1-Butanol
- Formula: C4H10O
- Molecular weight: 74.1216
- IUPAC Standard InChIKey: LRHPLDYGYMQRHN-UHFFFAOYSA-N
- CAS Registry Number: 71-36-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Butyl alcohol; n-Butan-1-ol; n-Butanol; n-Butyl alcohol; Butyl hydroxide; CCS 203; Hemostyp; Methylolpropane; Propylcarbinol; n-C4H9OH; Butanol; Butan-1-ol; 1-Hydroxybutane; Alcool butylique; Butanolo; Butylowy alkohol; Butyric alcohol; Propylmethanol; Butanolen; 1-Butyl alcohol; Rcra waste number U031; Butanol-1; NSC 62782
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -277. ± 5. | kJ/mol | AVG | N/A | Average of 13 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 361.98 | J/mol*K | N/A | Chao J., 1986 | Other values of S(298.15 K) based on low-temperature thermal measurements are (in J/mol*K): 363.17 [65COU/HAL], 362.33 [ Chermin H.A.G., 1961], and 361.9 [ Buckley E., 1967].; GT |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
42.54 | 50. | Thermodynamics Research Center, 1997 | p=1 bar. Recommended S(T) and Cp(T) values agree with those calculated by [ Chermin H.A.G., 1961] within 1.5 J/mol*K. S(T) values calculated by [ Dyatkina M.E., 1954] are different from values given here by 12-30 J/mol*K. Please also see Chao J., 1986.; GT |
58.33 | 100. | ||
70.10 | 150. | ||
81.28 | 200. | ||
100.68 | 273.15 | ||
108.03 ± 0.25 | 298.15 | ||
108.58 | 300. | ||
138.16 | 400. | ||
164.42 | 500. | ||
186.38 | 600. | ||
204.83 | 700. | ||
220.56 | 800. | ||
234.15 | 900. | ||
245.93 | 1000. | ||
256.18 | 1100. | ||
265.10 | 1200. | ||
272.86 | 1300. | ||
279.63 | 1400. | ||
285.54 | 1500. | ||
297.3 | 1750. | ||
305.8 | 2000. | ||
312.2 | 2250. | ||
316.9 | 2500. | ||
320.5 | 2750. | ||
323.2 | 3000. |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
140.93 ± 0.79 | 395.25 | Stromsoe E., 1970 | Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 0.79 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%.; GT |
137.88 | 398.15 | ||
143.00 ± 0.79 | 404.15 | ||
144.16 ± 0.79 | 409.15 | ||
142.06 | 413.15 | ||
146.58 ± 0.79 | 419.55 | ||
149.26 ± 0.79 | 431.05 | ||
147.42 | 433.15 | ||
151.60 ± 0.79 | 441.15 | ||
152.66 | 453.15 | ||
155.88 ± 0.79 | 459.55 | ||
162.55 ± 0.79 | 488.25 | ||
169.95 ± 0.79 | 520.05 | ||
175.97 ± 0.79 | 545.95 | ||
181.20 ± 0.79 | 568.45 | ||
189.31 ± 0.79 | 603.35 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -328. ± 4. | kJ/mol | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -2670. ± 20. | kJ/mol | AVG | N/A | Average of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 225.73 | J/mol*K | N/A | Counsell, Hales, et al., 1965 | DH |
S°liquid | 228.0 | J/mol*K | N/A | Parks, Kelley, et al., 1929 | Extrapolation below 90 K, 46.02 J/mol*K. Revision of previous data.; DH |
S°liquid | 251.9 | J/mol*K | N/A | Parks, 1925 | Extrapolation below 90 K, 73.81 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
176.86 | 298.15 | Andreoli-Ball, Patterson, et al., 1988 | DH |
176.67 | 298.15 | Gates, Wood, et al., 1986 | T = 298.15 to 368.15 K.; DH |
177.7 | 298. | Korolev, Kukharenko, et al., 1986 | DH |
192.2 | 321.05 | Naziev, Bashirov, et al., 1986 | T = 321.05, 349.20, 373.35 K. p = 0.1 MPa. Unsmoothed experimental datum given as 2.5934 kJ/kg*K.; DH |
177.18 | 298.15 | Ogawa and Murakami, 1986 | DH |
175.97 | 298.15 | Roux-Dexgranges, Grolier, et al., 1986 | DH |
176.69 | 298.15 | Tanaka, Toyama, et al., 1986 | DH |
177.08 | 298.15 | Zegers and Somsen, 1984 | DH |
174.3 | 293.15 | Arutyunyan, Bagdasaryan, et al., 1981 | T = 293 to 373 K. p = 0.1 MPa. Unsmoothed experimental datum given as 2.351 kJ/kg*K. Cp given from 293.15 to 533.15 for pressure range 10 to 60 MPa.; DH |
181.6 | 303.5 | Griigo'ev, Yanin, et al., 1979 | T = 303 to 462 K. p = 0.98 bar.; DH |
179.5 | 301.2 | Paz Andrade, Paz, et al., 1970 | T = 28, 40°C.; DH |
177.03 | 298.15 | Counsell, Hales, et al., 1965 | T = 11 to 323 K.; DH |
189.1 | 323. | Swietoslawski and Zielenkiewicz, 1960 | Mean value 21 to 78°C.; DH |
215.5 | 302.6 | Phillip, 1939 | DH |
183.3 | 298. | Trew and Watkins, 1933 | DH |
175.3 | 294.0 | Parks, 1925 | T = 90 to 294 K. Value is unsmoothed experimental datum.; DH |
180.3 | 303. | Willams and Daniels, 1924 | T = 303 to 343 K. Equation only.; DH |
174.5 | 298. | von Reis, 1881 | T = 290 to 390 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 390.6 ± 0.8 | K | AVG | N/A | Average of 137 out of 146 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 188. ± 9. | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 184.54 | K | N/A | Wilhoit, Chao, et al., 1985 | Uncertainty assigned by TRC = 0.02 K; TRC |
