Butane
- Formula: C4H10
- Molecular weight: 58.1222
- IUPAC Standard InChIKey: IJDNQMDRQITEOD-UHFFFAOYSA-N
- CAS Registry Number: 106-97-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: n-Butane; Diethyl; Freon 600; Liquefied petroleum gas; LPG; n-C4H10; Butanen; Butani; Methylethylmethane; UN 1011; A 21; HC 600; HC 600 (hydrocarbon); R 600; R 600 (alkane)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Gas phase ion energetics data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -125.6 ± 0.67 | kJ/mol | Ccb | Pittam and Pilcher, 1972 | ALS |
ΔfH°gas | -127.1 ± 0.67 | kJ/mol | Cm | Prosen, Maron, et al., 1951 | see Prosen and Rossini, 1945; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -2877.5 ± 0.63 | kJ/mol | Ccb | Pittam and Pilcher, 1972 | Corresponding ΔfHºgas = -125.6 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°gas | -2876.2 ± 0.63 | kJ/mol | Cm | Prosen, Maron, et al., 1951 | see Prosen and Rossini, 1945; Corresponding ΔfHºgas = -127.0 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°gas | -2878.3 ± 0.63 | kJ/mol | Ccb | Rossini, 1934 | Corresponding ΔfHºgas = -124.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
38.07 | 50. | Chen S.S., 1975 | Recommended values are in good agreement with those calculated by [ Pitzer K.S., 1944, Pitzer K.S., 1946].; GT |
55.35 | 100. | ||
67.32 | 150. | ||
76.44 | 200. | ||
92.30 | 273.15 | ||
98.49 | 298.15 | ||
98.95 | 300. | ||
124.77 | 400. | ||
148.66 | 500. | ||
169.28 | 600. | ||
187.02 | 700. | ||
202.38 | 800. | ||
215.73 | 900. | ||
227.36 | 1000. | ||
237.48 | 1100. | ||
246.27 | 1200. | ||
253.93 | 1300. | ||
260.58 | 1400. | ||
266.40 | 1500. |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
110.58 | 344.9 | Dailey B.P., 1943 | Other experimental values of heat capacity [ Sage B.H., 1937] are believed to be less reliable, see [ Chen S.S., 1975].; GT |
114.93 | 359.6 | ||
121.75 | 387.5 | ||
137.99 | 451.6 | ||
154.01 | 521.0 | ||
162.26 | 561.3 | ||
170.33 | 600.8 | ||
185.85 | 692.6 |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.53 ± 0.02 | eV | N/A | N/A | L |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.57 | EST | Luo and Pacey, 1992 | LL |
10.53 ± 0.10 | EVAL | Lias, 1982 | LBLHLM |
10.35 ± 0.15 | EQ | Mautner(Meot-Ner), Sieck, et al., 1981 | LLK |
10.6 ± 0.1 | PE | Bieri, Burger, et al., 1977 | LLK |
10.61 | EQ | Lias, Ausloos, et al., 1976 | LLK |
10.87 ± 0.05 | EI | Flesch and Svec, 1973 | LLK |
10.89 | EI | Matsumoto, Taniguchi, et al., 1970 | RDSH |
10.67 | PI | Dewar and Worley, 1969 | RDSH |
10.55 ± 0.05 | PI | Chupka and Berkowitz, 1967 | RDSH |
10.50 | PI | Al-Joboury and Turner, 1964 | RDSH |
10.55 ± 0.05 | PI | Steiner, Giese, et al., 1961 | RDSH |
10.63 ± 0.03 | PI | Watanabe, 1957 | RDSH |
11.09 | PE | Kimura, Katsumata, et al., 1981 | Vertical value; LLK |
11.2 | PE | Bieri and Asbrink, 1980 | Vertical value; LLK |
11.2 ± 0.1 | PE | Bieri, Burger, et al., 1977 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
CH3+ | 29.7 ± 0.2 | ? | EI | Olmsted, Street, et al., 1964 | RDSH |
C2H4+ | ~11.65 | C2H6 | PI | Chupka and Berkowitz, 1967 | RDSH |
C2H5+ | 12.55 | C2H5 | EI | Omura, 1961 | RDSH |
C3H5+ | 13.40 | ? | EI | Omura, 1961 | RDSH |
C3H6+ | 11.15 | CH4 | EI | Wolkoff and Holmes, 1978 | LLK |
C3H6+ | 11.06 | CH4 | EI | Matsumoto, Taniguchi, et al., 1970 | RDSH |
