carbon

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas716.68 ± 0.45kJ/molReviewCox, Wagman, et al., 1984CODATA Review value
Δfgas716.67kJ/molReviewChase, 1998Data last reviewed in March, 1983
Quantity Value Units Method Reference Comment
gas,1 bar158.100 ± 0.003J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar158.10J/mol*KReviewChase, 1998Data last reviewed in March, 1983

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 6000.
A 21.17510
B -0.812428
C 0.448537
D -0.043256
E -0.013103
F 710.3470
G 183.8734
H 716.6690
ReferenceChase, 1998
Comment Data last reviewed in March, 1983

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
solid,1 bar5.833J/mol*KN/ATakahashi and Westrum, 1970amorphous phase; Values actually S-S0; there may be a residual entropy.
solid,1 bar6.201J/mol*KN/ALutcov, Volga, et al., 1970T2 extrapolation below 50 K.

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
10.68350.Dobrosavljevic, Perovic, et al., 1987T = 300 to 1800 K.
9.251298.15Lutcov, Volga, et al., 1970T = 52 to 302 K.
8.598298.15Takahashi and Westrum, 1970amorphous phase; T = 5-350 K.

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director

Quantity Value Units Method Reference Comment
Tboil4100.KN/AHonig and Kramer, 1969Uncertainty assigned by TRC = 100. K
Quantity Value Units Method Reference Comment
Tc7020.5KN/AChang, Ryoo, et al., 1985 
Quantity Value Units Method Reference Comment
Pc7967.19barN/AChang, Ryoo, et al., 1985 
Quantity Value Units Method Reference Comment
Vc0.02662l/molN/AChang, Ryoo, et al., 1985 

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

(Carbon cation • 8carbon) + carbon = (Carbon cation • 9carbon)

By formula: (C+ • 8C) + C = (C+ • 9C)

Quantity Value Units Method Reference Comment
Δr703.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M
Δr745. ± 96.kJ/molMIKESRadi, Rincon, et al., 1989gas phase; M

(Carbon cation • 6carbon) + carbon = (Carbon cation • 7carbon)

By formula: (C+ • 6C) + C = (C+ • 7C)

Quantity Value Units Method Reference Comment
Δr649.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M
Δr523.kJ/molMIKESRadi, Rincon, et al., 1989gas phase; M

(C4- • 4294967295carbon) + carbon = C4-

By formula: (C4- • 4294967295C) + C = C4-

Quantity Value Units Method Reference Comment
Δr676. ± 15.kJ/molN/AArnold, Bradforth, et al., 1991gas phase; Linear structure for both anion and neutral. Bound state 37.063 kcal/mol up: Zhao, de Beer, et al., 1996; B

4sodium + Ethene, chlorotrifluoro- = 2carbon + sodium chloride + 3sodium fluoride

By formula: 4Na + C2ClF3 = 2C + ClNa + 3FNa

Quantity Value Units Method Reference Comment
Δr-1576.1 ± 5.4kJ/molCmKolesov, Zenkov, et al., 1963gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -1543. ± 5.4 kJ/mol; ALS

(C6- • 4294967295carbon) + carbon = C6-

By formula: (C6- • 4294967295C) + C = C6-

Quantity Value Units Method Reference Comment
Δr-59. ± 24.kJ/molN/AArnold, Zhao, et al., 1992gas phase; There is a bound state at 47.107 kcal/mol up; Zhao, de Beer, et al., 1996; B

(C7- • 4294967295carbon) + carbon = C7-

By formula: (C7- • 4294967295C) + C = C7-

Quantity Value Units Method Reference Comment
Δr478. ± 31.kJ/molN/AArnold, Bradforth, et al., 1991gas phase; Linear structure for both neutral and anion; B

(C3- • 4294967295carbon) + carbon = C3-

By formula: (C3- • 4294967295C) + C = C3-

Quantity Value Units Method Reference Comment
Δr66.5 ± 8.4kJ/molN/AArnold, Bradforth, et al., 1991gas phase; Linear structure for both neutral and anion; B

