1,3-Butadiyne
- Formula: C4H2
- Molecular weight: 50.0587
- IUPAC Standard InChIKey: LLCSWKVOHICRDD-UHFFFAOYSA-N
- CAS Registry Number: 460-12-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Butadiyne; Biacetylene; Biethynyl; Diacetylene; HC≡CC≡CH; buta-1,3-diyne
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 111. | kcal/mol | Kin | Kiefer, Sidhu, et al., 1992 | ALS |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
7.242 | 50. | Dorofeeva O.V., 1991 | Recommended values are in good agreement with other statistically calculated values [52FER/WER]. There is an appreciable difference with values calculated by [ Dessau L., 1988] because these authors used the estimated values of vibrational frequencies instead of experimental ones.; GT |
9.051 | 100. | ||
11.32 | 150. | ||
13.74 | 200. | ||
16.77 | 273.15 | ||
17.61 ± 0.24 | 298.15 | ||
17.67 | 300. | ||
20.18 | 400. | ||
21.87 | 500. | ||
23.15 | 600. | ||
24.202 | 700. | ||
25.108 | 800. | ||
25.903 | 900. | ||
26.609 | 1000. | ||
27.230 | 1100. | ||
27.782 | 1200. | ||
28.267 | 1300. | ||
28.695 | 1400. | ||
29.073 | 1500. | ||
29.407 | 1600. | ||
29.701 | 1700. | ||
29.964 | 1800. | ||
30.196 | 1900. | ||
30.402 | 2000. |
Phase change data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 284. ± 3. | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 263. | K | N/A | Pauling, Springall, et al., 1939 | Uncertainty assigned by TRC = 2. K; TRC |
Tfus | 237.7 | K | N/A | Straus and Kollek, 1926 | Uncertainty assigned by TRC = 2.5 K; TRC |
Tfus | 237. | K | N/A | Mueller, 1925 | Uncertainty assigned by TRC = 3. K; TRC |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
6.07 | 258. | N/A | Straus and Kollek, 2006 | Based on data from 195. to 273. K. See also Boublik, Fried, et al., 1984.; AC |
7.98 | 219. | N/A | Tanneberger, 2006 | Based on data from 188. to 234. K. See also Boublik, Fried, et al., 1984.; AC |
6.24 | 268. | A | Stephenson and Malanowski, 1987 | Based on data from 237. to 283. K. See also Dykyj, 1971.; AC |
6.31 | 267. | N/A | Stull, 1947 | Based on data from 191. to 282. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
190.7 to 282.9 | 3.04717 | 570.271 | -95.334 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
195.0 to 273. | 2.63836 | 460.684 | -108.556 | Straus and Kollek, 1926, 2 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
8.68 | 188. to 234. | N/A | Tanneberger, 2006 | AC |
8.65 | 211. | A | Stull, 1947 | Based on data from 190. to 232. K.; AC |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C4H- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 360.3 ± 3.2 | kcal/mol | D-EA | Pino, Tulej, et al., 2002 | gas phase |
ΔrH° | 360.4 ± 2.9 | kcal/mol | Endo | Shi and Ervin, 2000 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 352.1 ± 3.3 | kcal/mol | H-TS | Pino, Tulej, et al., 2002 | gas phase |
ΔrG° | 352.2 ± 3.0 | kcal/mol | H-TS | Shi and Ervin, 2000 | gas phase |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.19 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C4H2+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Proton affinity (review) | 176.2 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 170.4 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.17 | PE | Bieri, Schmelzer, et al., 1980 | LLK |