C3H6+ | 11.18 | CH4 | PI | Chupka and Berkowitz, 1967 | RDSH |
C3H6+ | 11.16 ± 0.03 | CH4 | PI | Steiner, Giese, et al., 1961 | RDSH |
C3H7+ | 11.2 | CH3 | EI | Wolkoff and Holmes, 1978 | LLK |
C3H7+ | 11.09 | CH3 | EI | Matsumoto, Taniguchi, et al., 1970 | RDSH |
C3H7+ | 11.10 ± 0.05 | CH3 | EI | Williams and Hamill, 1968 | RDSH |
C3H7+ | 11.18 | CH3 | PI | Chupka and Berkowitz, 1967 | RDSH |
C3H7+ | 11.19 ± 0.02 | CH3 | PI | Steiner, Giese, et al., 1961 | RDSH |
C4H9+ | 10.9 ± 0.1 | H- | PI | Chupka and Berkowitz, 1967 | RDSH |
C4H9+ | 11.7 ± 0.1 | H | PI | Chupka and Berkowitz, 1967 | RDSH |
H3+ | 31. ± 1. | ? | EI | Fuchs, 1972 | LLK |
De-protonation reactions
C4H9- + =
By formula: C4H9- + H+ = C4H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1739. ± 8.4 | kJ/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase; The HOF(Et(Me)N.) in Seetula, Russell, et al., 1990 gives BDE(N-H) = 99 kcal/mol, ca. 5 kcal/mol too strong; B |
ΔrH° | 1745. ± 20. | kJ/mol | Bran | Peerboom, Rademaker, et al., 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1703. ± 8.8 | kJ/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase; The HOF(Et(Me)N.) in Seetula, Russell, et al., 1990 gives BDE(N-H) = 99 kcal/mol, ca. 5 kcal/mol too strong; B |
ΔrG° | 1709. ± 21. | kJ/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase; B |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty
- gas; IFS66V (Bruker); 3-Term B-H Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Boxcar Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Happ Genzel Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); NB Strong Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Triangular Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution
Vibrational and/or electronic energy levels
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Takehiko Shimanouchi
Trans form Symmetry: C2h Symmetry Number σ = 2
Sym. | No | Approximate | Selected Freq. | Infrared | Raman | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
Species | type of mode | Value | Rating | Value | Phase | Value | Phase | |||
ag | 1 | CH3 d-str | 2965 | C | ia | 2965 | sln. | SF(ν20) | ||
ag | 2 | CH3 s-str | 2872 | C | ia | 2872 | sln. | |||
ag | 3 | CH2 s-str | 2853 | D | ia | 2853 | sln. | |||
ag | 4 | CH3 d-deform | 1460 | C | ia | 1460 | sln. | SF(ν22) | ||
ag | 5 | CH2 scis | 1442 | D | ia | 1442 | sln. | |||
ag | 6 | CH3 s-deform | 1382 | C | ia | CF | ||||
ag | 7 | CH2 wag | 1361 | D | ia | CF | ||||
ag | 8 | CH3 rock | 1151 | C | ia | 1151 | sln. | |||
ag | 9 | CC str | 1059 | C | ia | 1059 | sln. | |||
ag | 10 | CC str | 837 | C | ia | 837 | sln. | |||
ag | 11 | CCC deform | 425 | C | ia | 425 | sln. | |||
au | 12 | CH3 d-str | 2968 | C | 2968 S | solid solid | ia | SF(ν27) | ||
au | 13 | CH2 a-str | 2930 | C | 2930 S | solid solid | ia | |||
au | 14 | CH3 d-deform | 1461 | C | 1461 S | solid solid | ia | SF(ν30, )OV(ν30,ν31) | ||
au | 15 | CH2 twist | 1257 | C | 1257 W | sln. | ia | |||
au | 16 | CH3 rock | 948 | B | 948 M | solid solid | ia | |||
au | 17 | CH2 rock | 731 | B | 731 S | solid solid | ia | |||
au | 18 | CH3-CH2 torsion | 194 | E | ia | CF | ||||
au | 19 | CH2-CH2 torsion | 102 | E | ia | CF | ||||
bg | 20 | CH3 d-str | 2965 | C | ia | 2965 | sln. | SF(ν1) | ||
bg | 21 | CH2 a-str | 2912 | C | ia | 2912 | sln. | |||
