Chlorine
- Formula: Cl2
- Molecular weight: 70.906
- IUPAC Standard InChIKey: KZBUYRJDOAKODT-UHFFFAOYSA-N
- CAS Registry Number: 7782-50-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Cl2; Bertholite; Chloor; Chlor; Chlore; Chlorine mol.; Cloro; Molecular chlorine; UN 1017; Diatomic chlorine
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
S°gas,1 bar | 53.3176 ± 0.0024 | cal/mol*K | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
S°gas,1 bar | 53.317 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1982 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1000. | 1000. to 3000. | 3000. to 6000. |
---|---|---|---|
A | 7.899283 | 10.20012 | -10.17053 |
B | 2.922897 | -1.197316 | 9.963122 |
C | -2.883629 | 0.455215 | -1.703354 |
D | 1.048120 | -0.039589 | 0.092696 |
E | -0.038120 | -0.501549 | 24.17400 |
F | -2.589580 | -4.132362 | 31.73136 |
G | 61.90942 | 64.49331 | 63.28537 |
H | 0.000000 | 0.000000 | 0.000000 |
Reference | Chase, 1998 | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in June, 1982 | Data last reviewed in June, 1982 | Data last reviewed in June, 1982 |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
View reactions leading to Cl2+ (ion structure unspecified)
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
2.50 ± 0.20 | NBIE | Bowen, Liesegang, et al., 1983 | B |
2.33004 | ECD | Ayala, Wentworth, et al., 1981 | Vertical Detachment Energy: 1.02 eV; B |
2.40 ± 0.20 | NBIE | Dispert and Lacmann, 1977 | B |
2.32 ± 0.10 | Endo | Hughes, Lifschitz, et al., 1973 | B |
2.45 ± 0.15 | NBIE | Baeda, 1972 | B |
2.46 ± 0.14 | IMRB | Dunkin, Fehsenfeld, et al., 1972 | B |
2.38 ± 0.10 | Endo | Chupka, Berkowitz, et al., 1971 | B |
2.52 ± 0.17 | EIAE | DeCorpo and Franklin, 1971 | From CCl4; B |
1.020 ± 0.050 | NBIE | Hubers, Kleyn, et al., 1976 | Stated electron affinity is the Vertical Detachment Energy; B |
3.20 ± 0.20 | NBIE | Lacmann and Herschbach, 1970 | B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
11.481 ± 0.003 | TE | Yencha, Hopkirk, et al., 1995 | LL |
11.480 ± 0.005 | PE | Van Lonkhuyzen and De Lange, 1984 | LBLHLM |
11.50 | EVAL | Huber and Herzberg, 1979 | LLK |
11.51 ± 0.01 | PE | Potts and Price, 1971 | LLK |
11.48 ± 0.01 | PI | Dibeler, Walker, et al., 1971 | LLK |
11.49 | PE | Cornford, Frost, et al., 1971 | LLK |
11.49 | PE | Anderson, Mamantov, et al., 1971 | LLK |
11.48 ± 0.01 | PI | Watanabe, 1957 | RDSH |
11.49 | PE | Dyke, Josland, et al., 1984 | Vertical value; LBLHLM |
11.59 | PE | Kimura, Katsumata, et al., 1981 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
Cl+ | 11.86 ± 0.04 | Cl- | EI | Frost and McDowell, 1959 | RDSH |
Constants of diatomic molecules
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Klaus P. Huber and Gerhard H. Herzberg
Data collected through September, 1976
Symbol | Meaning |
---|---|
State | electronic state and / or symmetry symbol |
Te | minimum electronic energy (cm-1) |
ωe | vibrational constant – first term (cm-1) |
ωexe | vibrational constant – second term (cm-1) |
ωeye | vibrational constant – third term (cm-1) |
Be | rotational constant in equilibrium position (cm-1) |
αe | rotational constant – first term (cm-1) |
γe | rotation-vibration interaction constant (cm-1) |