10.17 ± 0.02 | PE | Bieri, Burger, et al., 1977 | LLK |
10.1 ± 0.1 | EI | Reeher, Flesch, et al., 1976 | LLK |
10.17 | PE | Brogli, Heilbronner, et al., 1973 | LLK |
10.180 ± 0.003 | S | Smith, 1967 | RDSH |
10.17 ± 0.01 | PE | Baker and Turner, Commun. 1967 | RDSH |
10.30 | PE | Bieri and Asbrink, 1980 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C2H+ | 20.1 ± 0.5 | C2H | EI | Coats and Anderson, 1957 | RDSH |
C4H+ | 12.1 ± 0.3 | H | EI | Coats and Anderson, 1957 | RDSH |
De-protonation reactions
C4H- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 360.3 ± 3.2 | kcal/mol | D-EA | Pino, Tulej, et al., 2002 | gas phase; B |
ΔrH° | 360.4 ± 2.9 | kcal/mol | Endo | Shi and Ervin, 2000 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 352.1 ± 3.3 | kcal/mol | H-TS | Pino, Tulej, et al., 2002 | gas phase; B |
ΔrG° | 352.2 ± 3.0 | kcal/mol | H-TS | Shi and Ervin, 2000 | gas phase; B |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
NIST MS number | 87 |
UV/Visible spectrum
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | Fihtengolts, et al., 1969 |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 20172 |
Instrument | SF-4 |
Melting point | 10 |
Vibrational and/or electronic energy levels
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Takehiko Shimanouchi
Symmetry: D∞h Symmetry Number σ = 2
Sym. | No | Approximate | Selected Freq. | Infrared | Raman | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
Species | type of mode | Value | Rating | Value | Phase | Value | Phase | |||
σg+ | 1 | CH str | 3293 | D | ia | 3293 VW | liq. | |||
σg+ | 2 | C≡C str | 2184 | C | ia | 2184 VS | gas | |||
σg+ | 3 | C-C str | 874 | C | ia | 874 W | gas | |||
σu+ | 4 | CH str | 3329 | C | 3329 VS | gas | ia | |||
σu+ | 5 | C≡C str | 2020 | C | 2020 M | gas | ia | |||
πg | 6 | CH bend | 627 | C | ia | 627 M | gas | |||
πg | 7 | CCC bend | 482 | C | ia | 482 S | gas | |||
πu | 8 | CH bend | 630 | B | 630 VS | gas | ia | |||
πu | 9 | CCC bend | 231 | E | ia | 231 VW | liq. | |||
Source: Shimanouchi, 1972
Notes
VS | Very strong |
S | Strong |
M | Medium |
W | Weak |
VW | Very weak |
ia | Inactive |
B | 1~3 cm-1 uncertainty |
C | 3~6 cm-1 uncertainty |
D | 6~15 cm-1 uncertainty |
E | 15~30 cm-1 uncertainty |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Kiefer, Sidhu, et al., 1992
Kiefer, J.H.; Sidhu, S.S.; Kern, R.D.; Xie, K.; Chen, H.; Harding, L.B.,
The homogeneous pyrolysis of acetylene II: the high temperature radical chain mechanism,
Combust. Sci. Technol., 1992, 82, 101-130. [all data]
Dorofeeva O.V., 1991
Dorofeeva O.V.,
Thermodynamic properties of linear carbon chain molecules with conjugated triple bonds. Part I. Polyacetylenes, H(CC)nH (n=2-6), cyanopolyacetylenes, H(CC)nCN (n=1-5), and dicyanopolyacetylenes, NC(CC)nCN (n=1-4),
Thermochim. Acta, 1991, 178, 273-286. [all data]
Dessau L., 1988
Dessau L.,
Vibrations and thermodynamic functions of long-chain acetylenes,
Z. Phys. Chem. (Leipzig), 1988, 269, 187-190. [all data]
Pauling, Springall, et al., 1939
Pauling, L.; Springall, H.D.; Palmer, K.J.,
The Electron Diffraction Investigation of Methylacetylene, Dimethyl- acetylene, Dimethyldiacetylene, Methyl Cyanide, Diacetylene and Cyanogen cyanogen,
J. Am. Chem. Soc., 1939, 61, 927-8. [all data]
Straus and Kollek, 1926
Straus, F.; Kollek, L.,
