Carbonic difluoride
- Formula: CF2O
- Molecular weight: 66.0069
- IUPAC Standard InChIKey: IYRWEQXVUNLMAY-UHFFFAOYSA-N
- CAS Registry Number: 353-50-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Carbonyl fluoride; Carbon difluoride oxide; Carbon fluoride oxide (COF2); Carbon oxyfluoride; Carbonyl difluoride; Difluoroformaldehyde; Fluoroformyl fluoride; Fluorophosgene; COF2; Fluophosgene; Difluorooxomethane; Difluorophosgene; Carbon fluoride oxide; Rcra waste number U033; UN 2417; Carbon oxyfluoride (COF2)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Gas phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -638.90 | kJ/mol | Review | Chase, 1998 | Data last reviewed in December, 1969 |
ΔfH°gas | -640.6 ± 5.9 | kJ/mol | Eqk | Amphlett, Dacey, et al., 1971 | Heat of Decomposition third law at 1200 K; ALS |
ΔfH°gas | -639.9 ± 1.0 | kJ/mol | Ccr | Wartenberg, 1949 | Corrected for CODATA value of ΔfH; ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 258.88 | J/mol*K | Review | Chase, 1998 | Data last reviewed in December, 1969 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1000. | 1000. to 6000. |
---|---|---|
A | 17.38444 | 80.20644 |
B | 134.4805 | 1.675530 |
C | -112.4914 | -0.344860 |
D | 35.15832 | 0.024211 |
E | -0.103569 | -7.210580 |
F | -649.4823 | -681.6113 |
G | 243.9339 | 328.8193 |
H | -638.8968 | -638.8968 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in December, 1969 | Data last reviewed in December, 1969 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 190. | K | N/A | PCR Inc., 1990 | BS |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
20.0 | 174. | A | Stephenson and Malanowski, 1987 | Based on data from 159. to 189. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
163.60 to 189.17 | 3.996 | 572.866 | -45.011 | Pace and Reno, 1968 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
23.2 | 145. | Stephenson and Malanowski, 1987 | Based on data from 130. to 159. K. See also Pace, 1968.; AC |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
6.7 | 161.9 | Pace, 1968 | AC |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
CF3O- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1380. ± 8.4 | kJ/mol | G+TS | Huey, Dunlea, et al., 1996 | gas phase; Agrees with G2 calculation: Segovia and Ventura, 1997, Burk, Koppel, et al., 2000, Chyall and Squires, 1996; B |
ΔrH° | 1454. ± 7.9 | kJ/mol | G+TS | Taft, Koppel, et al., 1990 | gas phase; In conflict with Huey, Dunlea, et al., 1996. Bracketing here may be for CF3O- + AH -> CF2=O + HF + A-.; B |
ΔrH° | <1431. ± 7.5 | kJ/mol | D-EA | Huey, Dunlea, et al., 1996 | gas phase; EA > NO3; B |
ΔrH° | 1405.1 | kJ/mol | Acid | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1351. ± 6.7 | kJ/mol | IMRB | Huey, Dunlea, et al., 1996 | gas phase; Agrees with G2 calculation: Segovia and Ventura, 1997, Burk, Koppel, et al., 2000, Chyall and Squires, 1996; B |
ΔrG° | 1425. ± 6.3 | kJ/mol | IMRB | Taft, Koppel, et al., 1990 | gas phase; In conflict with Huey, Dunlea, et al., 1996. Bracketing here may be for CF3O- + AH -> CF2=O + HF + A-.; B |
ΔrG° | 1377. ± 5.0 | kJ/mol | H-TS | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B |
By formula: F- + CF2O = (F- • CF2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 178. | kJ/mol | ICR | Larson and McMahon, 1985 | gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
ΔrH° | 178. | kJ/mol | ICR | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | N/A | Larson and McMahon, 1985 | gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
ΔrS° | 121. | J/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 142. | kJ/mol | ICR | Larson and McMahon, 1985 | gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
ΔrG° | 142. | kJ/mol | ICR | Larson and McMahon, 1984 | gas phase; switching reaction(F-)PF3; M |
