Chlorine dioxide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Henry's Law data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas25.000kcal/molReviewChase, 1998Data last reviewed in December, 1992
Quantity Value Units Method Reference Comment
gas,1 bar61.477cal/mol*KReviewChase, 1998Data last reviewed in December, 1992

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1000.1000. to 6000.
A 5.76594913.72680
B 19.364000.289913
C -17.64030-0.025442
D 5.8661600.001877
E -0.008018-0.662931
F 22.5370019.05120
G 63.3691975.26131
H 25.0000025.00000
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in December, 1992 Data last reviewed in December, 1992

Phase change data

Go To: Top, Gas phase thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
214. to 284.33.32722644.581-90.46Stull, 1947Coefficents calculated by NIST from author's data.

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
1.03300.LN/AThe parameterization given by missing citation (parameters A, B, C) doesn't fit the data in the same paper for this substance. Therefore the parameteriztaion of the solubility data (X1) was recalculated.
0.843400.XN/A 
1.03300.LN/A 

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 206

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Marilyn E. Jacox

State:   E


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 63774 gas E-X 148 157 Humphries, Walsh, et al., 1963
Basco and Morse, 1974
Hubinger and Nee, 1994


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

1 Sym. stretch 1000 T gas AB Humphries, Walsh, et al., 1963
2 Bend 508 gas AB Humphries, Walsh, et al., 1963
Basco and Morse, 1974

State:   D


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 61430 ± 20 gas D-X 155 163 Humphries, Walsh, et al., 1963
Basco and Morse, 1974
Flesch, Ruhl, et al., 1993
Hubinger and Nee, 1994


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

1 Sym. stretch 1051 ± 20 gas AB Humphries, Walsh, et al., 1963
Basco and Morse, 1974
Flesch, Ruhl, et al., 1993
2 Bend 521 ± 20 gas AB Humphries, Walsh, et al., 1963
Basco and Morse, 1974
Flesch, Ruhl, et al., 1993

State:   C


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 54689 ± 20 gas C-X 176 183 Humphries, Walsh, et al., 1963
Basco and Morse, 1974
Flesch, Ruhl, et al., 1993
Hubinger and Nee, 1994


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 1 Sym. stretch 1020 ± 20 gas AB Humphries, Walsh, et al., 1963
Basco and Morse, 1974
Flesch, Ruhl, et al., 1993

State:   A


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 21017.2 gas A-X 260 780 Urey and Johnston, 1931
Coon, 1946
Coon and Ortiz, 1957
Richardson, Redding, et al., 1969
Sakurai, Clark, et al., 1971
Curl, Abe, et al., 1973
Hamada, Merer, et al., 1981
Wahner, Tyndall, et al., 1987
Richard, Wickham-Jones, et al., 1989
Ruhl, Jefferson, et al., 1990
Richard and Vaida, 1991
Richard and Vaida, 1991, 2
Bishenden, Haddock, et al., 1991
Davis and Lee, 1992
Bishenden and Donaldson, 1993
Hubinger and Nee, 1994
Bishenden and Donaldson, 1994
Davis and Lee, 1996
Lim, Kim, et al., 1999
To = 20991.3 Ne A-X 415 755 Liu, Lai, et al., 1998
To = 20827.8 Ar A-X 417 765 Liu, Lai, et al., 1998
To = 20684.8 Kr A-X 425 748 Liu, Lai, et al., 1998
To = 16940 ± 840 gas Wang and Wang, 2000


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 1 Sym. stretch 711.5 gas AB Coon and Ortiz, 1957
Richardson, Redding, et al., 1969
Richard and Vaida, 1991
1 Sym. stretch 707.9 Ne AB Liu, Lai, et al., 1998
1 Sym. stretch 716.0 Ar AB Liu, Lai, et al., 1998
1 Sym. stretch 712.5 Kr AB Liu, Lai, et al., 1998
2 Bend 292.5 gas AB Coon and Ortiz, 1957
Richardson, Redding, et al., 1969
Richard and Vaida, 1991
2 Bend 292.5 Ne AB Liu, Lai, et al., 1998
2 Bend 302.3 Ar AB Liu, Lai, et al., 1998
2 Bend 303.0 Kr AB Liu, Lai, et al., 1998
b2 3 Asym. stretch 441.2 gas AB Hamada, Merer, et al., 1981
Richard and Vaida, 1991
3 Asym. stretch 443.8 H Ne AB Liu, Lai, et al., 1998
3 Asym. stretch 448.6 H Kr AB Liu, Lai, et al., 1998