bg | 22 | CH3 d-deform | 1460 | C | ia | 1460 | sln. | SF(ν4) | ||
bg | 23 | CH2 twist | 1300 | C | ia | 1300 | sln. | |||
bg | 24 | CH3 rock | 1180 | D | ia | CF | ||||
bg | 25 | CH2 rock | 803 | D | ia | CF | ||||
bg | 26 | CH3-CH2 torsion | 225 | E | ia | CF | ||||
bu | 27 | CH3 d-str | 2968 | C | 2968 S | solid solid | ia | SF(ν12) | ||
bu | 28 | CH3 s-str | 2870 | C | 2870 S | solid solid | ia | |||
bu | 29 | CH2 s-str | 2853 | E | ia | SF(ν3) | ||||
bu | 30 | CH3 d-deform | 1461 | C | 1461 S | solid solid | ia | SF(ν14, )OV(ν14,ν31) | ||
bu | 31 | CH2 scis | 1461 | C | 1461 S | solid solid | ia | OV(ν14,ν30) | ||
bu | 32 | CH3 s-deform | 1379 | B | 1379 M | solid solid | ia | |||
bu | 33 | CH2 wag | 1290 | B | 1290 W | solid solid | ia | |||
bu | 34 | CC str | 1009 | C | 1009 W | sln. | ia | |||
bu | 35 | CH3 rock | 964 | B | 964 M | solid solid | ia | |||
bu | 36 | CCC deform | 271 | E | ia | CF | ||||
Source: Shimanouchi, 1972
Gauche form Symmetry: C2 Symmetry Number σ = 2
Sym. | No | Approximate | Selected Freq. | Infrared | Raman | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
Species | type of mode | Value | Rating | Value | Phase | Value | Phase | |||
a | 1 | CH3 d-str | 2968 | C | Deduced from the corresponding frequencies of the trans form | |||||
a | 2 | CH3 d-str | 2968 | C | Deduced from the corresponding frequencies of the trans form | |||||
a | 3 | CH2 a-str | 2920 | D | Deduced from the corresponding frequencies of the trans form | |||||
a | 4 | CH3 s-str | 2870 | C | Deduced from the corresponding frequencies of the trans form | |||||
a | 5 | CH2 s-str | 2860 | D | Deduced from the corresponding frequencies of the trans form | |||||
a | 6 | CH3 d-deform | 1460 | C | Deduced from the corresponding frequencies of the trans form | |||||
a | 7 | CH3 d-deform | 1460 | C | Deduced from the corresponding frequencies of the trans form | |||||
a | 8 | CH2 scis | 1450 | D | Deduced from the corresponding frequencies of the trans form | |||||
a | 9 | CH3 s-deform | 1380 | C | Deduced from the corresponding frequencies of the trans form | |||||
a | 10 | CH2 wag | 1350 | C | 1350 W | liq. | ||||
a | 11 | CH2 twist | 1281 | C | 1281 | liq. | ||||
a | 12 | CH3 rock | 1168 | D | 1168 | liq. | ||||
a | 13 | CC str | 1077 | D | 1077 | liq. | ||||
a | 14 | CH3 rock | 980 | D | 980 | liq. | OV(ν32) | |||
a | 15 | CC str | 827 | D | 827 | liq. | ||||
a | 16 | CH2 rock | 788 | C | 788 M | liq. | 789 | liq. | ||
a | 17 | CCC deform | 320 | C | 320 | liq. | ||||
a | 18 | CH3-CH2 torsion | 201 | E | CF | |||||
a | 19 | CH2-CH2 torsion | 101 | E | CF | |||||
b | 20 | CH3 d-str | 2968 | C | Deduced from the corresponding frequencies of the trans form | |||||
b | 21 | CH3 d-str | 2968 | C | Deduced from the corresponding frequencies of the trans form | |||||
b | 22 | CH2 a-str | 2920 | D | Deduced from the corresponding frequencies of the trans form | |||||
b | 23 | CH3 s-str | 2870 | C | Deduced from the corresponding frequencies of the trans form | |||||
b | 24 | CH2 s-str | 2860 | D | Deduced from the corresponding frequencies of the trans form | |||||
b | 25 | CH3 d-deform | 1460 | C | Deduced from the corresponding frequencies of the trans form | |||||
b | 26 | CH3 d-deform | 1460 | C | Deduced from the corresponding frequencies of the trans form | |||||
