - application to chlorine and bromine chloride, Can. J. Spectrosc., 1972, 17, 128. [all data]

Edwards, Good, et al., 1976
Edwards, H.G.M.; Good, E.A.M.; Long, D.A., Pure rotational Raman spectra of the chlorine species, 35Cl2 and 35Cl37Cl, J. Chem. Soc. Faraday Trans. 2, 1976, 72, 927-933. [all data]

Rao and Venkateswarlu, 1962
Rao, Y.V.; Venkateswarlu, P., Vacuum ultraviolet resonance spectrum of Cl2 molecule, J. Mol. Spectrosc., 1962, 9, 173. [all data]

Douglas and Hoy, 1975
Douglas, A.E.; Hoy, A.R., The resonance fluorescence spectrum of Cl2 in the vacuum ultraviolet, Can. J. Phys., 1975, 53, 1965-1975. [all data]

Busch, Mahoney, et al., 1969
Busch, G.E.; Mahoney, R.T.; Morse, R.I., Translational spectroscopy: Cl2 photodissociation, J. Chem. Phys., 1969, 51, 449. [all data]

Child and Bernstein, 1973
Child, M.S.; Bernstein, R.B., Diatomic interhalogens: systematics and implications of spectroscopic interatomic potentials and curve crossings, J. Chem. Phys., 1973, 59, 5916. [all data]

Brith, Rowe, et al., 1975
Brith, M.; Rowe, M.D.; Schnepp, O.; Stephens, P.J., The magnetic circular dichroism spectrum of the halogen molecules I2, Br2, Cl2. Resolution of overlapping continua, Chem. Phys., 1975, 9, 57. [all data]

Douglas, Moller, et al., 1963
Douglas, A.E.; Moller, C.K.; Stoicheff, B.P., Can. J. Phys., 1963, 41, 1174. [all data]

Clyne and Coxon, 1970
Clyne, M.A.A.; Coxon, J.A., The visible band absorption spectrum of chlorine, J. Mol. Spectrosc., 1970, 33, 381. [all data]

Clyne and Coxon, 1967
Clyne, M.A.A.; Coxon, J.A., The formation and detection of some low-lying excited electronic states of BrCl and other halogens, Proc. R. Soc. London A, 1967, 298, 424. [all data]

Richards and Barrow, 1962
Richards, W.G.; Barrow, R.F., Rotational analysis of the A3Π0+,u - X1Σg+ system of the chlorine molecule, Proc. Chem. Soc. London, 1962, 297. [all data]

Le Roy, 1973
Le Roy, R.J., Chapt. 3. Energy levels of a diatomic near dissociation in Molecular Spectroscopy. Volume 1, Barrow,R.F.; Long,D.A.; Millen,D.J., ed(s)., The Chemical Society, Burlington House, London, W1V 0BN, 1973, 113-175. [all data]

LeRoy, 1974
LeRoy, R.J., Long-range potential coefficients from RKR turning points: C6 and C8 for B(3Π0u+)-state Cl2, Br2, and I2, Can. J. Phys., 1974, 52, 246. [all data]

LeRoy and Bernstein, 1971
LeRoy, R.J.; Bernstein, R.B., Dissociation energies and long-range potentials of diatomic molecules from vibrational spacings: the halogens, J. Mol. Spectrosc., 1971, 37, 109. [all data]

Goscinski, 1972
Goscinski, O., Outer vibrational turning points near dissociation in the B(3Π0u+) state of Br2 and Cl2, Mol. Phys., 1972, 24, 655. [all data]

LeRoy, 1972
LeRoy, R.J., Dependence of the diatomic rotational constant Bv on the long-range internuclear potential, Can. J. Phys., 1972, 50, 953. [all data]

Yee and Stone, 1973
Yee, K.K.; Stone, T.J., Analysis of RKR long-range potentials of the B3Π0u+ states of Br2 and Cl2, Mol. Phys., 1973, 26, 1169. [all data]

Coxon, 1971
Coxon, J.A., Franck-Condon factors and r-centroids for halogen molecules. I. The B3Π(0u+)-X1Σg+ system of 35Cl2, J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 1355. [all data]

Ault, Howard, et al., 1975
Ault, B.S.; Howard, W.F.; Andrews, L., Laser-induced fluorescence and Raman spectra of chlorine and bromine molecules isolated in inert matrices, J. Mol. Spectrosc., 1975, 55, 217. [all data]

Radziemski and Kaufman, 1969
Radziemski, L.J., Jr.; Kaufman, V., Wavelengths, energy levels, and analysis of neutral atomic chlorine (Cl I), J. Opt. Soc. Am., 1969, 59, 4, 424-443. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, References