(Carbon cation • carbon) + carbon = (Carbon cation • 2carbon)

By formula: (C+ • C) + C = (C+ • 2C)

Quantity Value Units Method Reference Comment
Δr774. ± 67.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon anion • 2carbon) + carbon = (Carbon anion • 3carbon)

By formula: (C- • 2C) + C = (C- • 3C)

Quantity Value Units Method Reference Comment
Δr703. ± 8.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon anion • 3carbon) + carbon = (Carbon anion • 4carbon)

By formula: (C- • 3C) + C = (C- • 4C)

Quantity Value Units Method Reference Comment
Δr630. ± 20.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon anion • carbon) + carbon = (Carbon anion • 2carbon)

By formula: (C- • C) + C = (C- • 2C)

Quantity Value Units Method Reference Comment
Δr628. ± 8.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon cation • 2carbon) + carbon = (Carbon cation • 3carbon)

By formula: (C+ • 2C) + C = (C+ • 3C)

Quantity Value Units Method Reference Comment
Δr598.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon cation • 3carbon) + carbon = (Carbon cation • 4carbon)

By formula: (C+ • 3C) + C = (C+ • 4C)

Quantity Value Units Method Reference Comment
Δr695.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon cation • 4carbon) + carbon = (Carbon cation • 5carbon)

By formula: (C+ • 4C) + C = (C+ • 5C)

Quantity Value Units Method Reference Comment
Δr628.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon cation • 5carbon) + carbon = (Carbon cation • 6carbon)

By formula: (C+ • 5C) + C = (C+ • 6C)

Quantity Value Units Method Reference Comment
Δr745.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon cation • 7carbon) + carbon = (Carbon cation • 8carbon)

By formula: (C+ • 7C) + C = (C+ • 8C)

Quantity Value Units Method Reference Comment
Δr753.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon anion • 4carbon) + carbon = (Carbon anion • 5carbon)

By formula: (C- • 4C) + C = (C- • 5C)

Quantity Value Units Method Reference Comment
Δr715.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon anion • 5carbon) + carbon = (Carbon anion • 6carbon)

By formula: (C- • 5C) + C = (C- • 6C)

Quantity Value Units Method Reference Comment
Δr649.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon anion • 6carbon) + carbon = (Carbon anion • 7carbon)

By formula: (C- • 6C) + C = (C- • 7C)

Quantity Value Units Method Reference Comment
Δr686.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon anion • 7carbon) + carbon = (Carbon anion • 8carbon)

By formula: (C- • 7C) + C = (C- • 8C)

Quantity Value Units Method Reference Comment
Δr657.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon anion • 8carbon) + carbon = (Carbon anion • 9carbon)

By formula: (C- • 8C) + C = (C- • 9C)

Quantity Value Units Method Reference Comment
Δr665.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

Cyclobutane, octafluoro- + 4sodium = 4carbon + 8sodium fluoride

By formula: C4F8 + 4Na = 4C + 8FNa

Quantity Value Units Method Reference Comment
Δr-2989. ± 9.2kJ/molCcbKolesov, Talakin, et al., 1968gas phase; Correction of Kolesov, Talakin, et al., 1964; ALS

Carbon cation + carbon = (Carbon cation • carbon)

By formula: C+ + C = (C+ • C)

Quantity Value Units Method Reference Comment
Δr619. ± 50.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

Carbon anion + carbon = (Carbon anion • carbon)

By formula: C- + C = (C- • C)

Quantity Value Units Method Reference Comment
Δr812. ± 8.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon cation • 6carbon) + Tricarbon = (Carbon cation • Tricarbon • 6carbon)

By formula: (C+ • 6C) + C3 = (C+ • C3 • 6C)

Quantity Value Units Method Reference Comment
Δr695. ± 96.kJ/molMIKESRadi, Rincon, et al., 1989gas phase; M

(Carbon cation • 7carbon) + Tricarbon = (Carbon cation • Tricarbon • 7carbon)