b | 27 | CH2 scis | 1450 | D | Deduced from the corresponding frequencies of the trans form | |||||
b | 28 | CH3 s-deform | 1380 | C | Deduced from the corresponding frequencies of the trans form | |||||
b | 29 | CH2 wag | 1370 | D | 1370 VW | liq. | ||||
b | 30 | CH2 twist | 1233 | C | 1233 W | liq. | ||||
b | 31 | CC str | 1133 | D | 1133 M | liq. | ||||
b | 32 | CH3 rock | 980 | D | 980 | liq. | OV(ν14,ν30) | |||
b | 33 | CH3 rock | 955 | C | 955 | liq. | ||||
b | 34 | CH2 rock | 747 | C | 747 S | liq. | ||||
b | 35 | CCC deform | 469 | D | CF | |||||
b | 36 | CH3-CH2 torsion | 197 | E | CF | |||||
Source: Shimanouchi, 1972
Notes
S | Strong |
M | Medium |
W | Weak |
VW | Very weak |
ia | Inactive |
CF | Calculated frequency |
SF | Calculation shows that the frequency approximately equals that of the vibration indicated in the parentheses. |
OV | Overlapped by band indicated in parentheses. |
B | 1~3 cm-1 uncertainty |
C | 3~6 cm-1 uncertainty |
D | 6~15 cm-1 uncertainty |
E | 15~30 cm-1 uncertainty |
References
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Vibrational and/or electronic energy levels, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Pittam and Pilcher, 1972
Pittam, D.A.; Pilcher, G.,
Measurements of heats of combustion by flame calorimetry. Part 8.-Methane, ethane, propane, n-butane and 2-methylpropane,
J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229. [all data]
Prosen, Maron, et al., 1951
Prosen, E.J.; Maron, F.W.; Rossini, F.D.,
Heats of combustion, formation, and insomerization of ten C4 hydrocarbons,
J. Res. NBS, 1951, 46, 106-112. [all data]
Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D.,
Heats of formation and combustion of 1,3-butadiene and styrene,
J. Res. NBS, 1945, 34, 59-63. [all data]
Rossini, 1934
Rossini, F.D.,
Calorimetric determination of the heats of combustion of ethane, propane, normal butane, and normal pentane,
J. Res. NBS, 1934, 12, 735-750. [all data]
Chen S.S., 1975
Chen S.S.,
Ideal gas thermodynamic properties and isomerization of n-butane and isobutane,
J. Phys. Chem. Ref. Data, 1975, 4, 859-869. [all data]
Pitzer K.S., 1944
Pitzer K.S.,
Thermodynamics of gaseous paraffins. Specific heat and related properties,
Ind. Eng. Chem., 1944, 36, 829-831. [all data]
Pitzer K.S., 1946
Pitzer K.S.,
The entropies and related properties of branched paraffin hydrocarbons,
Chem. Rev., 1946, 39, 435-447. [all data]
Dailey B.P., 1943
Dailey B.P.,
Heat capacities and hindered rotation in n-butane and isobutane,
J. Am. Chem. Soc., 1943, 65, 44-46. [all data]
Sage B.H., 1937
Sage B.H.,
Phase equilibria in hydrocarbon systems. XX. Isobaric heat capacity of gaseous propane, n-butane, isobutane, and n-pentane,
Ind. Eng. Chem., 1937, 29, 1309-1314. [all data]
Luo and Pacey, 1992
Luo, Y.-R.; Pacey, P.D.,
Effects of alkyl substitution on ionization energies of alkanes and haloalkanes and on heats of formation of their molecular cations. Part 2. Alkanes and chloro-, bromo- and iodoalkanes,
Int. J. Mass Spectrom. Ion Processes, 1992, 112, 63. [all data]
Lias, 1982
Lias, S.G.,
Thermochemical information from ion-molecule rate constants,
Ion Cyclotron Reson. Spectrom. 1982, 1982, 409. [all data]
Mautner(Meot-Ner), Sieck, et al., 1981
Mautner(Meot-Ner), M.; Sieck, L.W.; Ausloos, P.,
Ionization of normal alkanes: Enthalpy, entropy, structural, and isotope effects,
