2-Butene, 2,3-dimethyl-
- Formula: C6H12
- Molecular weight: 84.1595
- IUPAC Standard InChIKey: WGLLSSPDPJPLOR-UHFFFAOYSA-N
- CAS Registry Number: 563-79-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Tetramethylethylene; 1,1,2,2-Tetramethylethylene; 2,3-Dimethyl-2-butene; 2,3-Dimethylbut-2-ene; 2,3-Dimethylbutene-2; (CH3)2C=C(CH3)2; Tetramethylethene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -70.3 ± 1.5 | kJ/mol | Eqk | Wiberg and Hao, 1991 | Heat of hydration; ALS |
ΔfH°gas | -68.4 ± 1.5 | kJ/mol | Eqk | Rodgers and Wu, 1971 | Heat of isomerization; ALS |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
135.31 ± 0.27 | 334.20 | Scott D.W., 1955 | GT |
142.00 ± 0.28 | 355.25 | ||
154.64 ± 0.31 | 393.20 | ||
167.65 ± 0.34 | 433.20 | ||
180.33 ± 0.36 | 473.20 |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
115.94 | 273.15 | Scott D.W., 1955 | Recommended results of statistical thermodynamics calculation are in good agreement with experimental data.; GT |
123.60 | 298.15 | ||
124.18 | 300. | ||
156.82 | 400. | ||
188.45 | 500. | ||
216.65 | 600. | ||
241.29 | 700. | ||
262.67 | 800. | ||
281.37 | 900. | ||
297.65 | 1000. | ||
311.92 | 1100. | ||
324.30 | 1200. | ||
335.05 | 1300. | ||
344.47 | 1400. | ||
352.75 | 1500. |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: H2 + C6H12 = C6H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -108.7 ± 0.45 | kJ/mol | Chyd | Rogers, Crooks, et al., 1987 | liquid phase |
ΔrH° | -110.4 ± 0.42 | kJ/mol | Chyd | Kistiakowsky, Ruhoff, et al., 1936 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -111.4 ± 0.42 kJ/mol; At 355 K |
By formula: C6H12 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.61 ± 0.50 | kJ/mol | Eqk | Radyuk, Kabo, et al., 1972 | gas phase; At 562 K |
ΔrH° | 7.1 ± 0.8 | kJ/mol | Eqk | Rodgers and Wu, 1971 | gas phase; Heat of isomerization |
By formula: C6H12 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -7.1 ± 0.8 | kJ/mol | Eqk | Rodgers and Wu, 1971 | gas phase; Heat of isomerization |
ΔrH° | -7.5 | kJ/mol | Eqk | Abell, 1966 | gas phase |
By formula: C6H12 + HCl = C6H13Cl
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -54.0 ± 1.4 | kJ/mol | Cm | Arnett and Pienta, 1980 | liquid phase; solvent: Methylene chloride; Hydrochlorination |
By formula: C6H12 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -30.0 ± 1.1 | kJ/mol | Ciso | Bartolo and Rossini, 1960 | liquid phase; Calculated from ΔHc |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C6H12+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 8.27 ± 0.01 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 813.9 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 785.9 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.27 ± 0.02 | PE | Bieri, Burger, et al., 1977 | LLK |
8.16 | EI | Lossing and Traeger, 1975 | LLK |
8.271 ± 0.005 | PE | Masclet, Grosjean, et al., 1973 | LLK |
8.26 | PE | Frost and Sandhu, 1971 | LLK |
8.30 | PI | Bralsford, Harris, et al., 1960 | RDSH |
8.30 | PE | Kovac, Mohraz, et al., 1980 | Vertical value; LLK |
10.52 | PE | McAlduff and Houk, 1977 | Vertical value; LLK |
8.46 | PE | Mollere, Houk, et al., 1976 | Vertical value; LLK |
8.42 | PE | Fuss and Bock, 1974 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C5H9+ | 8.16 | CH3 | EI | Lossing and Traeger, 1975, 2 | LLK |
C5H9+ | 10.32 | CH3 | EI | Lossing and Traeger, 1975 | LLK |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | NIST Standard Reference Data Program Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Sadtler Research Labs Under US-EPA Contract |
State | gas |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW-3539 |
NIST MS number | 230825 |
UV/Visible spectrum
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | Johnson, 1966 |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 19914 |
Instrument | Unicam SP 500 |
Boiling point | 73.2/ 760 mm |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Wiberg and Hao, 1991