ΔrG° | 142. | kJ/mol | ICR | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
By formula: CN- + CF2O = (CN- • CF2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 98.3 ± 4.2 | kJ/mol | IMRE | Larson, Szulejko, et al., 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 150. | J/mol*K | N/A | Larson, Szulejko, et al., 1988 | gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 54.8 ± 2.1 | kJ/mol | IMRE | Larson, Szulejko, et al., 1988 | gas phase; B,M |
By formula: Cl- + CF2O = (Cl- • CF2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 52.3 ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Larson and McMahon, 1985 | gas phase; switching reaction,Thermochemical ladder(Cl-)t-C4H9OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 28. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -45.6 ± 9.2 | kJ/mol | Eqk | Amphlett, Dacey, et al., 1971 | gas phase; Heat of Decomposition third law at 1200 K; ALS |
By formula: CF2O + H2O = CO2 + 2HF
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -111.8 ± 1.0 | kJ/mol | Ccr | Wartenberg, 1949 | gas phase; solvent: Gas phase;; Corrected for CODATA value of ΔfH; ALS |
= + CF4O
By formula: C2F6O2 = CF2O + CF4O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 102.5 ± 2.9 | kJ/mol | Eqk | Levy and Kennedy, 1972 | gas phase; ALS |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to CF2O+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 13.04 ± 0.03 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 666.7 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 637.0 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°(+) ion | 649. | kJ/mol | N/A | N/A | |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH(+) ion,0K | 653. | kJ/mol | N/A | N/A |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
13.035 ± 0.030 | PI | Buckley, Johnson, et al., 1995 | LL |
13.04 | PE | Thomas and Thompson, 1972 | LLK |
13.02 | PE | Brundle, Robin, et al., 1972 | LLK |
13.2 ± 0.1 | EI | Workman and Duncan, 1970 | RDSH |
14.6 ± 0.1 | EI | Thynne and MacNeil, 1970 | RDSH |
13.6 | PE | Johnson, Powis, et al., 1979 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C+ | 36. ± 1. | 2F+O? | EI | Thynne and MacNeil, 1970 | RDSH |
CF+ | 27.0 ± 0.3 | ? | EI | Thynne and MacNeil, 1970 | RDSH |
CFO+ | 14.736 ± 0.012 | F | PI | Buckley, Johnson, et al., 1995 | LL |
CFO+ | 14.9 ± 0.2 | F | PI | Johnson, Powis, et al., 1979 | LLK |
COF+ | 16.0 ± 0.1 | F | EI | Thynne and MacNeil, 1970 | RDSH |
CF2+ | 25.6 ± 0.3 | O | EI | Thynne and MacNeil, 1970 | RDSH |
F+ | 38. ± 1. | ? | EI | Thynne and MacNeil, 1970 | RDSH |
O+ | 35. ± 1. | ? | EI | Thynne and MacNeil, 1970 | RDSH |
De-protonation reactions
CF3O- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1380. ± 8.4 | kJ/mol | G+TS | Huey, Dunlea, et al., 1996 | gas phase; Agrees with G2 calculation: Segovia and Ventura, 1997, Burk, Koppel, et al., 2000, Chyall and Squires, 1996; B |
ΔrH° | 1454. ± 7.9 | kJ/mol | G+TS | Taft, Koppel, et al., 1990 | gas phase; In conflict with Huey, Dunlea, et al., 1996. Bracketing here may be for CF3O- + AH -> CF2=O + HF + A-.; B |
ΔrH° | <1431. ± 7.5 | kJ/mol | D-EA | Huey, Dunlea, et al., 1996 | gas phase; EA > NO3; B |
ΔrH° | 1405.1 | kJ/mol | Acid | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1351. ± 6.7 | kJ/mol | IMRB | Huey, Dunlea, et al., 1996 | gas phase; Agrees with G2 calculation: Segovia and Ventura, 1997, Burk, Koppel, et al., 2000, Chyall and Squires, 1996; B |
ΔrG° | 1425. ± 6.3 | kJ/mol | IMRB | Taft, Koppel, et al., 1990 | gas phase; In conflict with Huey, Dunlea, et al., 1996. Bracketing here may be for CF3O- + AH -> CF2=O + HF + A-.; B |
