Phenol
- Formula: C6H6O
- Molecular weight: 94.1112
- IUPAC Standard InChIKey: ISWSIDIOOBJBQZ-UHFFFAOYSA-N
- CAS Registry Number: 108-95-2
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Carbolic acid; Baker's P and S Liquid and Ointment; Benzenol; Hydroxybenzene; Izal; Monohydroxybenzene; Monophenol; Oxybenzene; Phenic acid; Phenyl alcohol; Phenyl hydrate; Phenyl hydroxide; Phenylic acid; Phenylic alcohol; PhOH; Benzene, hydroxy-; Acide carbolique; Baker's P & S liquid & Ointment; Fenol; Fenolo; NCI-C50124; Paoscle; Phenole; Carbolsaure; NA 2821; Phenol alcohol; Phenol, molten; Rcra waste number U188; UN 1671; UN 2312; UN 2821; Phenic alcohol; NSC 36808; Campho-Phenique Cold Sore Gel (Salt/Mix); Campho-Phenique Gel (Salt/Mix); Campho-Phenique Liquid (Salt/Mix)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -96.36 ± 0.59 | kJ/mol | Ccb | Cox, 1961 | ALS |
ΔfH°gas | -96.44 ± 0.63 | kJ/mol | Ccb | Andon, Biddiscombe, et al., 1960 | ALS |
ΔfH°gas | -94.2 | kJ/mol | N/A | Parks, Manchester, et al., 1954 | Value computed using ΔfHsolid° value of -162.8±1.0 kj/mol from Parks, Manchester, et al., 1954 and ΔsubH° value of 68.6 kj/mol from Cox, 1961.; DRB |
ΔfH°gas | -95.3 | kJ/mol | N/A | Badoche, 1941 | Value computed using ΔfHsolid° value of -163.9 kj/mol from Badoche, 1941 and ΔsubH° value of 68.6 kj/mol from Cox, 1961.; DRB |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
33.91 | 50. | Kudchadker S.A., 1978 | Recommended S(T) and Cp(T) values are in close agreement with statistical values calculated by [ Evans J.C., 1960, Green J.H.S., 1961]. Entropy value calculated by [ Sarin V.N., 1973] agrees well with the third-law entropy at 298.15 K but not at 400 K. Statistical values calculated by [ Ramaswamy V., 1970] seem to be erroneous.; GT |
41.38 | 100. | ||
54.19 | 150. | ||
69.65 | 200. | ||
94.61 | 273.15 | ||
103.22 | 298.15 | ||
103.86 | 300. | ||
135.79 | 400. | ||
161.91 | 500. | ||
182.48 | 600. | ||
198.84 | 700. | ||
212.14 | 800. | ||
223.19 | 900. | ||
232.49 | 1000. | ||
240.41 | 1100. | ||
247.20 | 1200. | ||
253.06 | 1300. | ||
258.12 | 1400. | ||
262.52 | 1500. |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C6H5O- + H+ = C6H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1462. ± 10. | kJ/mol | AVG | N/A | Average of 6 out of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1432. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; Shiner, Vorner, et al., 1986: tautomer acidities ΔHacid(ortho) = 343.9±3.1 kcal, para = 340.1±2 kcal. However, Capponi, Gut, et al., 1999 based on aq. soln. results, imply 18 and 14 kcal/mol difference.; value altered from reference due to change in acidity scale; B |
ΔrG° | 1426. ± 7.9 | kJ/mol | CIDC | Angel and Ervin, 2004 | gas phase; B |
ΔrG° | 1437. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; B |
ΔrG° | >1429. ± 7.5 | kJ/mol | H-TS | Richardson, Stephenson, et al., 1975 | gas phase; B |
By formula: Cl- + C6H6O = (Cl- • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 109. ± 8.4 | kJ/mol | TDAs | French, Ikuta, et al., 1982 | gas phase; B,M |
ΔrH° | 109. ± 8.4 | kJ/mol | TDEq | Cummings, French, et al., 1977 | gas phase; Re-anchored to data in French, Ikuta, et al., 1982.; B |
ΔrH° | 115. | kJ/mol | PHPMS | Kebarle, 1977 | gas phase; M |
ΔrH° | 111. | kJ/mol | PHPMS | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
ΔrH° | 81.2 ± 8.4 | kJ/mol | TDAs | Yamdagni and Kebarle, 1971 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 109. | J/mol*K | PHPMS | French, Ikuta, et al., 1982 | gas phase; M |