By formula: (C+ • 7C) + C3 = (C+ • C3 • 7C)

Quantity Value Units Method Reference Comment
Δr724. ± 96.kJ/molMIKESRadi, Rincon, et al., 1989gas phase; M

(Methylidyne anion • 4294967295carbon) + carbon = Methylidyne anion

By formula: (CH- • 4294967295C) + C = CH-

Quantity Value Units Method Reference Comment
Δr385.7 ± 1.0kJ/molTherKasdan, Herbst, et al., 1975gas phase; B

(Carbon cation • 2carbon) + Dicarbon = (Carbon cation • Dicarbon • 2carbon)

By formula: (C+ • 2C) + C2 = (C+ • C2 • 2C)

Quantity Value Units Method Reference Comment
Δr745.kJ/molMIKESRadi, Rincon, et al., 1989gas phase; M

(Carbon cation • 2carbon) + Tricarbon = (Carbon cation • Tricarbon • 2carbon)

By formula: (C+ • 2C) + C3 = (C+ • C3 • 2C)

Quantity Value Units Method Reference Comment
Δr531.kJ/molMIKESRadi, Rincon, et al., 1989gas phase; M

(Carbon cation • 3carbon) + Tricarbon = (Carbon cation • Tricarbon • 3carbon)

By formula: (C+ • 3C) + C3 = (C+ • C3 • 3C)

Quantity Value Units Method Reference Comment
Δr502.kJ/molMIKESRadi, Rincon, et al., 1989gas phase; M

(Carbon cation • 4carbon) + Tricarbon = (Carbon cation • Tricarbon • 4carbon)

By formula: (C+ • 4C) + C3 = (C+ • C3 • 4C)

Quantity Value Units Method Reference Comment
Δr502.kJ/molMIKESRadi, Rincon, et al., 1989gas phase; M

(Carbon cation • 5carbon) + Tricarbon = (Carbon cation • Tricarbon • 5carbon)

By formula: (C+ • 5C) + C3 = (C+ • C3 • 5C)

Quantity Value Units Method Reference Comment
Δr510.kJ/molMIKESRadi, Rincon, et al., 1989gas phase; M

(CAS Reg. No. 146831-35-8 • 4294967295carbon) + carbon = CAS Reg. No. 146831-35-8

By formula: (CAS Reg. No. 146831-35-8 • 4294967295C) + C = CAS Reg. No. 146831-35-8

Quantity Value Units Method Reference Comment
Δr587. ± 21.kJ/molN/AKitsopoulos, Chick, et al., 1991gas phase; B

(Carbon cation • 9carbon) + carbon = (Carbon cation • 10carbon)

By formula: (C+ • 9C) + C = (C+ • 10C)

Quantity Value Units Method Reference Comment
Δr732. ± 96.kJ/molMIKESRadi, Rincon, et al., 1989gas phase; M

Ethene, tetrafluoro- + 2Hydrogen = 2carbon + 4hydrogen fluoride

By formula: C2F4 + 2H2 = 2C + 4HF

Quantity Value Units Method Reference Comment
Δr-618.4 ± 4.6kJ/molChydNeugebauer and Margrave, 1956gas phase; ALS

4sodium + Tetrafluoromethane = carbon + 4sodium fluoride

By formula: 4Na + CF4 = C + 4FNa

Quantity Value Units Method Reference Comment
Δr-1362. ± 9.2kJ/molCcbVorob'ev and Skuratov, 1960gas phase; ALS

8sodium + Perfluoropropane = 3carbon + 8sodium fluoride

By formula: 8Na + C3F8 = 3C + 8FNa

Quantity Value Units Method Reference Comment
Δr-2761. ± 7.1kJ/molCcbKolesov, Talakin, et al., 1967gas phase; ALS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)11.26030eVN/AN/AL

Electron affinity determinations

EA (eV) Method Reference Comment
1.262114 ± 0.000044LPDScheer, Bilodeau, et al., 1998Given: 1.262119(20) eV; B
1.26290 ± 0.00030LPDFeldmann, 1977B
>1.2 ± 1.0EIAEHonig, 1954From graphite; B