De | centrifugal distortion constant (cm-1) |
βe | rotational constant – first term, centrifugal force (cm-1) |
re | internuclear distance (Å) |
Trans. | observed transition(s) corresponding to electronic state |
ν00 | position of 0-0 band (units noted in table) |
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rydberg series joining on to P: v(1-0) = 93200 - R / (n-0.54)2, n = 3...7; fragmentary vibrational structure. | ||||||||||||
↳Iczkowski, Margrave, et al., 1960 | ||||||||||||
Fragments of additional band systems in absorption at v > 65000 cm-1. | ||||||||||||
↳Lee and Walsh, 1959; Iczkowski, Margrave, et al., 1960 | ||||||||||||
Emission continua in the ultraviolet with maxima at 32640, 33810, 34700, 35450, 36220, 36820, 38970, 41140, 42500, 43710, 45500, 46610, 47670; 50060, 51850, 53890 cm-1. 1 | ||||||||||||
↳Asundi and Venkateswarlu, 1947 | ||||||||||||
P | (74405) | (621) | (3) | P ← X | 74436 | |||||||
↳Lee and Walsh, 1959; Iczkowski, Margrave, et al., 1960 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
O | [0.1840] 2 | O → X R | 74018.5 2 Z | |||||||||
↳missing citation | ||||||||||||
N | [0.1193] 2 | N → X R | 73363.3 2 Z | |||||||||
↳missing citation | ||||||||||||
M | (72853) | (636) | (4) | M ← X | 72891 | |||||||
↳Lee and Walsh, 1959 | ||||||||||||
K | (64024) | (460) | K → X 3 | 63975 | ||||||||
↳Haranath and Rao, 1958 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
J | (61638) | (520) | (3) | J ← X | 61618 | |||||||
↳Lee and Walsh, 1959 | ||||||||||||
I | 61438 | 262.3 H | 0.812 | I → B V | 43632 H | |||||||
↳Khanna, 1959 | ||||||||||||
H | (59432) | (510) | H ← X | 59408 | ||||||||
↳Lee and Walsh, 1959 | ||||||||||||
G | (58629) | (208) | G → X 3 R | 58454 | ||||||||
↳Haranath and Rao, 1958 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
F | (58263) | (442) | F ← X | 58205 | ||||||||
↳Lee and Walsh, 1959 | ||||||||||||
E | 57953 | 249.75 H | 0.875 | E ↔ B R | 40140.0 H | |||||||
↳Venkateswarlu and Khanna, 1959; missing citation; Wieland, Tellinghuisen, et al., 1972 | ||||||||||||
D | (53568) | (440) | (1.5) | D ← X | 53508 | |||||||
↳Lee and Walsh, 1959 | ||||||||||||
4 | ||||||||||||
↳Cordes and Sponer, 1930; Lee and Walsh, 1959 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
C 1Πu | 5 | C ↔ X 6 | ||||||||||
↳Gibson and Bayliss, 1933; Sulzer and Wieland, 1952; Jacobs and Giedt, 1965; Clyne and Stedman, 1968; Palmer and Carabetta, 1968 | ||||||||||||
B 3Π0+u | 17809 | 259.5 7 H | 5.3 8 | 0.16256 9 | 0.00212 | -0.000091 | 2.365E-7 10 | 2.4354 | B ↔ X 11 12 R | 17658 7 H | ||
↳missing citation; missing citation; missing citation | ||||||||||||
A (3Π1u) | (17440) | (265) H | (5) | A → X 11 13 | ||||||||
↳Coxon, 1973 | ||||||||||||
A' (3Π2u) | (17160) 14 | (280) 15 | A' → X 16 | |||||||||
↳Bondybey and Fletcher, 1976 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
X 1Σg+ | 0 | 559.72 17 18 | 2.675 | -0.0067 | 0.24399 17 | 0.00149 | -0.0000017 | 1.86E-7 | 1.9879 19 | |||
↳Winkel, Hunt, et al., 1969 | ||||||||||||
Raman sp. | ||||||||||||
↳Holzer, Murphy, et al., 1970; Hochenbleicher and Schrotter, 1971; Hendra and Vear, 1972; Wallart, 1972; Edwards, Good, et al., 1976 |
Notes