Ttriple | 184.51 | K | N/A | Counsell, Hales, et al., 1965, 2 | Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 183.9 | K | N/A | Parks, 1925, 2 | Uncertainty assigned by TRC = 0.2 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 562. ± 2. | K | AVG | N/A | Average of 21 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 45. ± 4. | bar | AVG | N/A | Average of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.274 | l/mol | N/A | Gude and Teja, 1995 | |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 3.65 ± 0.06 | mol/l | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 52. ± 3. | kJ/mol | AVG | N/A | Average of 15 out of 16 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
43.29 | 390.9 | N/A | Majer and Svoboda, 1985 | |
46.0 | 372. | EB | Muñoz and Krähenbühl, 2001 | Based on data from 357. to 389. K.; AC |
38.2 | 423. | N/A | Wormald and Fennell, 2000 | AC |
29.6 | 473. | N/A | Wormald and Fennell, 2000 | AC |
20.8 | 523. | N/A | Wormald and Fennell, 2000 | AC |
49.9 | 330. | N/A | Dejoz, Cruz Burguet, et al., 1995 | Based on data from 315. to 390. K.; AC |
45.3 | 379. | N/A | Susial and Ortega, 1993 | Based on data from 364. to 403. K.; AC |
45.3 | 387. | A | Stephenson and Malanowski, 1987 | Based on data from 376. to 399. K.; AC |
50.1 | 338. | A | Stephenson and Malanowski, 1987 | Based on data from 323. to 413. K.; AC |
41.9 | 428. | A | Stephenson and Malanowski, 1987 | Based on data from 413. to 550. K.; AC |
51.6 | 236. | A | Stephenson and Malanowski, 1987 | Based on data from 209. to 251. K.; AC |
45.4 | 386. | A | Stephenson and Malanowski, 1987 | Based on data from 376. to 397. K.; AC |
43.8 | 406. | A | Stephenson and Malanowski, 1987 | Based on data from 391. to 429. K.; AC |
41.9 | 430. | A | Stephenson and Malanowski, 1987 | Based on data from 415. to 501. K.; AC |
37.4 | 512. | A | Stephenson and Malanowski, 1987 | Based on data from 497. to 563. K.; AC |
47.2 | 366. | EB | Stephenson and Malanowski, 1987 | Based on data from 351. to 397. K. See also Ambrose, Counsell, et al., 1970.; AC |
49.0 | 344. | N/A | Sachek, Peshchenko, et al., 1982 | Based on data from 329. to 391. K.; AC |
49.5 ± 0.1 | 333. | C | Svoboda, Veselý, et al., 1973 | AC |
48.6 ± 0.1 | 343. | C | Svoboda, Veselý, et al., 1973 | AC |
47.5 ± 0.1 | 353. | C | Svoboda, Veselý, et al., 1973 | AC |
46.4 ± 0.1 | 363. | C | Svoboda, Veselý, et al., 1973 | AC |
55.0 | 303. | N/A | Wilhoit and Zwolinski, 1973 | Based on data from 288. to 404. K.; AC |
53.0 | 310. | DTA | Kemme and Kreps, 1969 | Based on data from 295. to 391. K.; AC |
47.2 ± 0.1 | 356. | C | Counsell, Hales, et al., 1965, 2 | AC |
45.4 ± 0.1 | 381. | C | Counsell, Hales, et al., 1965, 2 | AC |
43.1 ± 0.1 | 391. | C | Counsell, Hales, et al., 1965, 2 | AC |
42.1 | 434. | N/A | Ambrose and Townsend, 1963 | Based on data from 419. to 563. K.; AC |
46.6 | 377. | EB | Biddiscombe, Collerson, et al., 1963 | Based on data from 362. to 398. K.; AC |
48.3 | 352. | N/A | Brown and Smith, 1959 | Based on data from 337. to 390. K. See also Boublik, Fried, et al., 1984.; AC |
48.3 | 352. | N/A | Kahlbaum, 1898 | Based on data from 314. to 390. K. See also Boublik, Fried, et al., 1984.; AC |
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 410. |
---|---|
A (kJ/mol) | 62.53 |
α | -0.6584 |
β | 0.696 |
Tc (K) | 562.9 |
Reference | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
295.8 to 391.0 | 4.54607 | 1351.555 | -93.34 | Kemme and Kreps, 1969 | |
391. to 479. | 4.39031 | 1254.502 | -105.246 | Hessel and Geiseler, 1965 | Coefficents calculated by NIST from author's data. |
419.34 to 562.98 | 4.42921 | 1305.001 | -94.676 | Ambrose and Townsend, 1963, 2 | Coefficents calculated by NIST from author's data. |
362.36 to 398.84 | 4.50393 | 1313.878 | -98.789 | Biddiscombe, Collerson, et al., 1963, 2 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
9.372 | 184.5 | Counsell, Hales, et al., 1965 | DH |
9.28 | 183.9 | Acree, 1991 | AC |
9.280 | 183.9 | Parks, 1925 | DH |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
50.79 | 184.5 | Counsell, Hales, et al., 1965 | DH |
50.46 | 183.9 | Parks, 1925 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C4H9O- + =
By formula: C4H9O- + H+ = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1570. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 1571. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 1569. ± 12. | kJ/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1543. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 1543. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 1541. ± 12. | kJ/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