Ionization energy determinations

IE (eV) Method Reference Comment
11.26030EVALLide, 1992LL
11.260SKelly, 1987LBLHLM
12.4 ± 1.0EIHaque and Gingerich, 1981LLK
11.2 ± 0.5EIGupta and Gingerich, 1979LLK
11.2 ± 0.5EIGingerich and Gupta, 1978LLK
10.9 ± 0.4EICocke and Gingerich, 1974LLK
11.4 ± 1.5EICocke, Gingerich, et al., 1973LLK
10.9 ± 0.4EICocke and Gingerich, 1972LLK
10.5 ± 1.0EICocke and Gingerich, 1972, 2LLK
11.26030SMoore, 1970RDSH
11.3 ± 0.2EIDrowart, Burns, et al., 1959RDSH

Anion protonation reactions

Carbon anion + Hydrogen cation = Methylidyne

By formula: C- + H+ = CH

Quantity Value Units Method Reference Comment
Δr1529.4 ± 0.71kJ/molD-EAScheer, Bilodeau, et al., 1998gas phase; Given: 1.262119(20) eV; B
Quantity Value Units Method Reference Comment
Δr1506.2 ± 1.1kJ/molH-TSScheer, Bilodeau, et al., 1998gas phase; Given: 1.262119(20) eV; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Carbon cation + carbon = (Carbon cation • carbon)

By formula: C+ + C = (C+ • C)

Quantity Value Units Method Reference Comment
Δr619. ± 50.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon cation • carbon) + carbon = (Carbon cation • 2carbon)

By formula: (C+ • C) + C = (C+ • 2C)

Quantity Value Units Method Reference Comment
Δr774. ± 67.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon cation • 2carbon) + carbon = (Carbon cation • 3carbon)

By formula: (C+ • 2C) + C = (C+ • 3C)

Quantity Value Units Method Reference Comment
Δr598.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon cation • 3carbon) + carbon = (Carbon cation • 4carbon)

By formula: (C+ • 3C) + C = (C+ • 4C)

Quantity Value Units Method Reference Comment
Δr695.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon cation • 4carbon) + carbon = (Carbon cation • 5carbon)

By formula: (C+ • 4C) + C = (C+ • 5C)

Quantity Value Units Method Reference Comment
Δr628.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon cation • 5carbon) + carbon = (Carbon cation • 6carbon)

By formula: (C+ • 5C) + C = (C+ • 6C)

Quantity Value Units Method Reference Comment
Δr745.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon cation • 6carbon) + carbon = (Carbon cation • 7carbon)

By formula: (C+ • 6C) + C = (C+ • 7C)

Quantity Value Units Method Reference Comment
Δr649.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M
Δr523.kJ/molMIKESRadi, Rincon, et al., 1989gas phase; M

(Carbon cation • 7carbon) + carbon = (Carbon cation • 8carbon)

By formula: (C+ • 7C) + C = (C+ • 8C)

Quantity Value Units Method Reference Comment
Δr753.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon cation • 8carbon) + carbon = (Carbon cation • 9carbon)

By formula: (C+ • 8C) + C = (C+ • 9C)

Quantity Value Units Method Reference Comment
Δr703.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M
Δr745. ± 96.kJ/molMIKESRadi, Rincon, et al., 1989gas phase; M

(Carbon cation • 9carbon) + carbon = (Carbon cation • 10carbon)

By formula: (C+ • 9C) + C = (C+ • 10C)

Quantity Value Units Method Reference Comment
Δr732. ± 96.kJ/molMIKESRadi, Rincon, et al., 1989gas phase; M

Carbon anion + carbon = (Carbon anion • carbon)

By formula: C- + C = (C- • C)

Quantity Value Units Method Reference Comment
Δr812. ± 8.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon anion • carbon) + carbon = (Carbon anion • 2carbon)

By formula: (C- • C) + C = (C- • 2C)