ΔrS° | 100. | J/mol*K | PHPMS | Kebarle, 1977 | gas phase; M |
ΔrS° | 100. | J/mol*K | N/A | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
ΔrS° | 64.9 | J/mol*K | PHPMS | Yamdagni and Kebarle, 1971 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 80.3 ± 8.4 | kJ/mol | TDAs | French, Ikuta, et al., 1982 | gas phase; B |
ΔrG° | 77.4 ± 8.4 | kJ/mol | TDEq | Cummings, French, et al., 1977 | gas phase; Re-anchored to data in French, Ikuta, et al., 1982.; B |
ΔrG° | 61.9 ± 8.4 | kJ/mol | TDAs | Yamdagni and Kebarle, 1971 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
66.5 | 423. | PHPMS | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
By formula: F- + C6H6O = (F- • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 173. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 140. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
By formula: Br- + C6H6O = (Br- • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 87.0 ± 7.5 | kJ/mol | IMRE | Paul and Kebarle, 1990 | gas phase; ΔGaff at 423 K; B,M |
ΔrH° | 82.0 | kJ/mol | PHPMS | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
ΔrS° | 96. | J/mol*K | N/A | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 46.4 ± 4.2 | kJ/mol | IMRE | Paul and Kebarle, 1990 | gas phase; ΔGaff at 423 K; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
46.4 | 423. | PHPMS | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
46.4 | 423. | PHPMS | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
By formula: I- + C6H6O = (I- • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 72.4 ± 7.5 | kJ/mol | IMRE | Paul and Kebarle, 1990 | gas phase; ΔGaff at 423 K; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88. | J/mol*K | N/A | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 35. ± 4.2 | kJ/mol | IMRE | Paul and Kebarle, 1990 | gas phase; ΔGaff at 423 K; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
35. | 423. | PHPMS | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
By formula: C2H3O2- + C6H6O = (C2H3O2- • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 109. ± 4.2 | kJ/mol | N/A | Meot-Ner and Sieck, 1986 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 79.1 ± 6.7 | kJ/mol | TDAs | Meot-Ner and Sieck, 1986 | gas phase; B |
By formula: Na+ + C6H6O = (Na+ • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 102. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
ΔrH° | 98. ± 3. | kJ/mol | CIDT | Armentrout and Rodgers, 2000 | RCD |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
69.9 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
By formula: C6H6O + C12H18O = C9H12O + C9H12O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -0.7 ± 1.0 | kJ/mol | Eqk | Nesterova, Pimerzin, et al., 1989 | liquid phase; Isomerization; ALS |
ΔrH° | -0.7 ± 1.0 | kJ/mol | Eqk | Nesterova, Pilyshchikov, et al., 1983 | liquid phase; GC; ALS |
C22H20O2Ti (cr) + 2( • 5.55) (solution) = 2 (cr) + (cr)
By formula: C22H20O2Ti (cr) + 2(HCl • 5.55H2O) (solution) = 2C6H6O (cr) + C10H10Cl2Ti (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -5.8 ± 2.5 | kJ/mol | RSC | Dias, Salema, et al., 1981 | Please also see Calhorda, Carrondo, et al., 1986.; MS |
(solution) + C5H11BrMg (solution) = C6H5BrMgO (solution) + (solution)
By formula: C6H6O (solution) + C5H11BrMg (solution) = C6H5BrMgO (solution) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -202.5 ± 4.2 | kJ/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
C20H32Zr (solution) + (solution) = C26H36OZr (solution) + (g)