1 | They have been interpreted Asundi and Venkateswarlu, 1947 as being due to transitions from stable excited states at 58000 (possibly F), 67700 and 75000 cm-1 to the repulsive states arising from 2P + 2P. The upper states at 67700 and 75000 cm-1 are considered to be 1g states and, therefore, are not observed in absorption from the ground state. |
2 | Upper levels of four extensive resonance series Rao and Venkateswarlu, 1962, Douglas and Hoy, 1975. The v' values are uncertain. The resonance fluorescence spectrum is excited by the Cl I lines at 73983 and 73344 cm-1 in a discharge through Cl2 and involves transitions to ground state levels with v"≤59. The ground state dissociation energy derived from these resonance series Douglas and Hoy, 1975 agrees now very well with the more accurate value from the B-X system. |
3 | These systems [called J-X and H-X by Haranath and Rao, 1958] have not been observed in absorption. For this reason Lee and Walsh, 1959 suggest that they may actually be due to Cl2+. |
4 | Continuous absorption above ~52600 cm-1 at high pressure. |
5 | Continuous absorption with maximum at 30500 cm-1. |
6 | The angular distribution of photo-fragments confirms the assignment of the upper state of the continuum to 1Πu Busch, Mahoney, et al., 1969; see also Child and Bernstein, 1973 and Brith, Rowe, et al., 1975. The B ← X transition, however, contributes to the weak low-frequency region of the continuum; for a discussion of quantitative data see Coxon, 1973. |
7 | Since high resolution data Douglas, Moller, et al., 1963, Clyne and Coxon, 1970 are available only for v≥5, the constants given here are from the low resolution emission work of Clyne and Coxon, 1967 (band heads); they are valid only for 0≤v≤6. For 6<v<22, Richards and Barrow, 1962 give ωe = 259.57, ωexe = 4.753, ωeye = -0.0677, ωeze = +0.00212. The band origin of the 6-0 band is at 18993.79 cm-1. |
8 | Convergence limit 20879.64 ± 0.14 cm-1 Le Roy, 1973, LeRoy, 1974. See LeRoy and Bernstein, 1971, Goscinski, 1972, LeRoy, 1972, Yee and Stone, 1973, LeRoy, 1974 and the review in Le Roy, 1973 for relation of high vibrational levels to long-range internuclear potential. |
9 | These constants are based on bands with 5≤v'≤13 Clyne and Coxon, 1970. Bv values up to v=31 have been determined Douglas, Moller, et al., 1963, Clyne and Coxon, 1970. |
10 | +0.225E-7(v+1/2) + 0.015E-7(v+1/2)2 See 9 . |
11 | Estimated radiative lifetimes in Coxon, 1973. |
12 | Franck-Condon factors from RKR potentia1s Coxon, 1971. For a discussion of the repulsive part of the potential see Child and Bernstein, 1973. |
13 | Two weak progressions, not belonging to B-X and tentatively assigned as 1-v" and 2-v" with v" = 8,9,..., were observed in the chlorine atom recombination spectrum and in the spectrum of the nitrogen trichloride decomposition flame; see references in Coxon, 1973. |
14 | Not observed in the gas phase (see 16); in an Ar matrix this new state is located 650 cm-1 below the B 3Π0+u state. |
15 | Estimated from isotope shifts. |
16 | Long-lived (~76 ms in Ar) emission in rare gas matrices from v=0 of a new low-lying state following excitation into the B or C state; see Bondybey and Fletcher, 1976. |