Quantity Value Units Method Reference Comment
Δr628. ± 8.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon anion • 2carbon) + carbon = (Carbon anion • 3carbon)

By formula: (C- • 2C) + C = (C- • 3C)

Quantity Value Units Method Reference Comment
Δr703. ± 8.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon anion • 3carbon) + carbon = (Carbon anion • 4carbon)

By formula: (C- • 3C) + C = (C- • 4C)

Quantity Value Units Method Reference Comment
Δr630. ± 20.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon anion • 4carbon) + carbon = (Carbon anion • 5carbon)

By formula: (C- • 4C) + C = (C- • 5C)

Quantity Value Units Method Reference Comment
Δr715.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon anion • 5carbon) + carbon = (Carbon anion • 6carbon)

By formula: (C- • 5C) + C = (C- • 6C)

Quantity Value Units Method Reference Comment
Δr649.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon anion • 6carbon) + carbon = (Carbon anion • 7carbon)

By formula: (C- • 6C) + C = (C- • 7C)

Quantity Value Units Method Reference Comment
Δr686.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon anion • 7carbon) + carbon = (Carbon anion • 8carbon)

By formula: (C- • 7C) + C = (C- • 8C)

Quantity Value Units Method Reference Comment
Δr657.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Carbon anion • 8carbon) + carbon = (Carbon anion • 9carbon)

By formula: (C- • 8C) + C = (C- • 9C)

Quantity Value Units Method Reference Comment
Δr665.kJ/molMSPargellis, 1990gas phase; equilibrium cluster distributions from sputtering; M

(Methylidyne anion • 4294967295carbon) + carbon = Methylidyne anion

By formula: (CH- • 4294967295C) + C = CH-

Quantity Value Units Method Reference Comment
Δr385.7 ± 1.0kJ/molTherKasdan, Herbst, et al., 1975gas phase; B

(C3- • 4294967295carbon) + carbon = C3-

By formula: (C3- • 4294967295C) + C = C3-

Quantity Value Units Method Reference Comment
Δr66.5 ± 8.4kJ/molN/AArnold, Bradforth, et al., 1991gas phase; Linear structure for both neutral and anion; B

(C4- • 4294967295carbon) + carbon = C4-

By formula: (C4- • 4294967295C) + C = C4-

Quantity Value Units Method Reference Comment
Δr676. ± 15.kJ/molN/AArnold, Bradforth, et al., 1991gas phase; Linear structure for both anion and neutral. Bound state 37.063 kcal/mol up: Zhao, de Beer, et al., 1996; B

(C6- • 4294967295carbon) + carbon = C6-

By formula: (C6- • 4294967295C) + C = C6-

Quantity Value Units Method Reference Comment
Δr-59. ± 24.kJ/molN/AArnold, Zhao, et al., 1992gas phase; There is a bound state at 47.107 kcal/mol up; Zhao, de Beer, et al., 1996; B

(C7- • 4294967295carbon) + carbon = C7-

By formula: (C7- • 4294967295C) + C = C7-

Quantity Value Units Method Reference Comment
Δr478. ± 31.kJ/molN/AArnold, Bradforth, et al., 1991gas phase; Linear structure for both neutral and anion; B

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Takahashi and Westrum, 1970
Takahashi, Y.; Westrum, E.F., Jr., Glassy carbon. Low-temperature thermodynamic properties, J. Chem. Thermodynam., 1970, 2, 847-854. [all data]

Lutcov, Volga, et al., 1970
Lutcov, A.I.; Volga, V.I.; Dymov, B.K., Thermal conductivity, electric resistivity and specific heat of dense graphites, Carbon, 1970, 8, 753-760. [all data]

Dobrosavljevic, Perovic, et al., 1987
Dobrosavljevic, A.; Perovic, N.; Maglic, K., Thermophysical properties of POCO AXM-5Q1 graphite in the 300 to 1800 K range, High Temperatures-High Pressures, 1987, 19, 303-310. [all data]