By formula: C20H32Zr (solution) + C6H6O (solution) = C26H36OZr (solution) + H2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -132.6 ± 1.7 | kJ/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
C26H36OZr (solution) + (solution) = C32H40O2Zr (solution) + (g)
By formula: C26H36OZr (solution) + C6H6O (solution) = C32H40O2Zr (solution) + H2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -86.6 ± 2.9 | kJ/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
By formula: C8H8O2 + H2O = C6H6O + C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -28.7 ± 0.2 | kJ/mol | Cm | Wadso, 1960 | liquid phase; Heat of hydrolysis; ALS |
By formula: C6H6O + C14H22O = C10H14O + C10H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -2.6 ± 1.1 | kJ/mol | Eqk | Nesterova, Pimerzin, et al., 1989 | liquid phase; Isomerization; ALS |
+ C18H30O = +
By formula: C6H6O + C18H30O = C14H22O + C10H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -1.7 ± 1.5 | kJ/mol | Eqk | Nesterova, Pimerzin, et al., 1989 | liquid phase; Isomerization; ALS |
By formula: C6H6O + C14H22O = C10H14O + C10H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -3.2 ± 1.9 | kJ/mol | Eqk | Nesterova, Pimerzin, et al., 1989 | liquid phase; Isomerization; ALS |
By formula: C6H6O + C14H22O = 2C10H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -1.3 ± 2.1 | kJ/mol | Eqk | Nesterova, Pimerzin, et al., 1989 | liquid phase; Isomerization; ALS |
C6H5NaO (cr) + ( • 552) (solution) = (cr) + (cr)
By formula: C6H5NaO (cr) + (HCl • 552H2O) (solution) = C6H6O (cr) + ClNa (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -78.0 ± 5.7 | kJ/mol | RSC | Leal, Pires de Matos, et al., 1991 | MS |
By formula: C6H6O + C14H22O = C10H14O + C10H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.08 ± 0.71 | kJ/mol | Eqk | Pil'shchikov, Nesterova, et al., 1981 | liquid phase; ALS |
By formula: C6H6O + C14H22O = C10H14O + C10H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -0. ± 4. | kJ/mol | Eqk | Pil'shchikov, Nesterova, et al., 1981 | liquid phase; ALS |
By formula: (Li+ • C6H6O) + C6H6O = (Li+ • 2C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 115. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Na+ • C6H6O) + C6H6O = (Na+ • 2C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 82. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Cs+ • C6H6O) + C6H6O = (Cs+ • 2C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Rb+ • C6H6O) + C6H6O = (Rb+ • 2C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (K+ • C6H6O) + C6H6O = (K+ • 2C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 68. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
(cr) + C10H11ClZr (cr) = C16H15ClOZr (cr) + (g)
By formula: C6H6O (cr) + C10H11ClZr (cr) = C16H15ClOZr (cr) + H2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -77.7 ± 4.2 | kJ/mol | RSC | Diogo, Simoni, et al., 1993 | MS |
By formula: C6H6O + C14H22O = 2C10H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -12.8 ± 0.54 | kJ/mol | Eqk | Pil'shchikov, Nesterova, et al., 1981 | liquid phase; ALS |
By formula: C6H6O + C14H22O = C10H14O + C10H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.0 | kJ/mol | Eqk | Pil'shchikov, Nesterova, et al., 1981 | liquid phase; ALS |
C6H5NaO (cr) + (l) = (cr) + (cr)
By formula: C6H5NaO (cr) + H2O (l) = C6H6O (cr) + HNaO (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.4 ± 3.6 | kJ/mol | RSC | Leal, Pires de Matos, et al., 1991 | MS |
