Titanium dioxide (anatase)


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas-305.43kJ/molReviewChase, 1998Data last reviewed in December, 1973
Quantity Value Units Method Reference Comment
gas,1 bar260.14J/mol*KReviewChase, 1998Data last reviewed in December, 1973

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 4000. to 6000.
A 63.82818
B -4.418178
C 1.080707
D -0.058816
E -5.216235
F -336.0739
G 323.0094
H -305.4324
ReferenceChase, 1998
Comment Data last reviewed in December, 1973

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfliquid-894.05kJ/molReviewChase, 1998Data last reviewed in December, 1973
Quantity Value Units Method Reference Comment
liquid,1 bar72.32J/mol*KReviewChase, 1998Data last reviewed in December, 1973

Liquid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 2130. to 4000.
A 100.4160
B 5.991573×10-8
C -1.796728×10-8
D 1.839876×10-9
E 3.592186×10-8
F -955.6758
G 145.6358
H -894.0539
ReferenceChase, 1998
Comment Data last reviewed in December, 1973

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Vibrational and/or electronic energy levels, References, Notes

Data compiled by: Coblentz Society, Inc.


Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Marilyn E. Jacox

State:   A


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 17593 ± 5 gas A-X 530 571 Wu and Wang, 1997
Wang, Steimle, et al., 2009
Zhuang, Le, et al., 2010
To = 19084 ± 5 Ne A-X 405 524 McIntyre, Thompson, et al., 1971
Garkusha, Nagy, et al., 2008


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 1 Sym. stretch 874 ± 5 gas MPI Zhuang, Le, et al., 2010
1 Sym. stretch 850 T Ne AB Garkusha, Nagy, et al., 2008
2 Bend 185 ± 5 gas MPI Zhuang, Le, et al., 2010
2 Bend 180 T Ne AB Garkusha, Nagy, et al., 2008
b2 3 Asym. stretch 324 H gas MPI Zhuang, Le, et al., 2010

State:   a


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 15800 ± 800 gas Wu and Wang, 1997
To = 15924 ± 5 Ne a-X 509 628 Garkusha, Nagy, et al., 2008


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

Σg+ 1 Sym. stretch 826 ± 5 Ne AB Garkusha, Nagy, et al., 2008

State:   X


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 1 Sym. stretch 959 gas IR LF DeVore and Gallaher, 1983
Wu and Wang, 1997
Zhuang, Le, et al., 2010
1 Sym. stretch 962.0 Ne IR McIntyre, Thompson, et al., 1971
1 Sym. stretch 946.9 Ar IR Chertihin and Andrews, 1995
2 Bend 323 w gas LF Wang, Steimle, et al., 2009
Zhuang, Le, et al., 2010
b2 3 Asym. stretch 944 gas IR DeVore and Gallaher, 1983
3 Asym. stretch 934.8 Ne IR McIntyre, Thompson, et al., 1971
Garkusha, Nagy, et al., 2008
3 Asym. stretch 917.1 Ar IR Chertihin and Andrews, 1995

Additional references: Jacox, 1998, page 176; Jacox, 2003, page 103; Brunken, Mullere, et al., 2008; Kania, Hermanns, et al., 2011

Notes

wWeak
H(1/2)(2ν)
TTentative assignment or approximate value
oEnergy separation between the v = 0 levels of the excited and electronic ground states.

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Wu and Wang, 1997
Wu, H.; Wang, L.-S., Electronic Structures of Titanium Oxide Clusters: TiOy (y=1-3) and (TiO2)n (n=1-4), J. Phys. Chem., 1997, 107, 20, 8221, https://doi.org/10.1063/1.475026 . [all data]

Wang, Steimle, et al., 2009
Wang, H.; Steimle, T.C.; Apetrei, C.; Maier, J.P., Characterization of the X 1A1 and à 1B2 electronic states of titanium dioxide, TiO2, Phys. Chem. Chem. Phys., 2009, 11, 15, 2649, https://doi.org/10.1039/b821849h . [all data]

Zhuang, Le, et al., 2010
Zhuang, X.; Le, A.; Steimle, T.C.; Nagarajan, R.; Gupta, V.; Maier, J.P., Visible spectrum of titanium dioxide, Phys. Chem. Chem. Phys., 2010, 12, 45, 15018, https://doi.org/10.1039/c0cp00861c . [all data]

McIntyre, Thompson, et al., 1971
McIntyre, N.S.; Thompson, K.R.; Weltner, W., Jr., Spectroscopy of titanium oxide and titanium dioxide molecules in inert matrices at 4.deg.K, J. Phys. Chem., 1971, 75, 21, 3243, https://doi.org/10.1021/j100690a008 . [all data]

Garkusha, Nagy, et al., 2008
Garkusha, I.; Nagy, A.; Guennoun, Z.; Maier, J.P., Electronic absorption spectrum of titanium dioxide in neon matrices, Chem. Phys., 2008, 353, 1-3, 115, https://doi.org/10.1016/j.chemphys.2008.08.003 . [all data]

DeVore and Gallaher, 1983
DeVore, T.C.; Gallaher, T.N., High Temp. Sci., 1983, 16, 269. [all data]

Chertihin and Andrews, 1995
Chertihin, G.V.; Andrews, L., Reactions of Laser Ablated Titanium, Zirconium, and Hafnium Atoms with Oxygen Molecules in Condensing Argon, J. Phys. Chem., 1995, 99, 17, 6356, https://doi.org/10.1021/j100017a015 . [all data]

Jacox, 1998
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement A, J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017 . [all data]

Jacox, 2003
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement B, J. Phys. Chem. Ref. Data, 2003, 32, 1, 1-441, https://doi.org/10.1063/1.1497629 . [all data]

Brunken, Mullere, et al., 2008
Brunken, S.; Mullere, H.S.P.; Menten, K.M.; McCarthy, M.C.; Thaddeus, P., The Rotational Spectrum of TiO, Astrophys. J., 2008, 676, 2, 1367, https://doi.org/10.1086/528934 . [all data]

Kania, Hermanns, et al., 2011
Kania, P.; Hermanns, M.; Brunken, S.; Muller, H.S.P.; Giesen, T.F., Millimeter-wave spectroscopy of titanium dioxide, TiO2, J. Mol. Spectrosc., 2011, 268, 1-2, 173, https://doi.org/10.1016/j.jms.2011.04.013 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References