Wiberg, K.B.; Hao, S.,
Enthalpies of hydration of alkenes. 4. Formation of acyclic tert-alcohols,
J. Org. Chem., 1991, 56, 5108-5110. [all data]
Rodgers and Wu, 1971
Rodgers, A.S.; Wu, M.-C.R.,
Thermochemistry of the gas-phase iodine catalyzed isomerization: 2,3-dimethyl-1-butene = 2,3-dimethyl-2-butene,
J. Chem. Thermodyn., 1971, 3, 591-597. [all data]
Scott D.W., 1955
Scott D.W.,
2,3-Dimethyl-2-butene: thermodynamic properties in the solid, liquid and vapor states,
J. Am. Chem. Soc., 1955, 77, 4993-4998. [all data]
Rogers, Crooks, et al., 1987
Rogers, D.W.; Crooks, E.; Dejroongruang, K.,
Enthalpies of hydrogenation of the hexenes,
J. Chem. Thermodyn., 1987, 19, 1209-1215. [all data]
Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E.,
Heats of organic reactions. III. Hydrogenation of some higher olefins,
J. Am. Chem. Soc., 1936, 58, 137-145. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Radyuk, Kabo, et al., 1972
Radyuk, Z.A.; Kabo, G.Ya.; Andreevskii, D.N.,
Equilibrium and thermodynamics of the isomerization of hexene isomers,
Neftekhimiya, 1972, 12, 679-686. [all data]
Abell, 1966
Abell, P.I.,
Bromine atom catalyzed isomerization of terminal olefins,
J. Am. Chem. Soc., 1966, 88, 1346-1348. [all data]
Arnett and Pienta, 1980
Arnett, E.M.; Pienta, N.J.,
Stabilities of carbonium ions in solution. 12. Heats of formation of alkyl chlorides as an entree to heats of solvation of aliphatic carbonium ions,
J. Am. Chem. Soc., 1980, 102, 3329-3334. [all data]
Bartolo and Rossini, 1960
Bartolo, H.F.; Rossini, F.D.,
Heats of isomerization of the seventeen isomeric hexenes,
J. Phys. Chem., 1960, 64, 1685-1689. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P.,
Valence ionization enrgies of hydrocarbons,
Helv. Chim. Acta, 1977, 60, 2213. [all data]
Lossing and Traeger, 1975
Lossing, F.P.; Traeger, J.C.,
Stabilization in cyclopentadienyl, cyclopentenyl, and cyclopentyl cations,
J. Am. Chem. Soc., 1975, 97, 1579. [all data]
Masclet, Grosjean, et al., 1973
Masclet, P.; Grosjean, D.; Mouvier, G.,
Alkene ionization potentials. Part I. Quantitative determination of alkyl group structural effects,
J. Electron Spectrosc. Relat. Phenom., 1973, 2, 225. [all data]
Frost and Sandhu, 1971
Frost, D.C.; Sandhu, J.S.,
Ionization potentials of ethylene and some methyl-substituted ethylenes as determined by photoelectron spectroscopy,
Indian J. Chem., 1971, 9, 1105. [all data]
Bralsford, Harris, et al., 1960
Bralsford, R.; Harris, P.V.; Price, W.C.,
The effect of fluorine on the electronic spectra and ionization potentials of molecules,
Proc. Roy. Soc. (London), 1960, A258, 459. [all data]
Kovac, Mohraz, et al., 1980
Kovac, B.; Mohraz, M.; Heilbronner, E.; Boekelheide, V.; Hopf, H.,
Photoelectron spectra of the cyclophanes,
J. Am. Chem. Soc., 1980, 102, 4314. [all data]
McAlduff and Houk, 1977
McAlduff, E.J.; Houk, K.N.,
Photoelectron spectra of substituted oxiranes and thiiranes. Substituent effects on ionization potentials involving σ orbitals,
Can. J. Chem., 1977, 55, 318. [all data]
Mollere, Houk, et al., 1976
Mollere, P.D.; Houk, K.N.; Bomse, D.S.; Morton, T.H.,
Photoelectron spectra of sterically congested alkenes and dienes,
J. Am. Chem. Soc., 1976, 98, 4732. [all data]
Fuss and Bock, 1974
Fuss, W.; Bock, H.,
Photoelectron spectra and molecular properties. XXXVI. (H3C)3B, (H3C)2BF, (H3C)2BN(CH3)2, and (H3C)2CC(CH3)2: The use of ionization potentials in assigning UV spectra,
J. Chem. Phys., 1974, 61, 1613. [all data]
Lossing and Traeger, 1975, 2
Lossing, F.P.; Traeger, J.C.,
Free radicals by mass spectrometry XLVI. Heats of formation of C5H7 and C5H9 radicals and cations.,
J. Am. Chem. Soc., 1975, 19, 9. [all data]
Johnson, 1966
Johnson, E.A.,
UV atlas of organic compounds, 1966, 1, A1/3. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas IE (evaluated) Recommended ionization energy ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.