J. Am. Chem. Soc., 1981, 103, 5342. [all data]
Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P.,
Valence ionization enrgies of hydrocarbons,
Helv. Chim. Acta, 1977, 60, 2213. [all data]
Lias, Ausloos, et al., 1976
Lias, S.G.; Ausloos, P.; Horvath, Z.,
Charge transfer reactions in alkane and cycloalkane systems. Estimated ionization potentials,
Int. J. Chem. Kinet., 1976, 8, 725. [all data]
Flesch and Svec, 1973
Flesch, G.D.; Svec, H.J.,
Fragmentation reactions in the mass spectrometer for C2-C5 alkanes,
J. Chem. Soc. Faraday Trans. 2, 1973, 69, 1187. [all data]
Matsumoto, Taniguchi, et al., 1970
Matsumoto, A.; Taniguchi, S.; Hayakawa, T.,
Studies of dissociation of hydrogen and n-butane metastable ions by a pulsed ion source
in Recent Developments in Mass Spectrometry, ed. K. Ogata and T. Hayakawa, Univ. Park Press, Baltimore, MD, 1970, 820. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Chupka and Berkowitz, 1967
Chupka, W.A.; Berkowitz, J.,
Photoionization of ethane, propane, and n-butane with mass analysis,
J. Chem. Phys., 1967, 47, 2921. [all data]
Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W.,
Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials,
J. Chem. Soc., 1964, 4434. [all data]
Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G.,
Photoionization of alkanes. Dissociation of excited molecular ions,
J. Chem. Phys., 1961, 34, 189. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L.,
30.4-nm He(II) photoelectron spectra of organic molecules,
J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]
Olmsted, Street, et al., 1964
Olmsted, J., III; Street, K., Jr.; Newton, A.S.,
Excess-kinetic-energy ions in organic mass spectra,
J. Chem. Phys., 1964, 40, 2114. [all data]
Omura, 1961
Omura, I.,
Mass spectra at low ionizing voltage and bond dissociation energies of molecular ions from hydrocarbons,
Bull. Chem. Soc. Japan, 1961, 34, 1227. [all data]
Wolkoff and Holmes, 1978
Wolkoff, P.; Holmes, J.L.,
Fragmentations of alkane molecular ions,
J. Am. Chem. Soc., 1978, 100, 7346. [all data]
Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H.,
Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer,
J. Chem. Phys., 1968, 49, 4467. [all data]
Fuchs, 1972
Fuchs, R.,
Die kinetische energie ionisierter molekulfragmente VII. H3 ALS fragmention bei der elektronenstrossionisierung von kohlenwasserstoffen,
Int. J. Mass Spectrom. Ion Processes, 1972, 8, 193. [all data]
DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R.,
The Gas Phase Acidities of the Alkanes,
J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003
. [all data]
Seetula, Russell, et al., 1990
Seetula, J.A.; Russell, J.J.; Gutman, D.,
Kinetics and Thermochemistry of the Reactions of Alkyl Radicals with HI: A Reconciliation of the Alkyl Radical Heats of Formation,
J. Am. Chem. Soc., 1990, 112, 4, 1347, https://doi.org/10.1021/ja00160a009
. [all data]
Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M.,
Stabilization of Cycloalkyl Carbanions in the Gas Phase,
Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608
. [all data]
Shimanouchi, 1972
Shimanouchi, T.,
Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Vibrational and/or electronic energy levels, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas IE (evaluated) Recommended ionization energy ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.