Pyrazine

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Gas phase ion energetics data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas196.1 ± 1.5kJ/molCcbTjebbes, 1962 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C4H4N2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
Proton affinity (review)877.1kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity847.0kJ/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
>-0.065004ETSNenner and Schultz, 1975Pyrazine. EA estimated as 0.124 eV based on soln phase electrochemical correlations. G3MP2B3 calculations put EA ca. 0 eV; B

Ionization energy determinations

IE (eV) Method Reference Comment
9.0PEPiancastelli, Keller, et al., 1983LBLHLM
9.28 ± 0.01SScheps, Florida, et al., 1972LLK
9.29PEGleiter, Heilbronner, et al., 1972LLK
9.216PEAsbrink, Lindholm, et al., 1970RDSH
9.28 ± 0.05PEEland, 1969RDSH
9.36PEDewar and Worley, 1969RDSH
9.29 ± 0.01PIYencha and El-Sayed, 1968RDSH
9.29 ± 0.03SParkin and Innes, 1965RDSH
9.63PESuffolk, 1974Vertical value; LLK
9.63PEGleiter, Heilbronner, et al., 1970Vertical value; RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H2N+15.25 ± 0.10?EIMomigny, Urbain, et al., 1965RDSH
C3H3N+12.81 ± 0.10HCNEIMomigny, Urbain, et al., 1965RDSH
C4H3N2+13.68 ± 0.10HEIMomigny, Urbain, et al., 1965RDSH

De-protonation reactions

C4H3N2- + Hydrogen cation = Pyrazine

By formula: C4H3N2- + H+ = C4H4N2

Quantity Value Units Method Reference Comment
Δr1643. ± 10.kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Quantity Value Units Method Reference Comment
Δr1604.6 ± 1.7kJ/molN/AWren, Vogelhuber, et al., 2012gas phase; B
Δr1603. ± 8.4kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Coblentz Society, Inc.

Condensed Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Except where noted, spectra from this collection were measured on dispersive instruments, often in carefully selected solvents, and hence may differ in detail from measurements on FTIR instruments or in other chemical environments. More information on the manner in which spectra in this collection were collected can be found here.

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View scan of original (hardcopy) spectrum.

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner COPYRIGHT (C) 1988 by COBLENTZ SOCIETY INC.
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin DOW CHEMICAL COMPANY
Source reference COBLENTZ NO. 5739
Date 1965/11/12
State SOLUTION (10% CCl4 FOR 2.6-7.5, 10% CS2 FOR 7.5-24 MICRON)
Instrument BECKMAN IR-9 (GRATING)
Instrument parameters ORDER CHANGES: 670, 1200, 2000 CM-1
Path length 0.012 CM, 0.012 CM
SPECTRAL CONTAMINATION DUE TO CS2 AROUND 400, 850 AND CCl4 AROUND 1550 CM-1 HAVE BEEN SUBTRACTED
Resolution 2
Sampling procedure TRANSMISSION
Data processing DIGITIZED BY COBLENTZ SOCIETY (BATCH I) FROM HARD COPY
Melting point 53 C
Boiling point 116 C

This IR spectrum is from the Coblentz Society's evaluated infrared reference spectra collection.


References

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Tjebbes, 1962
Tjebbes, J., The heats of combustion and formation of the three diazines and their resonance energies, Acta Chem. Scand., 1962, 16, 916-921. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Nenner and Schultz, 1975
Nenner, I.; Schultz, G.J., Temporary negative ions and electron affinities of benzene and N-heterocyclic molecules: Pyridine, pyridazine, pyrimidine, pyrazine, and s-triazine, J. Chem. Phys., 1975, 62, 1747. [all data]

Piancastelli, Keller, et al., 1983
Piancastelli, M.N.; Keller, P.R.; Taylor, J.W.; Grimm, F.A.; Carlson, T.A., Angular distribution parameter as a function of photon energy for some mono- and diazabenzenes and its use for orbital assignment, J. Am. Chem. Soc., 1983, 105, 4235. [all data]

Scheps, Florida, et al., 1972
Scheps, R.; Florida, D.; Rice, S.A., Comments on the Rydberg spectrum of pyrazine, J. Mol. Spectrosc., 1972, 44, 1. [all data]

Gleiter, Heilbronner, et al., 1972
Gleiter, R.; Heilbronner, E.; Hornung, V., Photoelectron spectra of azabenzenes azanaphthalenes: I. Pyridine, diazines s-triazine and s-tetrazine, Helv. Chim. Acta, 1972, 55, 255. [all data]

Asbrink, Lindholm, et al., 1970
Asbrink, L.; Lindholm, E.; Edqvist, O., Jahn-Teller effect in the vibrational structure of the photoelectron spectrum of benzene, Chem. Phys. Lett., 1970, 5, 609. [all data]

Eland, 1969
Eland, J.H.D., Photoelectron spectra of conjugated hydrocarbons and heteromolecules, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 471. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. II.The ionization potentials of azabenzenes and azanaphthalenes, J. Chem. Phys., 1969, 51, 263. [all data]

Yencha and El-Sayed, 1968
Yencha, A.J.; El-Sayed, M.A., Lowest ionization potentials of some nitrogen heterocyclics, J. Chem. Phys., 1968, 48, 3469. [all data]

Parkin and Innes, 1965
Parkin, J.E.; Innes, K.K., The vacuum ultraviolet spectra of pyrazine, pyrimidine, and pyridazine vapors. Part I. Spectra between 1550 A and 2000 A, J. Mol. Spectry., 1965, 15, 407. [all data]

Suffolk, 1974
Suffolk, R.J., The photoelectron spectra of the perfluorodiazines, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 53. [all data]

Gleiter, Heilbronner, et al., 1970
Gleiter, R.; Heilbronner, E.; Hornung, V., Lone pair interaction in pyridazine, pyrimidine, and pyrazine, Angew. Chem. Int. Ed. Engl., 1970, 9, 901. [all data]

Momigny, Urbain, et al., 1965
Momigny, J.; Urbain, J.; Wankenne, H., Les effets de l'impact electronique sur la pyridine et les diazines isomeres, Bull. Soc. Roy. Sci. Liege, 1965, 34, 337. [all data]

Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A., Carbon Acidities of Aromatic Compounds, J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003 . [all data]

Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B., Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine, J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z . [all data]

Wren, Vogelhuber, et al., 2012
Wren, S.W.; Vogelhuber, K.M.; Garver, J.M.; Kato, S.; Sheps, L.; Bierbaum, V.M.; Lineberger, W.C., C-H Bond Strengths and Acidities in Aromatic Systems: Effects of Nitrogen Incorporation in Mono-, Di-, and Triazines, J. Am. Chem. Soc., 2012, 134, 15, 6584-6595, https://doi.org/10.1021/ja209566q . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, References