Honig and Kramer, 1969
Honig, R.E.; Kramer, D.A., Vapor pressure data for the solid and liquid elements, RCA Rev., 1969, 1969, 285. [all data]

Chang, Ryoo, et al., 1985
Chang, M.C.; Ryoo, R.; Jhon, M.S., Thermodynamic Properties of Liquid Carbon, Carbon, 1985, 23, 5, 481. [all data]

Pargellis, 1990
Pargellis, A.N., Estimating Carbon Cluster Binding Energies from Measured Cn Distributions, n <= 10, J. Chem. Phys., 1990, 93, 3, 2099, https://doi.org/10.1063/1.459035 . [all data]

Radi, Rincon, et al., 1989
Radi, P.P.; Rincon, M.E.; Hsu, M.T.; Brodbelt-Lustig, J.; Kemper, P.; Bowers, M.T., Structure, Reactivity and Energetics of Covalently Bound Carbon Cluster Ions, C5+ to C11+: Experiment and Theory, J. Phys. Chem., 1989, 93, 16, 6187, https://doi.org/10.1021/j100353a045 . [all data]

Arnold, Bradforth, et al., 1991
Arnold, D.W.; Bradforth, S.E.; Kitsopoulos, T.N.; Neumark, D.M., Vibrationally Resolved Spectra of C2-C11 by Anion Photoelectron Spectroscopy, J. Chem. Phys., 1991, 95, 12, 8753, https://doi.org/10.1063/1.461211 . [all data]

Zhao, de Beer, et al., 1996
Zhao, Y.; de Beer, E.; Xu, C.; Taylor, T.; Neumark, D.M., Spectroscopy and Electron Detachment Dynamics of C4-, C6- and C8-, J. Chem. Phys., 1996, 105, 12, 4905, https://doi.org/10.1063/1.472341 . [all data]

Kolesov, Zenkov, et al., 1963
Kolesov, V.P.; Zenkov, I.D.; Skuratov, S.M., Standard enthalpy of formation of chlorotrifluoroethylene, Russ. J. Phys. Chem. (Engl. Transl.), 1963, 37, 115-116. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Arnold, Zhao, et al., 1992
Arnold, C.C.; Zhao, Y.X.; Kitsopoulos, T.N.; Neumark, D.M., Study of C6(-) and C6 with Threshold Photodetachment Spectroscopy and Autodetachment Spectroscopy, J. Chem. Phys., 1992, 97, 9, 6121, https://doi.org/10.1063/1.463722 . [all data]

Kolesov, Talakin, et al., 1968
Kolesov, V.P.; Talakin, O.G.; Skuratov, S.M., Enthalpy of formation of some specimens of amorphous carbon, Russ. J. Phys. Chem. (Engl. Transl.), 1968, 42, 1218-1220. [all data]

Kolesov, Talakin, et al., 1964
Kolesov, V.P.; Talakin, O.G.; Skuratov, S.M., Standard enthalpy of formation of perfluorocyclobutane, Russ. J. Phys. Chem. (Engl. Transl.), 1964, 38, 930-931. [all data]

Kasdan, Herbst, et al., 1975
Kasdan, A.; Herbst, E.; Lineberger, W.C., Laser photoelectron spectrometry of CH2-, Chem. Phys. Lett., 1975, 31, 78. [all data]

Kitsopoulos, Chick, et al., 1991
Kitsopoulos, T.N.; Chick, C.J.; Zhao, Y.; Neumark, D.M., Threshold Photodetachment Spectroscopy of C-5(-), J. Chem. Phys., 1991, 95, 7, 5479, https://doi.org/10.1063/1.461664 . [all data]

Neugebauer and Margrave, 1956
Neugebauer, C.A.; Margrave, J.L., The heats of formation of tetrafluoroethylene, tetrafluoromethane and 1,1-difluoroethylene, J. Phys. Chem., 1956, 60, 1318-1321. [all data]