17 | These constants are based on the lowest six vibrational levels Clyne and Coxon, 1970. The following Dunham coefficients have been derived by Douglas and Hoy, 1975 from a detailed analysis at high resolution of the resonance series excited by the Cl I lines at 1351.7 and 1363.5 ; they represent all levels up to v=40: Y10 = 559.7507 Y01 = 0.244153 Y20 = -2.694271 Y11 = -0.0015163 Y30 = -3.32527E-3 Y21 = -3.9078E-6 Y40 = -2.27337E-4 Y31 = 7.0811E-8 Y50 = -3.92041E-6 Y41 = -5.5875E-9 Y60 = -6.02984E-8 Y02 = -1.9195E-7 Y00 = -0.0351 Y32 = -3.1678E-12 The same authors give, in addition, G(v) and Bv values up to v=59 and have determined an accurate RKR potential function. The long-range portion agrees very well with that predicted from theory. |
18 | 550.8 in liquid Cl2 Wallart, 1972; 554.6 in solid argon Ault, Howard, et al., 1975, Bondybey and Fletcher, 1976. |
19 | Pressure induced IR absorption at 549 cm-1 |
20 | From the convergence limit in B 3Π0+ (see 8). From the same limit Le Roy, 1973 gives D00 = 19997.l4 cm-1 or 2.479349 eV presumably by using a different value for the 2P1/2 - 2P3/2 energy difference in Cl I. Here we used 882.36 cm-1 from Radziemski and Kaufman, 1969. |
21 | From the photoelectron spectrum; average of Cornford, Frost, et al., 1971 and Potts and Price, 1971. Photoionization Watanabe, Nakayama, et al., 1962, in agreement with the Rydberg series, yields 11.48 eV. |
References
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A.,
CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Bowen, Liesegang, et al., 1983
Bowen, K.H.; Liesegang, G.W.; Sanders, R.A.; Herschbach, D.W.,
Electron Attachment to Molecular Clusters by Collisional Charge Transfer,
J. Phys. Chem., 1983, 87, 4, 557-565, https://doi.org/10.1021/j100227a009
. [all data]
Ayala, Wentworth, et al., 1981
Ayala, J.A.; Wentworth, W.E.; Chen, E.C.M.,
Electron attachment to halogens,
J. Phys. Chem., 1981, 85, 768. [all data]
Dispert and Lacmann, 1977
Dispert, H.; Lacmann, K.,
Chemiionization in alkali-halogen reactions: Evidence for ion formation by alkali dimers,
Chem. Phys. Lett., 1977, 47, 533. [all data]
Hughes, Lifschitz, et al., 1973
Hughes, B.M.; Lifschitz, C.; Tiernan, T.O.,
Electron affinities from endothermic negative-ion charge-transfer reactions. III. NO, NO2, S2, CS2, Cl2, Br2, I2, and C2H,
J. Chem. Phys., 1973, 59, 3162. [all data]
Baeda, 1972
Baeda, A.P.M.,
The adiabatic electron affinities of Cl2, Br2, I2, IBr, NO2, and O2,
Physica, 1972, 59, 541. [all data]
Dunkin, Fehsenfeld, et al., 1972
Dunkin, D.B.; Fehsenfeld, F.C.; Ferguson, F.E.,
Thermal energy rate constants for the reactions NO2- + Cl2 → Cl2-, Cl2- + NO2 Ü Cl-, HS- + NO2 Ü NO2-, HS- + Cl2 Ü Cl2-, and S- + NO2 Ü NO2-,
Chem. Phys. Lett., 1972, 15, 257. [all data]
Chupka, Berkowitz, et al., 1971
Chupka, W.A.; Berkowitz, J.; Gutman, D.,
Electron Affinities of Halogen Diatomic Molecules as Determined by Endoergic Charge Exchange,
J. Chem. Phys., 1971, 55, 6, 2724, https://doi.org/10.1063/1.1676487
. [all data]
DeCorpo and Franklin, 1971
DeCorpo, J.J.; Franklin, J.L.,
Electron affinities of the halogen molecules by dissociative electron attachment,
J. Chem. Phys., 1971, 54, 1885. [all data]
Hubers, Kleyn, et al., 1976
Hubers, M.M.; Kleyn, A.W.; Los, J.,
Ion pair formation in alkali-halogen collisions at high velocities,