By formula: C4H11O+ + C4H10O = (C4H11O+ • C4H10O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 132. | kJ/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 129. | J/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 93.3 | kJ/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
By formula: C3H9Si+ + C4H10O = (C3H9Si+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 185. | kJ/mol | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 130. | J/mol*K | N/A | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
124. | 468. | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
By formula: C3H9Sn+ + C4H10O = (C3H9Sn+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 153. | kJ/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 136. | J/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
81.6 | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
By formula: CH6N+ + C4H10O = (CH6N+ • C4H10O)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 98.3 | kJ/mol | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
44.4 | 495. | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
By formula: F- + C4H10O = (F- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 135. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 108. | J/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 103. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
By formula: Cl- + C4H10O = (Cl- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 73.6 ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 97.1 | J/mol*K | N/A | Larson and McMahon, 1984 | gas phase; switching reaction(Cl-)CH3OH, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 44.8 ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
By formula: Na+ + C4H10O = (Na+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 109. ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 1999 | RCD |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
82.4 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
By formula: C4H8O + H2 = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -81.88 ± 0.75 | kJ/mol | Cm | Wiberg, Crocker, et al., 1991 | liquid phase; ALS |
ΔrH° | -70.5 ± 1.3 | kJ/mol | Chyd | Buckley and Cox, 1967 | gas phase; ALS |
By formula: C6H5S- + C4H10O = (C6H5S- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61.1 | kJ/mol | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 105. | J/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
By formula: C7H5NO + C4H10O = C11H15NO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -83.9 ± 4.4 | kJ/mol | Cm | Pannone and Macosko, 1987 | liquid phase; ALS |
ΔrH° | -105. ± 1. | kJ/mol | Cm | Lovering and Laidler, 1962 | solid phase; ALS |
+ = C4H9D10FO-
By formula: F- + C4H10O = C4H9D10FO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 101. ± 8.4 | kJ/mol | IMRE | Wilkinson, Szulejko, et al., 1992 | gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B |
By formula: Mg+ + C4H10O = (Mg+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 270. ± 20. | kJ/mol | ICR | Operti, Tews, et al., 1988 | gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M |
By formula: C4H10O + ClHO3S = C4H10O4S + HCl
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 58. ± 1. | kJ/mol | Cm | Markitanova, Barsukov, et al., 1981 | liquid phase; solvent: Dichloromethane; Sulfation; ALS |
By formula: C4H10O + C3H4O2 = C7H12O2 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16. | kJ/mol | Eqk | Selyakova, Vytnov, et al., 1976 | liquid phase; Heat of esterification 60-180 C; ALS |
By formula: C6H12O2 + H2O = C2H4O2 + C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3.3 ± 0.2 | kJ/mol | Cm | Wadso, 1958 | liquid phase; Heat of hydrolysis; ALS |
By formula: C4H2O3 + C4H10O = C8H12O4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -39. | kJ/mol | Kin | Merca, Poraicu, et al., 1978 | solid phase; solvent: n-Butanol; DTA; ALS |
By formula: C4H8 + C4H10O = C8H18O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -34.8 ± 2.7 | kJ/mol | Eqk | Sharonov, Mishentseva, et al., 1991 | liquid phase; ALS |
By formula: C2H2O + C4H10O = C6H12O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -146.9 | kJ/mol | Cm | Rice and Greenberg, 1934 | liquid phase; ALS |
By formula: Li+ + C4H10O = (Li+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 178. ± 7.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
130. | 7200. | M | N/A | |
120. | C | N/A | ||
53. | M | N/A | Value at T = 303. K. | |
110. | M | Buttery, Ling, et al., 1969 | ||
140. | M | N/A | ||