State:   A'


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 20980 ± 840 gas Wang and Wang, 2000

State:   X


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 1 Sym. stretch 945.59 s gas IR AB Hedberg, 1951
Nielsen and Woltz, 1952
Coon and Ortiz, 1957
Richardson, Redding, et al., 1969
Sakurai, Clark, et al., 1971
1 Sym. stretch 945.59 s gas IR Ra Curl, Abe, et al., 1973
Esposito, Stedl, et al., 1999
1 Sym. stretch 945.59 s gas LF LMR Uehara and Hakuta, 1978
Hamada and Tsuboi, 1980
Jones and Brown, 1981
1 Sym. stretch 945.59 s gas DL LS Tanaka and Tanaka, 1983
Ortigoso, Escribano, et al., 1991
Ortigoso, Escribano, et al., 1992
1 Sym. stretch 944.8 m Ne IR Muller and Willner, 1993
Liu, Lai, et al., 1998
1 Sym. stretch 947.6 m Ar IR Ra Arkell and Schwager, 1967
Tevault, Chi, et al., 1974
Chi and Andrews, 1974
Muller and Willner, 1993
Liu, Lai, et al., 1998
1 Sym. stretch 944.1 Kr Ra IR Chi and Andrews, 1974
Liu, Lai, et al., 1998
1 Sym. stretch 940 ± 2 Xe Ra Chi and Andrews, 1974
1 Sym. stretch 950 ± 2 N2 Ra Chi and Andrews, 1974
2 Bend 447.70 s gas IR AB Nielsen and Woltz, 1952
Coon and Ortiz, 1957
Richardson, Redding, et al., 1969
Sakurai, Clark, et al., 1971
Curl, Abe, et al., 1973
2 Bend 447.70 s gas LF Hamada and Tsuboi, 1979
Hamada, Merer, et al., 1981
Ortigoso, Escribano, et al., 1992, 2
2 Bend 447.70 s gas IR Ra Ortigoso, Escribano, et al., 1992
Esposito, Stedl, et al., 1999
2 Bend 448.7 m Ne IR Muller and Willner, 1993
2 Bend 451 s Ar IR LF Arkell and Schwager, 1967
Tevault, Chi, et al., 1974
Chi and Andrews, 1974
2 Bend 447 s Ar IR LF Arkell and Schwager, 1967
Tevault, Chi, et al., 1974
Chi and Andrews, 1974
Muller and Willner, 1993
2 Bend 447 Kr LF Chi and Andrews, 1974
b2 3 Asym. stretch 1110.11 vs gas IR Hedberg, 1951
Richardson, Redding, et al., 1969
Jones and Brown, 1981
Ortigoso, Escribano, et al., 1992, 2
Ortigoso, Escribano, et al., 1992
3 Asym. stretch 1110.11 vs gas Ra Esposito, Stedl, et al., 1999
3 Asym. stretch 1107.6 vs Ne IR Muller and Willner, 1993
Liu, Lai, et al., 1998
3 Asym. stretch 1106.5 vs Ar IR Arkell and Schwager, 1967
Tevault, Chi, et al., 1974
Muller and Willner, 1993
Liu, Lai, et al., 1998
3 Asym. stretch 1100.8 vs Ar IR Arkell and Schwager, 1967
Tevault, Chi, et al., 1974
Muller and Willner, 1993
Liu, Lai, et al., 1998
3 Asym. stretch 1102.2 Kr IR Liu, Lai, et al., 1998

Additional references: Jacox, 1994, page 113; Jacox, 1998, page 205; Jacox, 2003, page 149; Curl, Kinsey, et al., 1961; Curl, Heidelberg, et al., 1962; Curl, 1962; Tolles, Kinsey, et al., 1962; Pillai and Curl, 1962; Coon, Cesani, et al., 1963; McDonald and Innes, 1978; Michielsen, Merer, et al., 1981; Tanoura, Chiba, et al., 1982; Brockmann and Haaks, 1986; Miyazaki, Tanoura, et al., 1986; Peterson and Werner, 1992

Notes

mMedium
sStrong
vsVery strong
H(1/2)(2ν)
TTentative assignment or approximate value
oEnergy separation between the v = 0 levels of the excited and electronic ground states.