Chem. Phys., 1976, 17, 303. [all data]
Lacmann and Herschbach, 1970
Lacmann, K.; Herschbach, D.R.,
Collisional Excitation and Ionization of K Atoms by Diatomic Molecules: Role of Ion-pair States,
Chem. Phys. Lett., 1970, 6, 2, 106, https://doi.org/10.1016/0009-2614(70)80144-0
. [all data]
Yencha, Hopkirk, et al., 1995
Yencha, A.J.; Hopkirk, A.; Hiraya, A.; Donovan, R.J.; Goode, J.G.; Maier, R.R.J.; King, G.C.; Kvaran, A.,
Threshold photoelectron spectroscopy of Cl2 and Br2 up to 35 eV,
J. Phys. Chem., 1995, 99, 7231. [all data]
Van Lonkhuyzen and De Lange, 1984
Van Lonkhuyzen, H.; De Lange, C.A.,
High-resolution UV photoelectron spectroscopy of diatomic halogens,
Chem. Phys., 1984, 89, 313. [all data]
Huber and Herzberg, 1979
Huber, K.P.; Herzberg, G.,
Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules,, Van Nostrand Reinhold Co., 1979, ,1. [all data]
Potts and Price, 1971
Potts, A.W.; Price, W.C.,
Photoelectron spectra of the halogens and mixed halides ICI and lBr,
J. Chem. Soc. Faraday Trans., 1971, 67, 1242. [all data]
Dibeler, Walker, et al., 1971
Dibeler, V.H.; Walker, J.A.; McCulloh, K.E.; Rosenstock, H.M.,
Effect of hot bands on the ionization threshold of some diatomic halogen molecules,
Intern. J. Mass Spectrom. Ion Phys., 1971, 7, 209. [all data]
Cornford, Frost, et al., 1971
Cornford, A.B.; Frost, D.C.; McDowell, C.A.; Ragle, J.L.; Stenhouse, I.A.,
Photoelectron spectra of the halogens,
J. Chem. Phys., 1971, 54, 2651. [all data]
Anderson, Mamantov, et al., 1971
Anderson, C.P.; Mamantov, G.; Bull, W.E.; Grimm, F.A.; Carver, J.C.; Carlson, T.A.,
Photoelectron spectrum of chlorine monofluoride,
Chem. Phys. Lett., 1971, 12, 137. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Dyke, Josland, et al., 1984
Dyke, J.M.; Josland, G.D.; Snijders, J.G.; Boerrigter, P.M.,
Ionization energies of the diatomic halogens and interhalogens studied with relativistic hartree-fock-slater calculations,
Chem. Phys., 1984, 91, 419. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Frost and McDowell, 1959
Frost, D.C.; McDowell, C.A.,
Recent electron impact studies on simple molecules (O2, Cl2, I2),
Advan. Mass Spectrom., 1959, 1, 413. [all data]
Iczkowski, Margrave, et al., 1960
Iczkowski, R.P.; Margrave, J.L.; Green, J.W.,
Absorption spectrum of chlorine in the vacuum ultraviolet,
J. Chem. Phys., 1960, 33, 1261. [all data]
Lee and Walsh, 1959
Lee, J.; Walsh, A.D.,
The vacuum ultra-violet absorption spectra of the halogen molecules,
Trans. Faraday Soc., 1959, 55, 1281. [all data]
Asundi and Venkateswarlu, 1947
Asundi, R.K.; Venkateswarlu, P.,
Spectra of the Halogens, I2, Br2 and Cl2,
Indian J. Phys., 1947, 21, 101-118. [all data]
Haranath and Rao, 1958
Haranath, P.B.V.; Rao, P.T.,
Band spectra of iodine, chlorine, and bromine in the spectral region 2400-1400 A,
J. Mol. Spectrosc., 1958, 2, 428. [all data]
Khanna, 1959
Khanna, B.N.,
Emission spectrum of chlorine excited in the presence of argon,
Proc. Indian Acad. Sci. Sect. A, 1959, 49, 293-301. [all data]
Venkateswarlu and Khanna, 1959
Venkateswarlu, P.; Khanna, B.N.,
Emission spectrum of chlorine excited in the presence of argon. Part I. The band system in the region 2600-2390 Å,
Proc. Indian Acad. Sci. Sect. A, 1959, 49, 117-127. [all data]