120. | M | Butler, Ramchandani, et al., 1935 | This paper supersedes earlier work with more concentrated solutions Butler, Thomson, et al., 1933. |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.99 ± 0.05 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 789.2 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 758.9 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.10 ± 0.05 | EI | Holmes and Lossing, 1991 | LL |
9.99 ± 0.05 | PIPECO | Shao, Baer, et al., 1988 | LL |
10.64 ± 0.07 | EI | Bowen and Maccoll, 1984 | LBLHLM |
10.09 ± 0.02 | PE | Cocksey, Eland, et al., 1971 | LLK |
10.37 | PE | Baker, Betteridge, et al., 1971 | LLK |
10.37 | PE | Baker, Betteridge, et al., 1971 | LLK |
10.04 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
10.43 | PE | Benoit and Harrison, 1977 | Vertical value; LLK |
10.44 ± 0.03 | PE | Peel and Willett, 1975 | Vertical value; LLK |
10.37 | PE | Katsumata, Iwai, et al., 1973 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
CH3O+ | 11.36 ± 0.06 | n-C3H7 | EI | Selim and Helal, 1981 | LLK |
CH3O+ | 11.46 | ? | EI | Lambdin, Tuffly, et al., 1959 | RDSH |
C2H2O+ | 11.23 | ? | EI | Lambdin, Tuffly, et al., 1959 | RDSH |
C4H8+ | 10.18 ± 0.05 | H2O | PIPECO | Shao, Baer, et al., 1988 | LL |
C4H8+ | 10.20 ± 0.10 | H2O | EI | Bowen and Maccoll, 1984 | LBLHLM |
De-protonation reactions
C4H9O- + =
By formula: C4H9O- + H+ = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1570. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 1571. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 1569. ± 12. | kJ/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1543. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 1543. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 1541. ± 12. | kJ/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: CH6N+ + C4H10O = (CH6N+ • C4H10O)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 98.3 | kJ/mol | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
44.4 | 495. | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
By formula: C3H9Si+ + C4H10O = (C3H9Si+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 185. | kJ/mol | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 130. | J/mol*K | N/A | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
124. | 468. | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
By formula: C3H9Sn+ + C4H10O = (C3H9Sn+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 153. | kJ/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 136. | J/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
81.6 | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
By formula: C4H11O+ + C4H10O = (C4H11O+ • C4H10O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 132. | kJ/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 129. | J/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 93.3 | kJ/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
By formula: C6H5S- + C4H10O = (C6H5S- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61.1 | kJ/mol | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 105. | J/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
By formula: Cl- + C4H10O = (Cl- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 73.6 ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 97.1 | J/mol*K | N/A | Larson and McMahon, 1984 | gas phase; switching reaction(Cl-)CH3OH, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 44.8 ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
+ = C4H9D10FO-
By formula: F- + C4H10O = C4H9D10FO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 101. ± 8.4 | kJ/mol | IMRE | Wilkinson, Szulejko, et al., 1992 | gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B |
By formula: F- + C4H10O = (F- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 135. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 108. | J/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 103. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
By formula: Li+ + C4H10O = (Li+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 178. ± 7.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: Mg+ + C4H10O = (Mg+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 270. ± 20. | kJ/mol | ICR | Operti, Tews, et al., 1988 | gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M |
By formula: Na+ + C4H10O = (Na+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 109. ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 1999 | RCD |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
82.4 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes
Data compiled by: Coblentz Society, Inc.
