1-Pentanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-298. ± 6.kJ/molAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
gas401.3J/mol*KN/ACounsell J.F., 1968GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
167.91403.49Stromsoe E., 1970Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.42 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Counsell J.F., 1970.; GT
177.7 ± 1.4418.95
178.2 ± 1.4420.75
174.58423.32
179.7 ± 1.4426.15
181.7 ± 1.4433.45
179.33438.26
184.4 ± 1.4442.85
184.8 ± 1.4444.35
184.35453.45
192.9 ± 1.4472.85
190.44473.19
195.5 ± 1.4482.25
209.3 ± 1.4531.25
215.8 ± 1.4554.15
221.4 ± 1.4573.95

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C5H11O- + Hydrogen cation = 1-Pentanol

By formula: C5H11O- + H+ = C5H12O

Quantity Value Units Method Reference Comment
Δr1565. ± 8.8kJ/molG+TSHiggins and Bartmess, 1998gas phase; B
Δr1568. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1564. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr1538. ± 8.4kJ/molIMREHiggins and Bartmess, 1998gas phase; B
Δr1541. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1537. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B

C3H9Si+ + 1-Pentanol = (C3H9Si+ • 1-Pentanol)

By formula: C3H9Si+ + C5H12O = (C3H9Si+ • C5H12O)

Quantity Value Units Method Reference Comment
Δr187.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr131.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
126.468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

(C5H13O+ • 41-Pentanol) + 1-Pentanol = (C5H13O+ • 51-Pentanol)

By formula: (C5H13O+ • 4C5H12O) + C5H12O = (C5H13O+ • 5C5H12O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr46.kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
21.227.PHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M

(C5H13O+ • 1-Pentanol) + 1-Pentanol = (C5H13O+ • 21-Pentanol)

By formula: (C5H13O+ • C5H12O) + C5H12O = (C5H13O+ • 2C5H12O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr92.kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KN/AMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
43.9346.PHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M

(C5H13O+ • 21-Pentanol) + 1-Pentanol = (C5H13O+ • 31-Pentanol)

By formula: (C5H13O+ • 2C5H12O) + C5H12O = (C5H13O+ • 3C5H12O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr58.6kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M

(C5H13O+ • 31-Pentanol) + 1-Pentanol = (C5H13O+ • 41-Pentanol)

By formula: (C5H13O+ • 3C5H12O) + C5H12O = (C5H13O+ • 4C5H12O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr49.8kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M

1-Pentanol = Pentanal + Hydrogen

By formula: C5H12O = C5H10O + H2

Quantity Value Units Method Reference Comment
Δr66.2 ± 1.6kJ/molEqkConnett, 1970liquid phase; ALS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
LL - Sharon G. Lias and Joel F. Liebman

View reactions leading to C5H12O+ (ion structure unspecified)

Proton affinity at 298K

Proton affinity (kJ/mol) Reference Comment
795.Holmes, Aubry, et al., 1999MM

Ionization energy determinations

IE (eV) Method Reference Comment
10.00PEAshmore and Burgess, 1977LLK
10.38PEAshmore and Burgess, 1977Vertical value; LLK
10.42 ± 0.03PEPeel and Willett, 1975Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C5H10+10.04 ± 0.05H2OEIHarnish, Holmes, et al., 1990LL

De-protonation reactions

C5H11O- + Hydrogen cation = 1-Pentanol

By formula: C5H11O- + H+ = C5H12O

Quantity Value Units Method Reference Comment
Δr1565. ± 8.8kJ/molG+TSHiggins and Bartmess, 1998gas phase; B
Δr1568. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1564. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr1538. ± 8.4kJ/molIMREHiggins and Bartmess, 1998gas phase; B
Δr1541. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1537. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

C3H9Si+ + 1-Pentanol = (C3H9Si+ • 1-Pentanol)

By formula: C3H9Si+ + C5H12O = (C3H9Si+ • C5H12O)

Quantity Value Units Method Reference Comment
Δr187.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr131.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
126.468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated

(C5H13O+ • 1-Pentanol) + 1-Pentanol = (C5H13O+ • 21-Pentanol)

By formula: (C5H13O+ • C5H12O) + C5H12O = (C5H13O+ • 2C5H12O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr92.kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr130.J/mol*KN/AMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
43.9346.PHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated

(C5H13O+ • 21-Pentanol) + 1-Pentanol = (C5H13O+ • 31-Pentanol)

By formula: (C5H13O+ • 2C5H12O) + C5H12O = (C5H13O+ • 3C5H12O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr58.6kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase

(C5H13O+ • 31-Pentanol) + 1-Pentanol = (C5H13O+ • 41-Pentanol)

By formula: (C5H13O+ • 3C5H12O) + C5H12O = (C5H13O+ • 4C5H12O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr49.8kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase

(C5H13O+ • 41-Pentanol) + 1-Pentanol = (C5H13O+ • 51-Pentanol)

By formula: (C5H13O+ • 4C5H12O) + C5H12O = (C5H13O+ • 5C5H12O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr46.kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
21.227.PHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Sadtler Research Labs Under US-EPA Contract
State gas

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1998.
NIST MS number 291529

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Counsell J.F., 1968
Counsell J.F., Thermodynamic properties of organic oxygen compounds. Part XIX. Low-temperature heat capacity and entropy of propan-1-ol, 2-methylpropan-1-ol, and pentan-1-ol, J. Chem. Soc. A, 1968, 1819-1823. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Counsell J.F., 1970
Counsell J.F., Thermodynamic properties of organic oxygen compounds. 24. Vapor heat capacities and enthalpies of vaporization of ethanol, 2-methyl-1-propanol, and 1-pentanol, J. Chem. Thermodyn., 1970, 2, 367-372. [all data]

Higgins and Bartmess, 1998
Higgins, P.R.; Bartmess, J.E., The Gas Phase Acidities of Long Chain Alcohols., Int. J. Mass Spectrom., 1998, 175, 1-2, 71-79, https://doi.org/10.1016/S0168-1176(98)00125-6 . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T., The gas phase acidity of aliphatic alcohols, J. Am. Chem. Soc., 1983, 105, 2203. [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Connett, 1970
Connett, J.E., Chemical equilibria. Part III. Dehydrogenation of pentan-1-ol, pentan-2-ol, and 3-methylbutan-2-ol, J. Chem. Soc. A, 1970, 1284-1286. [all data]

Holmes, Aubry, et al., 1999
Holmes, J.L.; Aubry, C.; Mayer, P.M., Proton affinities of primary alkanols: An appraisal of the kinetic method, J. Phys. Chem. A, 1999, 103, 705. [all data]

Ashmore and Burgess, 1977
Ashmore, F.S.; Burgess, A.R., Study of Some Medium Size Alcohols and Hydroperoxides by Photoelectron Spectroscopy, J. Chem. Soc. Faraday Trans. 2, 1977, 73, 1247. [all data]

Peel and Willett, 1975
Peel, J.B.; Willett, G.D., Photoelectron spectroscopic studies of the higher alcohols, Aust. J. Chem., 1975, 28, 2357. [all data]

Harnish, Holmes, et al., 1990
Harnish, D.; Holmes, J.L.; Lossing, F.P.; Mommers, A.A.; Maccoll, A.; Mruzek, M.N., Assigining structures to isomeric [C5H10]+ Ions: the generation of ionized ethylcyclopropane from pentan-1-ol and 1-chloropentane, Org. Mass Spectrom., 1990, 25, 381. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References