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Humphries, Walsh, et al., 1963
Humphries, C.M.; Walsh, A.D.; Warsop, P.A., Absorption spectrum of chlorine dioxide in the vacuum ultra-violet, Discuss. Faraday Soc., 1963, 35, 137, https://doi.org/10.1039/df9633500137 . [all data]

Basco and Morse, 1974
Basco, N.; Morse, R.D., Reactions of Halogen Oxides Studied by Flash Photolysis. IV. Vacuum Ultraviolet Kinetic Spectroscopy Studies on Chlorine Dioxide, Proc. Roy. Soc. (London) A336, 1974, 336, 1607, 495, https://doi.org/10.1098/rspa.1974.0032 . [all data]

Hubinger and Nee, 1994
Hubinger, S.; Nee, J.B., Photoabsorpton spectrum for OClO between 125 and 470 nm, Chem. Phys., 1994, 181, 1-2, 247, https://doi.org/10.1016/0301-0104(94)85027-5 . [all data]

Flesch, Ruhl, et al., 1993
Flesch, R.; Ruhl, E.; Hottmann, K.; Baumgartel, H., Photoabsorption and photoionization of chlorine dioxide, J. Phys. Chem., 1993, 97, 837. [all data]

Urey and Johnston, 1931
Urey, H.C.; Johnston, H., The Absorption Spectrum of Chlorine Dioxide, Phys. Rev., 1931, 38, 12, 2131, https://doi.org/10.1103/PhysRev.38.2131 . [all data]

Coon, 1946
Coon, J.B., Rotational Structure of Some Electronic Bands of Chlorine Dioxide, J. Chem. Phys., 1946, 14, 11, 665, https://doi.org/10.1063/1.1724083 . [all data]

Coon and Ortiz, 1957
Coon, J.B.; Ortiz, E., The vibrational analysis of the 2700--4800 A absorption system of ClO2 and the vibrational constants of the associated electronic states, J. Mol. Spectrosc., 1957, 1, 1-4, 81, https://doi.org/10.1016/0022-2852(57)90012-7 . [all data]

Richardson, Redding, et al., 1969
Richardson, A.W.; Redding, R.W.; Brand, J.C.D., The 4750 Å band system of chlorine dioxide, J. Mol. Spectrosc., 1969, 29, 1-3, 93, https://doi.org/10.1016/0022-2852(69)90086-1 . [all data]

Sakurai, Clark, et al., 1971
Sakurai, K.; Clark, J.; Broida, H.P., Laser Induced Fluorescence of ClO2, J. Chem. Phys., 1971, 54, 3, 1217, https://doi.org/10.1063/1.1674957 . [all data]

Curl, Abe, et al., 1973
Curl, R.F.; Abe, K.; Bissinger, J.; Bennett, C.; Tittel, F.K., Fluorescence spectrum of chlorine dioxide induced by the 4765 Å argon-ion laser line, J. Mol. Spectrosc., 1973, 48, 1, 72, https://doi.org/10.1016/0022-2852(73)90136-7 . [all data]

Hamada, Merer, et al., 1981
Hamada, Y.; Merer, A.J.; Michielsen, S.; Rice, S.A., Rotational analysis of bands at the long-wavelength end of the electronic transition of ClO2, J. Mol. Spectrosc., 1981, 86, 2, 499, https://doi.org/10.1016/0022-2852(81)90297-6 . [all data]

Wahner, Tyndall, et al., 1987
Wahner, A.; Tyndall, G.S.; Ravishankara, A.R., Absorption cross sections for symmetric chlorine dioxide as a function of temperature in the wavelength range 240-480nm, J. Phys. Chem., 1987, 91, 11, 2734, https://doi.org/10.1021/j100295a018 . [all data]

Richard, Wickham-Jones, et al., 1989
Richard, E.C.; Wickham-Jones, C.T.; Vaida, V., Fourier transform ultraviolet absorption spectroscopy of jet-cooled chlorine dioxide, J. Phys. Chem., 1989, 93, 17, 6346, https://doi.org/10.1021/j100354a016 . [all data]