- LIQUID (NEAT); PERKIN-ELMER 521 (GRATING); DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
- SOLUTION (0.5% IN CCl4 FOR 3800-1330, 0.5% IN CS2 FOR 1330-400 CM-1); DOW KBr FOREPRISM-GRATING; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
- SOLUTION (10% IN CCl4 FOR 3800-1300, 10% IN CS2 FOR 1300-650, 10% IN CCl4 FOR 650-240 CM-1) VERSUS SOLVENT; PERKIN-ELMER 521 (GRATING); DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty
- gas; IFS66V (Bruker); 3-Term B-H Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Boxcar Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Happ Genzel Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); NB Strong Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Triangular Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center, 1994 |
NIST MS number | 133176 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chao J., 1986
Chao J.,
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties,
J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]
Chermin H.A.G., 1961
Chermin H.A.G.,
Thermo data for petrochemicals. Part 28. Gaseous normal alcohols. The important thermo properties are presented for all the gaseous normal alcohols from methanol through n-decanol,
Petrol. Refiner, 1961, 40 (4), 127-130. [all data]
Buckley E., 1967
Buckley E.,
Chemical equilibria. Part 2. Dehydrogenation of propanol and butanol,
Trans. Faraday Soc., 1967, 63, 895-901. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Dyatkina M.E., 1954
Dyatkina M.E.,
Thermodynamic functions of normal alcohols (propanol, butanol, ethylene glycol),
Zh. Fiz. Khim., 1954, 28, 377. [all data]
Stromsoe E., 1970
Stromsoe E.,
Heat capacity of alcohol vapors at atmospheric pressure,
J. Chem. Eng. Data, 1970, 15, 286-290. [all data]
Counsell, Hales, et al., 1965
Counsell, J.F.; Hales, J.L.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds. Part 16. Butyl alcohol,
Trans. Faraday Soc., 1965, 61, 1869-1875. [all data]
Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M.,
Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds,
J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]
Parks, 1925
Parks, G.S.,
Thermal data on organic compounds I. The heat capacities and free energies of methyl, ethyl and normal-butyl alcohols,
J. Am. Chem. Soc., 1925, 47, 338-345. [all data]
Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M.,
Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc.,
Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]
Gates, Wood, et al., 1986
Gates, J.A.; Wood, R.H.; Cobos, J.C.; Casanova, C.; Roux, A.H.; Roux-Desgranges, G.; Grolier, J.-P.E.,
Densities and heat capacities of 1-butanol + n-decane from 298 K to 400 K,
Fluid Phase Equilib., 1986, 27, 137-151. [all data]
Korolev, Kukharenko, et al., 1986
Korolev, V.P.; Kukharenko, V.A.; Krestov, G.A.,
Specific heat of binary mixtures of aliphatic alcohols with N,N-dimethylformamide and dimethylsulphoxide,
Zhur. Fiz. Khim., 1986, 60, 1854-1857. [all data]
Naziev, Bashirov, et al., 1986
Naziev, Ya.M.; Bashirov, M.M.; Badalov, Yu.A.,
Experimental device for measurement of isobaric specific heat of electrolytes at elevated pressures,
Inzh-Fiz. Zhur., 1986, 51(5), 789-795. [all data]
Ogawa and Murakami, 1986
Ogawa, H.; Murakami, S.,
Excess isobaric heat capacities for water + alkanol mixtures at 298.15 K,
Thermochim. Acta, 1986, 109, 145-154. [all data]
Roux-Dexgranges, Grolier, et al., 1986
Roux-Dexgranges, G.; Grolier, J.-P.E.; Villamanan, M.A.; Casanova, C.,
Role of alcohol in microemulsions. III. Volumes and heat capacities in the continuious phase water-n-butanol-toluene of reverse micelles,
Fluid Phase Equilibria, 1986, 25, 209-230. [all data]
Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S.,
Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K,
J. Chem. Thermodynam., 1986, 18, 63-73. [all data]
Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G.,
Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol),
J. Chem. Thermodynam., 1984, 16, 225-235. [all data]
Arutyunyan, Bagdasaryan, et al., 1981
Arutyunyan, G.S.; Bagdasaryan, S.S.; Kerimov, A.M.,
Experimental investigation of the isobaric heat capacity of n-propyl, n-butyl and n-amyl alcohols at different temperatures and pressures,