ΔrG° | 1377. ± 5.0 | kJ/mol | H-TS | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: CN- + CF2O = (CN- • CF2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 98.3 ± 4.2 | kJ/mol | IMRE | Larson, Szulejko, et al., 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 150. | J/mol*K | N/A | Larson, Szulejko, et al., 1988 | gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 54.8 ± 2.1 | kJ/mol | IMRE | Larson, Szulejko, et al., 1988 | gas phase; B,M |
By formula: Cl- + CF2O = (Cl- • CF2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 52.3 ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Larson and McMahon, 1985 | gas phase; switching reaction,Thermochemical ladder(Cl-)t-C4H9OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 28. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; B,M |
By formula: F- + CF2O = (F- • CF2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 178. | kJ/mol | ICR | Larson and McMahon, 1985 | gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
ΔrH° | 178. | kJ/mol | ICR | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | N/A | Larson and McMahon, 1985 | gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
ΔrS° | 121. | J/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 142. | kJ/mol | ICR | Larson and McMahon, 1985 | gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
ΔrG° | 142. | kJ/mol | ICR | Larson and McMahon, 1984 | gas phase; switching reaction(F-)PF3; M |
ΔrG° | 142. | kJ/mol | ICR | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Coblentz Society, Inc.
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Except where noted, spectra from this collection were measured on dispersive instruments, often in carefully selected solvents, and hence may differ in detail from measurements on FTIR instruments or in other chemical environments. More information on the manner in which spectra in this collection were collected can be found here.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View scan of original (hardcopy) spectrum.
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | COBLENTZ SOCIETY Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | DOW CHEMICAL COMPANY |
Source reference | COBLENTZ NO. 10639 |
Date | 1966/05/19 |
Name(s) | carbonyl difluoride |
State | GAS (200 mmHg DILUTED TO A TOTAL PRESSURE OF 600 mmHg WITH N2) |
Instrument | DOW KBr FOREPRISM-GRATING |
Instrument parameters | BLAZED AT 3.5, 12.0, 20.0 MICRON, CHANGED AT 5.0, 7.5, 14.9 MICRON |
Path length | 5 CM CELL ABOUT 3% SiF4 (FEATURES AROUND 1030 CM-1) |
Resolution | 4 |
Sampling procedure | TRANSMISSION |
Data processing | DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS) |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Amphlett, Dacey, et al., 1971
Amphlett, J.C.; Dacey, J.R.; Pritchard, G.O.,
An investigation of the reaction 2COF2 = CO2 + CF4 and the heat of formation of carbonyl fluoride,
J. Phys. Chem., 1971, 75, 3024-3026. [all data]
Wartenberg, 1949
Wartenberg, H.V.,
Die bildungswarme einiger fluorid,
Z. Anorg. Chem., 1949, 258, 354-360. [all data]
PCR Inc., 1990
PCR Inc.,
Research Chemicals Catalog 1990-1991, PCR Inc., Gainesville, FL, 1990, 1. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Pace and Reno, 1968
Pace, E.L.; Reno, M.A.,
Thermodynamic Properties of Carbonyl Fluoride from 12 K to its Boiling Point. The Entropy from Molecular and Spectroscopic Data,
J. Chem. Phys., 1968, 48, 3, 1231-1235, https://doi.org/10.1063/1.1668786
. [all data]
Pace, 1968
Pace, E.L.,
Thermodynamic Properties of Carbonyl Fluoride from 12°K to Its Boiling Point. The Entropy from Molecular and Spectroscopic Data,
J. Chem. Phys., 1968, 48, 3, 1231, https://doi.org/10.1063/1.1668786
. [all data]
Huey, Dunlea, et al., 1996
Huey, L.G.; Dunlea, E.J.; Howard, C.J.,
Gas-Phase Acidity of CF3OH,
J. Phys. Chem., 1996, 100, 16, 6504, https://doi.org/10.1021/jp953058m
. [all data]
Segovia and Ventura, 1997
Segovia, M.; Ventura, O.N.,