Ruhl, Jefferson, et al., 1990
Ruhl, E.; Jefferson, A.; Vaida, V., Photodissociation of chlorine oxide (OClO): REMPI study of primary photofragments, J. Phys. Chem., 1990, 94, 7, 2990, https://doi.org/10.1021/j100370a047 . [all data]

Richard and Vaida, 1991
Richard, E.C.; Vaida, V., The direct near ultraviolet absorption spectrum of the A 2A2←X 2B1 transition of jet-cooled chlorine dioxide, J. Chem. Phys., 1991, 94, 1, 153, https://doi.org/10.1063/1.460389 . [all data]

Richard and Vaida, 1991, 2
Richard, E.C.; Vaida, V., The photochemical dynamics of the A 2A2 state of chlorine dioxide, J. Chem. Phys., 1991, 94, 1, 163, https://doi.org/10.1063/1.460390 . [all data]

Bishenden, Haddock, et al., 1991
Bishenden, E.; Haddock, J.; Donaldson, D.J., Resonance-enhanced multiphoton ionization (REMPI) measurement of atomic chlorine(2P3/2 and 2P1/2) produced in the photolysis of chlorine dioxide (OClO) from 355 to 370 nm, J. Phys. Chem., 1991, 95, 6, 2113, https://doi.org/10.1021/j100159a006 . [all data]

Davis and Lee, 1992
Davis, H.F.; Lee, Y.T., Dynamics and mode specificity in OClO photodissociation, J. Phys. Chem., 1992, 96, 14, 5681, https://doi.org/10.1021/j100193a005 . [all data]

Bishenden and Donaldson, 1993
Bishenden, E.; Donaldson, D.J., Mode-specific chemical branching ratios in the photodissociation of OClO, J. Chem. Phys., 1993, 99, 4, 3129, https://doi.org/10.1063/1.465167 . [all data]

Bishenden and Donaldson, 1994
Bishenden, E.; Donaldson, D.J., Two primary product channels in OClO photodissociation near 360 nm, J. Chem. Phys., 1994, 101, 11, 9565, https://doi.org/10.1063/1.468445 . [all data]

Davis and Lee, 1996
Davis, H.F.; Lee, Y.T., Photodissociation dynamics of OClO, J. Chem. Phys., 1996, 105, 18, 8142, https://doi.org/10.1063/1.472700 . [all data]

Lim, Kim, et al., 1999
Lim, S.-M.; Kim, T.-S.; -Il Lim, G.; Kim, D.K.; Choi, Y.S., Fluorescence Excitation Spectrum of OClO (Ã, J. Phys. Chem. A, 1999, 103, 13, 2097, https://doi.org/10.1021/jp9847888 . [all data]

Liu, Lai, et al., 1998
Liu, C.-P.; Lai, L.-H.; Lee, Y.-Y.; Hung, S.-C.; Lee, Y.-P., Absorption and fluorescence of OClO A [sup 2]A[sub 2]--X [sup 2]B[sub 1] in solid Ne, Ar, and Kr. I. Vibrationally unrelaxed A→X emission, J. Chem. Phys., 1998, 109, 3, 978, https://doi.org/10.1063/1.476668 . [all data]

Wang and Wang, 2000
Wang, W.-B.; Wang, L.-S., The electronic structure and electron affinities of higher chlorine oxide radicals ClO[sub x] (x=2--4) from photoelectron spectroscopy of ClO[sub x][sup -] anions, J. Chem. Phys., 2000, 113, 24, 10928, https://doi.org/10.1063/1.1326067 . [all data]

Hedberg, 1951
Hedberg, K., The Infrared Spectra of Cl2O and ClO2, J. Chem. Phys., 1951, 19, 4, 509, https://doi.org/10.1063/1.1748266 . [all data]

Nielsen and Woltz, 1952
Nielsen, A.H.; Woltz, P.J.H., The Infrared Spectrum of Chlorine Dioxide, J. Chem. Phys., 1952, 20, 12, 1878, https://doi.org/10.1063/1.1700331 . [all data]