Izv. Akad. Nauk Azerb. SSr, 1981, (6), 94-97. [all data]
Griigo'ev, Yanin, et al., 1979
Griigo'ev, B.A.; Yanin, G.S.; Rastorguev, Yu.L.; Thermophysical parameters of alcohols, Tr. GIAP,
54, 1979, 57-64. [all data]
Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E.,
Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos,
An. Quim., 1970, 66, 961-967. [all data]
Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A.,
Mean specific heat in homologous series of binary and ternary positive azeotropes,
Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]
Phillip, 1939
Phillip, N.M.,
Adiabatic and isothermal compressibilities of liquids,
Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]
Trew and Watkins, 1933
Trew, V.C.G.; Watkins, G.M.C.,
Some physical properties of mixtures of certain organic liquids,
Trans. Faraday Soc., 1933, 29, 1310-1318. [all data]
Willams and Daniels, 1924
Willams, J.W.; Daniels, F.,
The specific heats of certain organic liquids at elevated temperatures,
J. Am. Chem. Soc., 1924, 46, 903-917. [all data]
von Reis, 1881
von Reis, M.A.,
Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht,
Ann. Physik [3], 1881, 13, 447-464. [all data]
Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R.,
Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases,
J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]
Counsell, Hales, et al., 1965, 2
Counsell, J.F.; Hales, J.L.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds. Part 16.?Butyl alcohol,
Trans. Faraday Soc., 1965, 61, 1869, https://doi.org/10.1039/tf9656101869
. [all data]
Parks, 1925, 2
Parks, G.S.,
Thermal data on organic compounds: I the heat capacities and free energies of methyl, ethyl and n-butyl alcohol,
J. Am. Chem. Soc., 1925, 47, 338-45. [all data]
Gude and Teja, 1995
Gude, M.; Teja, A.S.,
Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols,
J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Muñoz and Krähenbühl, 2001
Muñoz, Laura A.L.; Krähenbühl, M. Alvina,
Isobaric Vapor Liquid Equilibrium (VLE) Data of the Systems n -Butanol + Butyric Acid and n -Butanol + Acetic Acid,
J. Chem. Eng. Data, 2001, 46, 1, 120-124, https://doi.org/10.1021/je000033u
. [all data]
Wormald and Fennell, 2000
Wormald, C.J.; Fennell, D.P.,
Organometallics, 2000, 21, 3, 767-779, https://doi.org/10.1023/A:1006648903706
. [all data]
Dejoz, Cruz Burguet, et al., 1995
Dejoz, Ana; Cruz Burguet, M.; Munoz, Rosa; Sanchotello, Margarita,
Isobaric Vapor-Liquid Equilibria of Tetrachloroethylene with 1-Butanol and 2-Butanol at 6 and 20 kPa,
J. Chem. Eng. Data, 1995, 40, 1, 290-292, https://doi.org/10.1021/je00017a064
. [all data]
Susial and Ortega, 1993
Susial, Pedro; Ortega, Juan,
Isobaric vapor-liquid equilibria in the system methyl propanoate + n-butyl alcohol,
J. Chem. Eng. Data, 1993, 38, 4, 647-649, https://doi.org/10.1021/je00012a044
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J.,
The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point,
The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5
. [all data]
Sachek, Peshchenko, et al., 1982
Sachek, A.I.; Peshchenko, A.D.; Markovnik, V.S.; Ral'ko, O.V.; Andreevskii, D.N.; Leont'eva, A.A.,
Termodin. Org. Soedin., 1982, 94. [all data]
Svoboda, Veselý, et al., 1973
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J.,
Enthalpy data of liquids. II. The dependence of heats of vaporization of methanol, propanol, butanol, cyclohexane, cyclohexene, and benzene on temperature,
Collect. Czech. Chem. Commun., 1973, 38, 12, 3539-3543, https://doi.org/10.1135/cccc19733539
. [all data]
Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J.,
Physical and thermodynamic properties of aliphatic alcohols,
J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]
Kemme and Kreps, 1969
Kemme, Herbert R.; Kreps, Saul I.,
Vapor pressure of primary n-alkyl chlorides and alcohols,
J. Chem. Eng. Data, 1969, 14, 1, 98-102, https://doi.org/10.1021/je60040a011
. [all data]
Ambrose and Townsend, 1963
Ambrose, D.; Townsend, R.,
681. Thermodynamic properties of organic oxygen compounds. Part IX. The critical properties and vapour pressures, above five atmospheres, of six aliphatic alcohols,