Wieland, Tellinghuisen, et al., 1972
Wieland, K.; Tellinghuisen, J.B.; Nobs, A.,
The band systems E → B(4000-4360 Å) and F → X(2530-2740 Å) of 127I2 and 129I2, and the corresponding system E = B of Br2 and Cl2,
J. Mol. Spectrosc., 1972, 41, 69. [all data]
Cordes and Sponer, 1930
Cordes, H.; Sponer, H.,
Die molekulabsorption des chlors, broms, jodchlorids und jodbromids im aubersten ultraviolett,
Z. Phys., 1930, 63, 334. [all data]
Gibson and Bayliss, 1933
Gibson, G.E.; Bayliss, N.S.,
Variation with temperature of the continuous absorption spectrum of diatomic molecules: Part I. Experimental, the absorption spectrum of chlorine,
Phys. Rev., 1933, 44, 188. [all data]
Sulzer and Wieland, 1952
Sulzer, P.; Wieland, K.,
Intensitatsverteilung eines kontinuierlichen Absorptions-spectrums in Abhangigkeit von Temperatur und Wellenzahl,
Helv. Phys. Acta, 1952, 25, 653-676. [all data]
Jacobs and Giedt, 1965
Jacobs, T.A.; Giedt, R.R.,
Absorption coefficients of Cl2 at high temperatures,
J. Quant. Spectrosc. Radiat. Transfer, 1965, 5, 457. [all data]
Clyne and Stedman, 1968
Clyne, M.A.A.; Stedman, D.H.,
Recombination of ground-state halogen atoms. Part 1. Radiative recombination of chlorine atoms,
Trans. Faraday Soc., 1968, 64, 1816. [all data]
Palmer and Carabetta, 1968
Palmer, H.B.; Carabetta, R.A.,
Radiative recombination of chlorine atoms in shock waves: a re-examination,
J. Chem. Phys., 1968, 49, 2466. [all data]
Coxon, 1973
Coxon, J.A.,
Chapt. 4. Low-lying electronic states of diatomic halogen molecules
in Molecular Spectroscopy. Volume 1, Barrow,R.F.; Long,D.A.; Millen,D.J., ed(s)., The Chemical Society, Burlington House, London, W1V 0BN, 1973, 177-228. [all data]
Bondybey and Fletcher, 1976
Bondybey, V.E.; Fletcher, C.,
Photophysics of low lying electronic states of Cl2 in rare gas solids,
J. Chem. Phys., 1976, 64, 3615. [all data]
Winkel, Hunt, et al., 1969
Winkel, R.G.; Hunt, J.L.; Clouter, M.J.,
Pressure-induced fundamental infrared absorption band of gaseous chlorine,
J. Chem. Phys., 1969, 50, 1298. [all data]
Holzer, Murphy, et al., 1970
Holzer, W.; Murphy, W.F.; Bernstein, H.J.,
Resonance Raman effect and resonance fluoroscence in halogen gases,
J. Chem. Phys., 1970, 52, 399. [all data]
Hochenbleicher and Schrotter, 1971
Hochenbleicher, G.; Schrotter, H.W.,
Observation of hot bands in the Raman spectra of Cl2 gas and CCl4 vapor,
Appl. Spectrosc., 1971, 25, 3, 360-362. [all data]
Hendra and Vear, 1972
Hendra, P.J.; Vear, C.J.,
The pure rotational laser Raman spectrum of chlorine,
Spectrochim. Acta, Part A, 1972, 28, 1949-1961. [all data]
Wallart, 1972
Wallart, F.,
Study of vibrational hot bands by Raman spectroscopy - application to chlorine and bromine chloride,
Can. J. Spectrosc., 1972, 17, 128. [all data]
Edwards, Good, et al., 1976
Edwards, H.G.M.; Good, E.A.M.; Long, D.A.,
Pure rotational Raman spectra of the chlorine species, 35Cl2 and 35Cl37Cl,
J. Chem. Soc. Faraday Trans. 2, 1976, 72, 927-933. [all data]
Rao and Venkateswarlu, 1962
Rao, Y.V.; Venkateswarlu, P.,
Vacuum ultraviolet resonance spectrum of Cl2 molecule,
J. Mol. Spectrosc., 1962, 9, 173. [all data]
Douglas and Hoy, 1975
Douglas, A.E.; Hoy, A.R.,
The resonance fluorescence spectrum of Cl2 in the vacuum ultraviolet,