Esposito, Stedl, et al., 1999
Esposito, A.P.; Stedl, T.; Jonsson, H.; Reid, P.J.; Peterson, K.A., Absorption and Resonance Raman Study of the, J. Phys. Chem. A, 1999, 103, 12, 1748, https://doi.org/10.1021/jp984368i . [all data]

Uehara and Hakuta, 1978
Uehara, H.; Hakuta, K., Laser magnetic resonance spectra of ClO2 tuned by the avoidance of zeeman level crossing, Chem. Phys. Lett., 1978, 58, 2, 287, https://doi.org/10.1016/0009-2614(78)80295-4 . [all data]

Hamada and Tsuboi, 1980
Hamada, Y.; Tsuboi, T., High-resolution infrared spectrum of chlorine dioxide: The ν1 fundamental band, J. Mol. Spectrosc., 1980, 83, 2, 373, https://doi.org/10.1016/0022-2852(80)90062-4 . [all data]

Jones and Brown, 1981
Jones, H.; Brown, J.M., Infrared-microwave double-resonance spectroscopy of the ClO2 radical: A textbook example, J. Mol. Spectrosc., 1981, 90, 1, 222, https://doi.org/10.1016/0022-2852(81)90343-X . [all data]

Tanaka and Tanaka, 1983
Tanaka, K.; Tanaka, T., CO2 and N2O laser Stark spectroscopy of the ν1 band of the ClO2 radical, J. Mol. Spectrosc., 1983, 98, 2, 425, https://doi.org/10.1016/0022-2852(83)90253-9 . [all data]

Ortigoso, Escribano, et al., 1991
Ortigoso, J.; Escribano, R.; Burkholder, J.B.; Howard, C.J.; Lafferty, W.J., High-resolution infrared spectrum of the ν1 band of OClO, J. Mol. Spectrosc., 1991, 148, 2, 346, https://doi.org/10.1016/0022-2852(91)90392-N . [all data]

Ortigoso, Escribano, et al., 1992
Ortigoso, J.; Escribano, R.; Burkholder, J.B.; Lafferty, W.J., Intensities and dipole moment derivatives of the fundamental bands of 35ClO2 and an intensity analysis of the ν1 band, J. Mol. Spectrosc., 1992, 156, 1, 89, https://doi.org/10.1016/0022-2852(92)90095-6 . [all data]

Muller and Willner, 1993
Muller, H.S.P.; Willner, H., Vibrational and electronic spectra of chlorine dioxide, OClO, and chlorine superoxide ClOO, isolated in cryogenic matrixes, J. Phys. Chem., 1993, 97, 41, 10589, https://doi.org/10.1021/j100143a013 . [all data]

Arkell and Schwager, 1967
Arkell, A.; Schwager, I., None, J. Am. Chem. Soc., 1967, 89, 24, 5999, https://doi.org/10.1021/ja01000a001 . [all data]

Tevault, Chi, et al., 1974
Tevault, D.E.; Chi, F.K.; Andrews, L., Infrared spectrum and vibrational potential function of the chlorite anion in the matrix-isolated M+ClO2- species, J. Mol. Spectrosc., 1974, 51, 3, 450, https://doi.org/10.1016/0022-2852(74)90200-8 . [all data]

Chi and Andrews, 1974
Chi, F.K.; Andrews, L., Resonance Raman and fluorescence spectra of chlorine dioxide in argon, krypton, xenon, and nitrogen matrices at 16 K, J. Mol. Spectrosc., 1974, 52, 1, 82, https://doi.org/10.1016/0022-2852(74)90007-1 . [all data]

Hamada and Tsuboi, 1979
Hamada, Y.; Tsuboi, M., High Resolution Infrared Spectrum of Chlorine Dioxide: The v2 Fundamental Band, Bull. Chem. Soc. Japan, 1979, 52, 2, 383, https://doi.org/10.1246/bcsj.52.383 . [all data]

Ortigoso, Escribano, et al., 1992, 2
Ortigoso, J.; Escribano, R.; Burkholder, J.B.; Lafferty, W.J., The ν2 and ν3 bands and ground state constants of OClO, J. Mol. Spectrosc., 1992, 155, 1, 25, https://doi.org/10.1016/0022-2852(92)90546-Z . [all data]

Jacox, 1994
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules, American Chemical Society, Washington, DC, 1994, 464. [all data]