J. Chem. Soc., 1963, 3614, https://doi.org/10.1039/jr9630003614
. [all data]
Biddiscombe, Collerson, et al., 1963
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S.,
364. Thermodynamic properties of organic oxygen compounds. Part VIII. Purification and vapour pressures of the propyl and butyl alcohols,
J. Chem. Soc., 1963, 1954, https://doi.org/10.1039/jr9630001954
. [all data]
Brown and Smith, 1959
Brown, I.; Smith, F.,
Liquid-Vapour Equilibria. IX. The Systems n-Propanol + Benzene and n-Butanol + Benzene at 45°C,
Aust. J. Chem., 1959, 12, 3, 407-621, https://doi.org/10.1071/CH9590407
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Kahlbaum, 1898
Kahlbaum, G.W.A.,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1898, 26, 577. [all data]
Hessel and Geiseler, 1965
Hessel, D.; Geiseler, G.,
Uber die Druckabhangigkeit des heteroazeotropen Systems n-Butanol/Wasser,
Z. Phys. Chem. (Leipzig), 1965, 229, 199-209. [all data]
Ambrose and Townsend, 1963, 2
Ambrose, D.; Townsend, R.,
Thermodynamic Properties of Organic Oxygen Compounds. Part 9. The Critical Properties and Vapour Pressures, above Five Atmospheres, of Six Aliphatic Alcohols,
J. Chem. Soc., 1963, 3614-3625, https://doi.org/10.1039/jr9630003614
. [all data]
Biddiscombe, Collerson, et al., 1963, 2
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S.,
Thermodynamic Properties of Organic Oxygen Compounds. Part 8. Purification and Vapor Pressures of the Propyl and Butyl Alcohols,
J. Chem. Soc., 1963, 1954-1957, https://doi.org/10.1039/jr9630001954
. [all data]
Acree, 1991
Acree, William E.,
Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation,
Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H
. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T.,
The gas phase acidity of aliphatic alcohols,
J. Am. Chem. Soc., 1983, 105, 2203. [all data]
Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B.,
Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements,
J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016
. [all data]
Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P.,
Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding,
J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002
. [all data]
Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D.,
Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules,
J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E.,
A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase,
Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]
Meot-Ner, 1984
Meot-Ner, (Mautner)M.,
The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects,
J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015
. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria,
J. Am. Chem. Soc., 1984, 106, 517. [all data]
Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B.,
Gas phase negative ion chemistry of alkylchloroformates,
Can. J. Chem., 1984, 62, 675. [all data]
Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B.,
Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M.,
Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups,
J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]
Buckley and Cox, 1967
Buckley, E.; Cox, J.D.,
Chemical equilibria. Part 2.-Dehydrogenation of propanol and butanol,
Trans. Faraday Soc., 1967, 63, 895-901. [all data]
Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities.,
J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079
. [all data]
Pannone and Macosko, 1987
Pannone, M.C.; Macosko, C.W.,
Kinetics of isocyanate amine reactions,
J. Appl. Polym. Sci., 1987, 34, 2409-2432. [all data]
Lovering and Laidler, 1962
Lovering, E.G.; Laidler, K.J.,
Thermochemical studies of some alcohol-isocyanate reactions,
Can. J. Chem., 1962, 40, 26-30. [all data]
Wilkinson, Szulejko, et al., 1992
Wilkinson, F.E.; Szulejko, J.E.; Allison, C.E.; Mcmahon, T.B.,
Fourier Transform Ion Cyclotron Resonance Investigation of the Deuterium Isotope Effect on Gas Phase Ion/Molecule Hydrogen Bonding Interactions in Alcohol-Fluoride Adduct Ions,
Int. J. Mass Spectrom., 1992, 117, 487-505, https://doi.org/10.1016/0168-1176(92)80110-M
. [all data]
Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S.,
Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques,
J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020
. [all data]
Markitanova, Barsukov, et al., 1981
Markitanova, L.I.; Barsukov, I.I.; Passet, B.V.,
Determination of heat of sulfation by calorimetric titration,
J. Gen. Chem. USSR, 1981, 51, 1286-1289. [all data]
Selyakova, Vytnov, et al., 1976
Selyakova, V.A.; Vytnov, G.F.; Sineokov, A.P.,
Study of the esterification of acrylic acid by butyl alcohol,
Russ. J. Phys. Chem. (Engl. Transl.), 1976, 50, 1692-1694. [all data]
Wadso, 1958
Wadso, I.,
The heats of hydrolysis of some alkyl acetates,
Acta Chem. Scand., 1958, 12, 630-633. [all data]
Merca, Poraicu, et al., 1978
Merca, E.; Poraicu, M.; Tribunescu, P.,
Kinetics of maleic monoester formation with n-butanol,
Bull. Stiint. Teh. Inst. Politeh. "Traian Vuia" Timisoara, Ser. Chim., 1978, 23, 160-163. [all data]
Sharonov, Mishentseva, et al., 1991
Sharonov, K.G.; Mishentseva, Y.B.; Rozhnov, A.M.; Miroshnichenko, E.A.; Korchatova, L.I.,
Molar enthalpies of formation and vaporizqation of t-butoxybutanes and thermodynamics of their synthesis from a butanol and 2-methylpropene I. Equilibria of synthesis reactions of t-butoxybutanes in the liquid phase,
J. Chem. Thermodyn., 1991, 23, 141-145. [all data]
Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J.,
Ketene. III. Heat of formation and heat of reaction with alcohols,
J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Buttery, Ling, et al., 1969
Buttery, R.G.; Ling, L.C.; Guadagni, D.G.,
Volatilities Aldehydes, Ketones, and Esters in Dilute Water Solution,
J. Agric. Food Chem., 1969, 17, 385-389. [all data]
Butler, Ramchandani, et al., 1935
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W.,
The Solubility of Non-Electrolytes. Part 1. The Free Energy of Hydration of Some Alphatic Alcohols,
J. Chem. Soc., 1935, 280-285, https://doi.org/10.1039/jr9350000280
. [all data]
Butler, Thomson, et al., 1933
Butler, J.A.V.; Thomson, D.W.; Maclennan, W.H.,
The Free Energy of the Normal Aliphatic Alcohols in Aqueous Solution. Part I. The Partial Vapor Pressures of Aqueous Solutions of Methyl, n-Propyl, and n-Butyl Alcohols. Part II. THe Solubilities of,
J. Chem. Soc., 1933, 1933, 674-686. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P.,
Ionization energies of homologous organic compounds and correlation with molecular size,
Org. Mass Spectrom., 1991, 26, 537. [all data]
Shao, Baer, et al., 1988
Shao, J.D.; Baer, T.; Lewis, D.K.,
Dissociation dynamics of energy-selected ion-dipole complexes. 2. Butyl alcohol ions,
J. Phys. Chem., 1988, 92, 5123. [all data]
Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A.,
Low energy, low temperature mass spectra,
Org. Mass Spectrom., 1984, 19, 379. [all data]
Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J.,
The effect of alkyl substitution on ionisation potential,
J. Chem. Soc., 1971, (B), 790. [all data]
Baker, Betteridge, et al., 1971
Baker, A.D.; Betteridge, D.; Kemp, N.R.; Kirby, R.E.,
Application of photoelectron spectrometry to pesticide analysis. II.Photoelectron spectra of hydroxy-, and halo-alkanes and halohydrins,
Anal. Chem., 1971, 43, 375. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G.,
Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules,
J. Am. Chem. Soc., 1977, 99, 3980. [all data]
Peel and Willett, 1975
Peel, J.B.; Willett, G.D.,
Photoelectron spectroscopic studies of the higher alcohols,
Aust. J. Chem., 1975, 28, 2357. [all data]
Katsumata, Iwai, et al., 1973
Katsumata, S.; Iwai, T.; Kimura, K.,
Photoelectron spectra and sum rule consideration. Higher alkyl amines and alcohols,
Bull. Chem. Soc. Jpn., 1973, 46, 3391. [all data]
Selim and Helal, 1981
Selim, E.T.M.; Helal, A.I.,
Heat of formation of CH2=OH+ fragment ion,
Indian J. Pure Appl. Phys., 1981, 19, 977. [all data]
Lambdin, Tuffly, et al., 1959
Lambdin, W.J.; Tuffly, B.L.; Yarborough, V.A.,
Appearance potentials as obtained with an analytical mass spectrometer,
Appl. Spectry., 1959, 13, 71. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy Pc Critical pressure S°gas Entropy of gas at standard conditions S°liquid Entropy of liquid at standard conditions T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.