By formula: Li+ + C6H6O = (Li+ • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 178. ± 17. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Cs+ + C6H6O = (Cs+ • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Rb+ + C6H6O = (Rb+ • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: K+ + C6H6O = (K+ • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: C10H14O = C4H8 + C6H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 77.8 | kJ/mol | Cm | Kukui, Potolovskii, et al., 1973 | liquid phase; ALS |
By formula: C10H14O = C4H8 + C6H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 82.8 | kJ/mol | Cm | Kukui, Potolovskii, et al., 1973 | liquid phase; ALS |
By formula: C10H14O = C6H6O + C4H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 71.0 ± 2.1 | kJ/mol | Eqk | Verevkin, 1982 | gas phase; ALS |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C6H6O+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 8.49 ± 0.02 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 817.3 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 786.3 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C5H5+ | 12.96 ± 0.10 | CO+H | DER | Fraser-Monteiro, Fraser-Monteiro, et al., 1984 | LBLHLM |
C5H5+ | 14.2 ± 0.2 | CO+H | EI | Tajima and Tsuchiya, 1973 | LLK |
C5H5+ | 14.25 | CO+H | EI | Occolowitz and White, 1968 | RDSH |
C5H6+ | 11.4 ± 0.1 | CO | TRPI | Lifshitz and Malinovich, 1984 | LBLHLM |
C5H6+ | 12.5 ± 0.1 | CO | EI | Henion and Kingston, 1973 | LLK |
C5H6+ | 11.67 | CO | EI | Howe and Williams, 1969 | RDSH |
C5H6+[c-C5H6] | 11.59 ± 0.10 | CO | PIPECO | Fraser-Monteiro, Fraser-Monteiro, et al., 1984 | T = 0K; LBLHLM |
De-protonation reactions
By formula: C6H5O- + H+ = C6H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1462. ± 10. | kJ/mol | AVG | N/A | Average of 6 out of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1432. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; Shiner, Vorner, et al., 1986: tautomer acidities ΔHacid(ortho) = 343.9±3.1 kcal, para = 340.1±2 kcal. However, Capponi, Gut, et al., 1999 based on aq. soln. results, imply 18 and 14 kcal/mol difference.; value altered from reference due to change in acidity scale; B |
ΔrG° | 1426. ± 7.9 | kJ/mol | CIDC | Angel and Ervin, 2004 | gas phase; B |
ΔrG° | 1437. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; B |
ΔrG° | >1429. ± 7.5 | kJ/mol | H-TS | Richardson, Stephenson, et al., 1975 | gas phase; B |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Br- + C6H6O = (Br- • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 87.0 ± 7.5 | kJ/mol | IMRE | Paul and Kebarle, 1990 | gas phase; ΔGaff at 423 K; B,M |
ΔrH° | 82.0 | kJ/mol | PHPMS | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
ΔrS° | 96. | J/mol*K | N/A | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 46.4 ± 4.2 | kJ/mol | IMRE | Paul and Kebarle, 1990 | gas phase; ΔGaff at 423 K; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
46.4 | 423. | PHPMS | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
46.4 | 423. | PHPMS | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
By formula: C2H3O2- + C6H6O = (C2H3O2- • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 109. ± 4.2 | kJ/mol | N/A | Meot-Ner and Sieck, 1986 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 79.1 ± 6.7 | kJ/mol | TDAs | Meot-Ner and Sieck, 1986 | gas phase; B |
By formula: Cl- + C6H6O = (Cl- • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 109. ± 8.4 | kJ/mol | TDAs | French, Ikuta, et al., 1982 | gas phase; B,M |
ΔrH° | 109. ± 8.4 | kJ/mol | TDEq | Cummings, French, et al., 1977 | gas phase; Re-anchored to data in French, Ikuta, et al., 1982.; B |
ΔrH° | 115. | kJ/mol | PHPMS | Kebarle, 1977 | gas phase; M |