Can. J. Phys., 1975, 53, 1965-1975. [all data]
Busch, Mahoney, et al., 1969
Busch, G.E.; Mahoney, R.T.; Morse, R.I.,
Translational spectroscopy: Cl2 photodissociation,
J. Chem. Phys., 1969, 51, 449. [all data]
Child and Bernstein, 1973
Child, M.S.; Bernstein, R.B.,
Diatomic interhalogens: systematics and implications of spectroscopic interatomic potentials and curve crossings,
J. Chem. Phys., 1973, 59, 5916. [all data]
Brith, Rowe, et al., 1975
Brith, M.; Rowe, M.D.; Schnepp, O.; Stephens, P.J.,
The magnetic circular dichroism spectrum of the halogen molecules I2, Br2, Cl2. Resolution of overlapping continua,
Chem. Phys., 1975, 9, 57. [all data]
Douglas, Moller, et al., 1963
Douglas, A.E.; Moller, C.K.; Stoicheff, B.P.,
Can. J. Phys., 1963, 41, 1174. [all data]
Clyne and Coxon, 1970
Clyne, M.A.A.; Coxon, J.A.,
The visible band absorption spectrum of chlorine,
J. Mol. Spectrosc., 1970, 33, 381. [all data]
Clyne and Coxon, 1967
Clyne, M.A.A.; Coxon, J.A.,
The formation and detection of some low-lying excited electronic states of BrCl and other halogens,
Proc. R. Soc. London A, 1967, 298, 424. [all data]
Richards and Barrow, 1962
Richards, W.G.; Barrow, R.F.,
Rotational analysis of the A3Π0+,u - X1Σg+ system of the chlorine molecule,
Proc. Chem. Soc. London, 1962, 297. [all data]
Le Roy, 1973
Le Roy, R.J.,
Chapt. 3. Energy levels of a diatomic near dissociation
in Molecular Spectroscopy. Volume 1, Barrow,R.F.; Long,D.A.; Millen,D.J., ed(s)., The Chemical Society, Burlington House, London, W1V 0BN, 1973, 113-175. [all data]
LeRoy, 1974
LeRoy, R.J.,
Long-range potential coefficients from RKR turning points: C6 and C8 for B(3Π0u+)-state Cl2, Br2, and I2,
Can. J. Phys., 1974, 52, 246. [all data]
LeRoy and Bernstein, 1971
LeRoy, R.J.; Bernstein, R.B.,
Dissociation energies and long-range potentials of diatomic molecules from vibrational spacings: the halogens,
J. Mol. Spectrosc., 1971, 37, 109. [all data]
Goscinski, 1972
Goscinski, O.,
Outer vibrational turning points near dissociation in the B(3Π0u+) state of Br2 and Cl2,
Mol. Phys., 1972, 24, 655. [all data]
LeRoy, 1972
LeRoy, R.J.,
Dependence of the diatomic rotational constant Bv on the long-range internuclear potential,
Can. J. Phys., 1972, 50, 953. [all data]
Yee and Stone, 1973
Yee, K.K.; Stone, T.J.,
Analysis of RKR long-range potentials of the B3Π0u+ states of Br2 and Cl2,
Mol. Phys., 1973, 26, 1169. [all data]
Coxon, 1971
Coxon, J.A.,
Franck-Condon factors and r-centroids for halogen molecules. I. The B3Π(0u+)-X1Σg+ system of 35Cl2,
J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 1355. [all data]
Ault, Howard, et al., 1975
Ault, B.S.; Howard, W.F.; Andrews, L.,
Laser-induced fluorescence and Raman spectra of chlorine and bromine molecules isolated in inert matrices,
J. Mol. Spectrosc., 1975, 55, 217. [all data]
Radziemski and Kaufman, 1969
Radziemski, L.J., Jr.; Kaufman, V.,
Wavelengths, energy levels, and analysis of neutral atomic chlorine (Cl I),
J. Opt. Soc. Am., 1969, 59, 4, 424-443. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References
- Symbols used in this document:
AE Appearance energy EA Electron affinity S°gas,1 bar Entropy of gas at standard conditions (1 bar) - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.