Density functional and G2 study of the strength of the OH bond in CF3OH,
Chem. Phys. Lett., 1997, 277, 5-6, 490-496, https://doi.org/10.1016/S0009-2614(97)00860-9
. [all data]
Burk, Koppel, et al., 2000
Burk, P.; Koppel, I.A.; Rummel, A.; Trummal, A.,
Can O-H acid be more acidic than its S-H analog? A G2 study of fluoromethanols and fluoromethanethiols,
J. Phys. Chem. A, 2000, 104, 7, 1602-1607, https://doi.org/10.1021/jp993487a
. [all data]
Chyall and Squires, 1996
Chyall, L.J.; Squires, R.R.,
The Proton Affinity and Absolute Heat of Formation of Trifluoromethanpl,
J. Phys. Chem., 1996, 100, 16435. [all data]
Taft, Koppel, et al., 1990
Taft, R.W.; Koppel, I.J.; Topsom, R.D.; Anvia, F.,
Acidities of OH Compounds, including Alcohols, Phenols, Carboxylic Acids, and Mineral Acids,
J. Am. Chem. Soc., 1990, 112, 6, 2047, https://doi.org/10.1021/ja00162a001
. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R.,
Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study,
J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034
. [all data]
Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B.,
Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria,
J. Am. Chem. Soc., 1985, 107, 766. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Fluoride and chloride affinities of main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ion cyclotron resonance halide-exchange equilibria,
J. Phys. Chem., 1984, 88, 1083. [all data]
Larson, Szulejko, et al., 1988
Larson, J.W.; Szulejko, J.E.; McMahon, T.B.,
Gas Phase Lewis Acid-Base Interactions. An Experimental Determination of Cyanide Binding Energies From Ion Cyclotron Resonance and High-Pressure Mass Spectrometric Equilibrium Measurements.,
J. Am. Chem. Soc., 1988, 110, 23, 7604, https://doi.org/10.1021/ja00231a004
. [all data]
Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P.,
Hydration of CN-, NO2-, NO3-, and HO- in the gas phase,
Can. J. Chem., 1971, 49, 3308. [all data]
Levy and Kennedy, 1972
Levy, J.B.; Kennedy, R.C.,
Bistrifluoromethyl peroxide. I. Thermodynamics of the equilibrium with carbonyl fluoride and trifluoromethyl hypofluorite,
J. Am. Chem. Soc., 1972, 94, 3302-3305. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Buckley, Johnson, et al., 1995
Buckley, T.J.; Johnson, R.D.; Huie, R.E.; Zhang, Z.; Kuo, S.C.; Klemm, R.B.,
Ionization energies, appearance energies, and thermochemistry of CF2O and FCO,
J. Phys. Chem., 1995, 99, 4879. [all data]
Thomas and Thompson, 1972
Thomas, R.K.; Thompson, H.,
Photoelectron spectra of carbonyl halides and related compounds,
Proc. R. Soc. London A:, 1972, 327, 13. [all data]
Brundle, Robin, et al., 1972
Brundle, C.R.; Robin, M.B.; Kuebler, N.A.; Basch, H.,
Perfluoro effect in photoelectron spectroscopy. I. Nonaromatic molecules,
J. Am. Chem. Soc., 1972, 94, 1451. [all data]
Workman and Duncan, 1970
Workman, G.L.; Duncan, A.B.F.,
Electronic spectrum of carbonyl fluoride,
J. Chem. Phys., 1970, 52, 3204. [all data]
Thynne and MacNeil, 1970
Thynne, J.C.J.; MacNeil, K.A.G.,
Ionisation and dissociation of carbonyl fluoride and trifluoromethyl hypofluorite by electron impact,
Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 95. [all data]
Johnson, Powis, et al., 1979
Johnson, K.M.; Powis, I.; Danby, C.J.,
The fragmentation of COCl2+ and COF2+ ions studied by the photoelectron-photoion coincidence technique,
Int. J. Mass Spectrom. Ion Phys., 1979, 32, 1. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References
- Symbols used in this document:
AE Appearance energy IE (evaluated) Recommended ionization energy S°gas,1 bar Entropy of gas at standard conditions (1 bar) Tboil Boiling point ΔfH(+) ion,0K Enthalpy of formation of positive ion at 0K ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfusH Enthalpy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.