ΔrH° | 111. | kJ/mol | PHPMS | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
ΔrH° | 81.2 ± 8.4 | kJ/mol | TDAs | Yamdagni and Kebarle, 1971 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 109. | J/mol*K | PHPMS | French, Ikuta, et al., 1982 | gas phase; M |
ΔrS° | 100. | J/mol*K | PHPMS | Kebarle, 1977 | gas phase; M |
ΔrS° | 100. | J/mol*K | N/A | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
ΔrS° | 64.9 | J/mol*K | PHPMS | Yamdagni and Kebarle, 1971 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 80.3 ± 8.4 | kJ/mol | TDAs | French, Ikuta, et al., 1982 | gas phase; B |
ΔrG° | 77.4 ± 8.4 | kJ/mol | TDEq | Cummings, French, et al., 1977 | gas phase; Re-anchored to data in French, Ikuta, et al., 1982.; B |
ΔrG° | 61.9 ± 8.4 | kJ/mol | TDAs | Yamdagni and Kebarle, 1971 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
66.5 | 423. | PHPMS | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
By formula: Cs+ + C6H6O = (Cs+ • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Cs+ • C6H6O) + C6H6O = (Cs+ • 2C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: F- + C6H6O = (F- • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 173. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 140. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
By formula: I- + C6H6O = (I- • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 72.4 ± 7.5 | kJ/mol | IMRE | Paul and Kebarle, 1990 | gas phase; ΔGaff at 423 K; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88. | J/mol*K | N/A | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 35. ± 4.2 | kJ/mol | IMRE | Paul and Kebarle, 1990 | gas phase; ΔGaff at 423 K; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
35. | 423. | PHPMS | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
By formula: K+ + C6H6O = (K+ • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (K+ • C6H6O) + C6H6O = (K+ • 2C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 68. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Li+ + C6H6O = (Li+ • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 178. ± 17. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Li+ • C6H6O) + C6H6O = (Li+ • 2C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 115. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Na+ + C6H6O = (Na+ • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 102. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
ΔrH° | 98. ± 3. | kJ/mol | CIDT | Armentrout and Rodgers, 2000 | RCD |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
69.9 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
By formula: (Na+ • C6H6O) + C6H6O = (Na+ • 2C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 82. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Rb+ + C6H6O = (Rb+ • C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Rb+ • C6H6O) + C6H6O = (Rb+ • 2C6H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Cox, 1961
Cox, J.D.,
The heats of combustion of phenol and the three cresols,
Pure Appl. Chem., 1961, 2, 125-128. [all data]
Andon, Biddiscombe, et al., 1960
Andon, R.J.L.; Biddiscombe, D.P.; Cox, J.D.; Handley, R.; Harrop, D.; Herington, E.F.G.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds. Part I. Preparation and physical properties of pure phenol, cresols, and xylenols,
J. Chem. Soc., 1960, 5246-5254. [all data]
Parks, Manchester, et al., 1954
Parks, G.S.; Manchester, K.E.; Vaughan, L.M.,
Heats of combustion and formation of some alcohols, phenols, and ketones,
J. Chem. Phys., 1954, 22, 2089-2090. [all data]