Jacox, 1998
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement A, J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017 . [all data]

Jacox, 2003
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement B, J. Phys. Chem. Ref. Data, 2003, 32, 1, 1-441, https://doi.org/10.1063/1.1497629 . [all data]

Curl, Kinsey, et al., 1961
Curl, R.F., Jr.; Kinsey, J.L.; Baker, J.G.; Baird, J.C.; Bird, G.R.; Heidelberg, R.F.; Sugden, T.M.; Jenkins, D.R.; Kenney, C.N., Microwave Spectrum of Chlorine Dioxide. I. Rotational Assignment, Phys. Rev., 1961, 121, 4, 1119, https://doi.org/10.1103/PhysRev.121.1119 . [all data]

Curl, Heidelberg, et al., 1962
Curl, R.F.; Heidelberg, R.F.; Kinsey, J.L., Microwave Spectrum of Chlorine Dioxide. II. Analysis of Hyperfine Structure and the Spectrum of Cl35O16O18, Phys. Rev., 1962, 125, 6, 1993, https://doi.org/10.1103/PhysRev.125.1993 . [all data]

Curl, 1962
Curl, R.F., Jr., Microwave Spectrum of Chlorine Dioxide. III. Interpretation of the Hyperfine Coupling Constants Obtained in Terms of the Electronic Structure, J. Chem. Phys., 1962, 37, 4, 779, https://doi.org/10.1063/1.1733160 . [all data]

Tolles, Kinsey, et al., 1962
Tolles, W.M.; Kinsey, J.L.; Curl, R.F., Jr.; Heidelberg, R.F., Microwave Spectrum of Chlorine Dioxide. V. The Stark and Zeeman Effects, J. Chem. Phys., 1962, 37, 5, 927, https://doi.org/10.1063/1.1733247 . [all data]

Pillai and Curl, 1962
Pillai, M.G.K.; Curl, R.F., Microwave Spectrum of Chlorine Dioxide. IV. Determination of Centrifugal Distortion Effects and Potential Constants, J. Chem. Phys., 1962, 37, 12, 2921, https://doi.org/10.1063/1.1733118 . [all data]

Coon, Cesani, et al., 1963
Coon, J.B.; Cesani, F.A.; Loyd, C.M., Evidence for a double-minimum potential in an excited state of ClO2, Discuss. Faraday Soc., 1963, 35, 118, https://doi.org/10.1039/df9633500118 . [all data]

McDonald and Innes, 1978
McDonald, P.A.; Innes, K.K., Assignment of the mechanism of predissociation of the ClO2 molecule by analysis of single-rotational-level lifetimes, Chem. Phys. Lett., 1978, 59, 3, 562, https://doi.org/10.1016/0009-2614(78)85042-8 . [all data]

Michielsen, Merer, et al., 1981
Michielsen, S.; Merer, A.J.; Rice, S.A.; Novak, F.A.; Freed, K.A.; Hamada, Y.J., A study of the rotational state dependence of predissociation of a polyatomic molecule: The case of ClO2, J. Chem. Phys., 1981, 74, 6, 3089, https://doi.org/10.1063/1.441520 . [all data]

Tanoura, Chiba, et al., 1982
Tanoura, M.; Chiba, K.; Tanaka, K.; Tanaka, T., Microwave spectroscopy of chlorine dioxide, J. Mol. Spectrosc., 1982, 95, 1, 157, https://doi.org/10.1016/0022-2852(82)90245-4 . [all data]

Brockmann and Haaks, 1986
Brockmann, K.J.; Haaks, D., Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, and M. Rosenbluh, ed(s)., Plenum, NY, 1986, 411-415. [all data]

Miyazaki, Tanoura, et al., 1986
Miyazaki, K.; Tanoura, M.; Tanaka, K.; Tanaka, T., Microwave spectrum of chlorine dioxide in excited vibrational states, J. Mol. Spectrosc., 1986, 116, 2, 435, https://doi.org/10.1016/0022-2852(86)90138-4 . [all data]

Peterson and Werner, 1992
Peterson, K.A.; Werner, H., Multireference configuration interaction calculations of the low-lying electronic states of ClO2, J. Chem. Phys., 1992, 96, 12, 8948, https://doi.org/10.1063/1.462253 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References