About Diacetylene,
Ber. Dtsch. Chem. Ges., 1926, 59, 1664-81. [all data]
Mueller, 1925
Mueller, F.G.,
Diacetylene (1,3-butadiyne),
Helv. Chim. Acta, 1925, 8, 826-32. [all data]
Straus and Kollek, 2006
Straus, Fritz; Kollek, Leo,
Über Diacetylen,
Ber. dtsch. Chem. Ges. A/B, 2006, 59, 8, 1664-1681, https://doi.org/10.1002/cber.19260590804
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Tanneberger, 2006
Tanneberger, H.,
Einige Bemerkungen über die Dampfdruck-Kurve des Diacetylens (Butadiins).,
Ber. dtsch. Chem. Ges. A/B, 2006, 66, 4, 484-486, https://doi.org/10.1002/cber.19330660408
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Dykyj, 1971
Dykyj, J.,
Petrochemia, 1971, 11, 2, 27. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Straus and Kollek, 1926, 2
Straus, F.; Kollek, L.,
Uber Diacetylen,
Ber. Dtsch. Chem. Ges., 1926, 59, 8, 1664-1681, https://doi.org/10.1002/cber.19260590804
. [all data]
Pino, Tulej, et al., 2002
Pino, T.; Tulej, M.; Guthe, F.; Pachkov, M.; Maier, J.P.,
Photodetachment spectroscopy of the C2nH- (n=2-4) anions in the vicinity of their electron detachment threshold,
J. Chem. Phys., 2002, 116, 14, 6126-6131, https://doi.org/10.1063/1.1451248
. [all data]
Shi and Ervin, 2000
Shi, Y.; Ervin, K.M.,
Gas-phase acidity and C-H bond energy of diacetylene,
Chem. Phys. Lett., 2000, 318, 1-3, 149-154, https://doi.org/10.1016/S0009-2614(00)00023-3
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Bieri, Schmelzer, et al., 1980
Bieri, G.; Schmelzer, A.; Asbrink, L.; Jonsson, M.,
Fluorine and the fluoroderivatives of acetylene and diacetylene studied by 30.4 nm He(II) photoelectron spectroscopy,
Chem. Phys., 1980, 49, 213. [all data]
Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P.,
Valence ionization enrgies of hydrocarbons,
Helv. Chim. Acta, 1977, 60, 2213. [all data]
Reeher, Flesch, et al., 1976
Reeher, J.R.; Flesch, G.D.; Svec, H.J.,
The mass spectra and ionization potentials of the neutral fragments produced during the electron bombardment of aromatic compounds,
Org. Mass Spectrom., 1976, 11, 154. [all data]
Brogli, Heilbronner, et al., 1973
Brogli, F.; Heilbronner, E.; Hornung, V.; Kloster-Jensen, E.,
230. Die photoelektronen-spektren methyl-substituierter Acetylene,
Helv. Chim. Acta, 1973, 56, 2171. [all data]
Smith, 1967
Smith, W.L.,
The absorption spectrum of diacetylene in the vacuum ultraviolet,
Proc. Roy. Soc. (London), 1967, A300, 519. [all data]
Baker and Turner, Commun. 1967
Baker, C.; Turner, D.W.,
Photoelectron spectra of acetylene, diacetylene, and their deutero-derivatives,
Chem., Commun. 1967, 797. [all data]
Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L.,
30.4-nm He(II) photoelectron spectra of organic molecules,
J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]
Coats and Anderson, 1957
Coats, F.H.; Anderson, R.C.,
Thermodynamic data from electron-impact measurements on acetylene and substituted acetylenes,
J. Am. Chem. Soc., 1957, 79, 1340. [all data]
Fihtengolts, et al., 1969
Fihtengolts, V.S., et al.,
Atlas of UV Absorption Spectra of Substances Used in Synthetic Rubber Manufacture, 1969, 172. [all data]
Shimanouchi, 1972
Shimanouchi, T.,
Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Tboil Boiling point Tfus Fusion (melting) point d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.