Badoche, 1941
Badoche, M.,
No 19. - Chaleurs de combustion du phenol, du-m-cresol et del leurs ethers; par M. Marius BADOCHE.,
Bull. Soc. Chim. Fr., 1941, 8, 212-220. [all data]
Kudchadker S.A., 1978
Kudchadker S.A.,
Ideal gas thermodynamic properties of phenol and cresols,
J. Phys. Chem. Ref. Data, 1978, 7, 417-423. [all data]
Evans J.C., 1960
Evans J.C.,
The vibrational spectra phenol and phenol-OD,
Spectrochim. Acta, 1960, 16, 1382-1392. [all data]
Green J.H.S., 1961
Green J.H.S.,
The thermodynamic properties of organic oxygen compounds. II. Vibrational assignment and calculated thermodynamic properties of phenol,
J. Chem. Soc., 1961, 2236-2241. [all data]
Sarin V.N., 1973
Sarin V.N.,
Thermodynamic properties in the gaseous state of certain monosubstituted benzenes,
Thermochim. Acta, 1973, 6, 39-46. [all data]
Ramaswamy V., 1970
Ramaswamy V.,
Thermo data for n-alkyl phenols,
Hydrocarbon Process., 1970, 49, 217-218. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Shiner, Vorner, et al., 1986
Shiner, C.S.; Vorner, P.E.; Kass, S.R.,
Gas phase acidities and heats of formation of 2,4- and 2,5- cyclohexadien-1-one, the keto tautomers of phenol,
J. Am. Chem. Soc., 1986, 108, 5699. [all data]
Capponi, Gut, et al., 1999
Capponi, M.; Gut, I.G.; Hellrung, B.; Persy, G.; Wirz, J.,
Ketonization equilibria of phenol in aqueous solution,
Can. J. Chem., 1999, 77, 5-6, 605-613, https://doi.org/10.1139/v99-048
. [all data]
Angel and Ervin, 2004
Angel, L.A.; Ervin, K.M.,
Competitive threshold collision-induced dissociation: Gas-phase acidity and O-H bond dissociation enthalpy of phenol,
J. Phys. Chem. A, 2004, 108, 40, 8346-8352, https://doi.org/10.1021/jp0474529
. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Richardson, Stephenson, et al., 1975
Richardson, J.H.; Stephenson, L.M.; Brauman, J.I.,
Photodetachment of electrons from phenoxides and thiophenoxide,
J. Am. Chem. Soc., 1975, 97, 2967. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Cummings, French, et al., 1977
Cummings, J.B.; French, M.A.; Kebarle, P.,
Effect of charge delocalization on hydrogen bonding to negative ions and solvation of negative ions. Substituted phenols and phenoxide ions,
J. Am. Chem. Soc., 1977, 99, 6999. [all data]
Kebarle, 1977
Kebarle, P.,
Ion Thermochemistry and Solvation from Gas Phase Ion Equilibria,
Ann. Rev. Phys. Chem., 1977, 28, 1, 445, https://doi.org/10.1146/annurev.pc.28.100177.002305
. [all data]
Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P.,
Stabilities in the Gas Phase of the Hydrogen Bonded Complexes, YC6H4OH-X-, of Substituted Phenols, YC6H4OH, with the Halide Anions X-(Cl-, Br-),
Can. J. Chem., 1990, 68, 11, 2070, https://doi.org/10.1139/v90-316
. [all data]
Yamdagni and Kebarle, 1971
Yamdagni, R.; Kebarle, P.,
Hydrogen bonding energies to negative ions from gas phase measurements of ionic equilibria,
J. Am. Chem. Soc., 1971, 93, 7139. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R.,
Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study,
J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034
. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P.,
Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-,
J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014
. [all data]
Meot-Ner and Sieck, 1986
Meot-Ner, M.; Sieck, L.W.,
The ionic hydrogen bond and ion solvation. 5. OH...O- bonds. Gas phase solvation and clustering of alkoxide and carboxylate anions,
J. Am. Chem. Soc., 1986, 108, 7525. [all data]
Amunugama and Rodgers, 2002
Amunugama, R.; Rodgers, M.T.,