Vorob'ev and Skuratov, 1960
Vorob'ev, A.F.; Skuratov, S.M., Standard enthalpies of formation of CF4, Zh. Neorg. Khim., 1960, 5, 1398-1401. [all data]

Kolesov, Talakin, et al., 1967
Kolesov, V.P.; Talakin, O.G.; Skuratov, S.M., Standard enthalpy of formation of perfluoropropane and enthalpies of formation of normal perfluoroalkanes, Vestn. Mosk. Univ. Khim., 1967, 22, 38-42. [all data]

Scheer, Bilodeau, et al., 1998
Scheer, M.; Bilodeau, R.C.; Brodie, C.A.; Haugen, H.K., Systematic study of the stable states of C-, Si-, Ge-, and Sn- via infrared laser spectroscopy, Phys. Rev. A, 1998, 58, 4, 2844-2856, https://doi.org/10.1103/PhysRevA.58.2844 . [all data]

Feldmann, 1977
Feldmann, D., Infrared Photodetachment Measurements Near Thresholds of C-, Chem. Phys. Lett., 1977, 47, 2, 338, https://doi.org/10.1016/0009-2614(77)80032-8 . [all data]

Honig, 1954
Honig, R.E., Mass spectrometric study of the molecular sublimation of graphite, J. Chem. Phys., 1954, 22, 126. [all data]

Lide, 1992
Lide, D.R. (Editor), Ionization potentials of atoms and atomic ions in Handbook of Chem. and Phys., 1992, 10-211. [all data]

Kelly, 1987
Kelly, R.L., Atomic and ionic spectrum lines of hydrogen through kryton, J. Phys. Chem. Ref. Data, 1987, 16. [all data]

Haque and Gingerich, 1981
Haque, R.; Gingerich, K.A., Identification and atomization energies of gaseous molecules ScC2, ScC3, ScC4, ScC5, and ScC6 by high temperature mass spectrometry, J. Chem. Phys., 1981, 74, 6407. [all data]

Gupta and Gingerich, 1979
Gupta, S.K.; Gingerich, K.A., Observation and atomization energies of the gaseous uranium carbides, UC, UC2, UC3, UC4, UC5, and UC6 by high temperature mass spectrometry, J. Chem. Phys., 1979, 71, 3072. [all data]

Gingerich and Gupta, 1978
Gingerich, K.A.; Gupta, K.A., Dissociation energies of the molecules RhTh and RhU from high temperature mass spectrometry and predicted thermodynamic stabilities of selected diatomic actinide-platinum metal intermetallic molecules, J. Chem. Phys., 1978, 69, 505. [all data]

Cocke and Gingerich, 1974
Cocke, D.L.; Gingerich, K.A., Thermodynamic investigation of the gaseous molecules TiRh, Rh2, and Ti2Rh by mass spectrometry, J. Chem. Phys., 1974, 60, 1958. [all data]

Cocke, Gingerich, et al., 1973
Cocke, D.L.; Gingerich, K.A.; Kordis, J., Determination of the high bond dissociation energy of the molecule LaRh, High Temp. Sci., 1973, 5, 474. [all data]

Cocke and Gingerich, 1972
Cocke, D.L.; Gingerich, K.A., Determination of the heats of atomization of the molecules RhC2, RhC, and TiC2 by high temperature mass spectrometry, J. Chem. Phys., 1972, 57, 3654. [all data]

Cocke and Gingerich, 1972, 2
Cocke, D.L.; Gingerich, K.A., Mass spectrometric determination of the bond dissociation energies of the molecules CePd and CeC2, J. Phys. Chem., 1972, 76, 2332. [all data]

Moore, 1970
Moore, C.E., Ionization potentials and ionization limits derived from the analyses of optical spectra, Natl. Stand. Ref. Data Ser., (U.S. Natl. Bur. Stand.), 1970, 34, 1. [all data]

Drowart, Burns, et al., 1959
Drowart, J.; Burns, R.P.; DeMaria, G.; Inghram, M.G., Mass spectrometric study of carbon vapor, J. Chem. Phys., 1959, 31, 1131. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References