The influence of substituents on cation-pi interactions. 4. Absolute binding energies of alkali metal cation - Phenol complexes determined by threshold collision-induced dissociation and theoretical studies,
J. Phys. Chem. A, 2002, 106, 42, 9718, https://doi.org/10.1021/jp0211584
. [all data]
Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T.,
An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory,
J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n
. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Nesterova, Pimerzin, et al., 1989
Nesterova, T.N.; Pimerzin, A.A.; Rozhnov, A.M.; Karlina, T.N.,
Equilibria for the isomerization of (secondary-alkyl)phenols and cyclohexylphenols,
J. Chem. Thermodyn., 1989, 21, 385-395. [all data]
Nesterova, Pilyshchikov, et al., 1983
Nesterova, T.N.; Pilyshchikov, V.A.; Rozhnov, A.M.,
Chemical Equilibrium in the system isopropylphenols-phenol,
J. Appl. Chem. USSR, 1983, 56, 1257-1261. [all data]
Dias, Salema, et al., 1981
Dias, A.R.; Salema, M.S.; Martinho Simões, J.A.,
J. Organometal. Chem., 1981, 222, 69. [all data]
Calhorda, Carrondo, et al., 1986
Calhorda, M.J.; Carrondo, M.A.A.F.C.T.; Dias, A.R.; Domingos, A.M.T.S.; Martinho Simões, J.A.; Teixeira, C.,
Organometallics, 1986, 5, 660. [all data]
Holm, 1983
Holm, T.,
Acta Chem. Scand. B, 1983, 37, 797. [all data]
Schock and Marks, 1988
Schock, L.E.; Marks, T.J.,
J. Am. Chem. Soc., 1988, 110, 7701. [all data]
Wadso, 1960
Wadso, I.,
Heats of hydrolysis of phenyl acetate and phenyl thiolacetate,
Acta Chem. Scand., 1960, 14, 561-565. [all data]
Leal, Pires de Matos, et al., 1991
Leal, J.P.; Pires de Matos, A.; Martinho Simões, J.A.,
J. Organometal. Chem., 1991, 403, 1. [all data]
Pil'shchikov, Nesterova, et al., 1981
Pil'shchikov, V.A.; Nesterova, T.N.; Rozhnov, A.M.,
Equilibrium in the system phenol-tert-butylphenols,
J. Appl. Chem. USSR, 1981, 54, 1765-1769. [all data]
Diogo, Simoni, et al., 1993
Diogo, H.P.; Simoni, J.A.; Minas da Piedade, M.E.; Dias, A.R.; Martinho Simões, J.A.,
J. Am. Chem. Soc., 1993, 115, 2764. [all data]
Kukui, Potolovskii, et al., 1973
Kukui, N.M.; Potolovskii, L.A.; Vasileva, V.N.,
Thermochemical and thermodynamic calculation of the alkylation of phenol by normal α-olefins,
Khim. Tekhnol. Topl. Masel, 1973, 18, 10-13. [all data]
Verevkin, 1982
Verevkin, S.P.,
Study of equilibrium of tert-butylphenol dealkylation in the gas phase,
Termodin. Organ. Soedin., 1982, 67-70. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Lipert and Colson, 1990
Lipert, R.J.; Colson, S.D.,
Accurate ionization potentials of phenol and phenol-(H2O) from the electric field dependence of the pump-probe photoionization threshold,
J. Chem. Phys., 1990, 92, 3240. [all data]
Fuke, Yoshiuchi, et al., 1984
Fuke, K.; Yoshiuchi, H.; Kaya, K.; Achiba, Y.; Sato, K.; Kimura, K.,
Multiphoton ionization photoelectron spectroscopy and two-color multiphoton ionization threshold spectroscopy on the hydrogen bonded phenol and 7-azaindole in a supersonic jet,
Chem. Phys. Lett., 1984, 108, 179. [all data]
Fraser-Monteiro, Fraser-Monteiro, et al., 1984
Fraser-Monteiro, M.L.; Fraser-Monteiro, L.; de Wit, J.; Baer, T.,
Dissociation dynamics of energy-selected phenol ions,
J. Phys. Chem., 1984, 88, 3622. [all data]
Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H.,
Photoelectron spectra of acenes. Electronic structure and substituent effects,
Pure Appl. Chem., 1983, 55, 289. [all data]
Behan, Johnstone, et al., 1976
Behan, J.M.; Johnstone, R.A.W.; Bentley, T.W.,
An evaluation of empirical methods for calculating the ionization potentials of substituted benzenes,
Org. Mass Spectrom., 1976, 11, 207. [all data]
Maier and Turner, 1973
Maier, J.P.; Turner, D.W.,
Steric inhibition of resonance studied by molecular photoelectron spectroscopy Part 3. Anilines, Phenols and Related Compounds,
J. Chem. Soc. Faraday Trans. 2, 1973, 69, 521. [all data]
Henion and Kingston, 1973
Henion, J.D.; Kingston, D.G.I.,
Mass spectrometry of organic compounds. VII. Energetics of substituent isomerization in diphenyl sulfide and diphenyl ether,
J. Am. Chem. Soc., 1973, 95, 8358. [all data]
Debies and Rabalais, 1973
Debies, T.P.; Rabalais, J.W.,
Photoelectron spectra of substituted benzenes. II. Seven valence electron substituents,
J. Electron Spectrosc. Relat. Phenom., 1973, 1, 355. [all data]
Cooks, Bertrand, et al., 1973
Cooks, R.G.; Bertrand, M.; Beynon, J.H.; Rennekamp, M.E.; Setser, D.W.,
Energy partitioning data as an ion structure probe. Substituted anisoles,
J. Am. Chem. Soc., 1973, 95, 1732. [all data]
Johnstone, Mellon, et al., 1971
Johnstone, R.A.W.; Mellon, F.A.; Ward, S.D.,
On-line computer methods used in conjunction with the measurement of ionization appearance potentials,
Adv. Mass Spectrom., 1971, 5, 334. [all data]
Eland, 1969
Eland, J.H.D.,
Photoelectron spectra of conjugated hydrocarbons and heteromolecules,
Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 471. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Vilesov and Terenin, 1957
Vilesov, F.I.; Terenin, A.N.,
The photoionization of the vapors of certain organic compounds,
Dokl. Akad. Nauk SSSR, 1957, 115, 744, In original 539. [all data]
Ballard, Jones, et al., 1987
Ballard, R.E.; Jones, J.; Read, D.; Inchley, A.; Cranmer, M.,
He(I) photoelectron studies of liquids and gases,
Chem. Phys. Lett., 1987, 137, 125. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Palmer, Moyes, et al., 1979
Palmer, M.H.; Moyes, W.; Speirs, M.; Ridyard, J.N.A.,
The electronic structure of substituted benzenes; ab initio calculations and photoelectron spectra for phenol, the methyl- and fluoro-derivatives, and the dihydroxybenzenes,
J. Mol. Struct., 1979, 52, 293. [all data]
Kobayashi, 1978
Kobayashi, T.,
A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes,
Phys. Lett., 1978, 69, 105. [all data]
Kobayashi and Nagakura, 1974
Kobayashi, T.; Nagakura, S.,
Photoelectron spectra of substituted benzenes,
Bull. Chem. Soc. Jpn., 1974, 47, 2563. [all data]
Dewar, Ernstbrunner, et al., 1974
Dewar, P.S.; Ernstbrunner, E.; Gilmore, J.R.; Godfrey, M.; Mellor, J.M.,
Conformational analysis of alkyl aryl ethers and alkyl aryl sulphides by photoelectron spectroscopy,
Tetrahedron, 1974, 30, 2455. [all data]
Tajima and Tsuchiya, 1973
Tajima, S.; Tsuchiya, T.,
Energetics consideration of C5H5+ ions produced from various precursors by electron impact,
Bull. Chem. Soc. Jpn., 1973, 46, 3291. [all data]
Occolowitz and White, 1968
Occolowitz, J.L.; White, G.L.,
Energetic considerations in the assignment of some fragment ion structures,
Australian J. Chem., 1968, 21, 997. [all data]
Lifshitz and Malinovich, 1984
Lifshitz, C.; Malinovich, Y.,
Time resolved photoionization mass spectrometry in the millisecond range,
Int. J. Mass Spectrom. Ion Processes, 1984, 60, 99. [all data]
Howe and Williams, 1969
Howe, I.; Williams, D.H.,
Calculation and qualitative predictions of mass spectra. Mono- and paradisubstituted benzenes,
J. Am. Chem. Soc., 1969, 91, 7137. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas IE (evaluated) Recommended ionization energy T Temperature ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.