Norbornane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-13.13 ± 0.25kcal/molCcbAn, Zhu, et al., 1987ALS
Δfgas-13.1 ± 1.1kcal/molCcbSteele, 1978Reanalyzed by Pedley, Naylor, et al., 1986, Original value = -14.7 ± 0.81 kcal/mol; ALS
Δfgas-12.4kcal/molN/ABoyd, Sanwal, et al., 1971Value computed using ΔfHsolid° value of -92.1±2.2 kj/mol from Boyd, Sanwal, et al., 1971 and ΔsubH° value of 40.1 kj/mol from An, Zhu, et al., 1987.; DRB
Δfgas-12.4kcal/molN/ABedford, Beezer, et al., 1963Value computed using ΔfHsolid° value of -92.1±2.7 kj/mol from Bedford, Beezer, et al., 1963 and ΔsubH° value of 40.1 kj/mol from An, Zhu, et al., 1987.; DRB

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
28.700298.15Walsh R., 1975Selected value of S(298.15 K) is in good agreement with that calculated by force field method [ Boyd R.H., 1971, Lenz T.G., 1989]. Discrepancy with S(500 K) [ Boyd R.H., 1971] amounts to 8.9 J/mol*K. Discrepancies between Cp(T) values calculated by [ Boyd R.H., 1971] and given here amount to 10.7-12.7 J/mol*K in the temperature range 298.15-500 K.; GT
28.920300.
40.540400.
50.480500.
58.590600.
65.229700.
70.760800.
75.421900.
79.3911000.

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Hydrogen + 2-Norbornene = Norbornane

By formula: H2 + C7H10 = C7H12

Quantity Value Units Method Reference Comment
Δr-32.8 ± 0.1kcal/molChydDoering, Roth, et al., 1988gas phase
Δr-33.82 ± 0.28kcal/molChydRogers, Choi, et al., 1980liquid phase; solvent: Hexane; Author was aware that data differs from previously reported values
Δr-33.13 ± 0.21kcal/molChydTurner, Meador, et al., 1957liquid phase; solvent: Acetic acid

2,5-Norbornadiene + 2Hydrogen = Norbornane

By formula: C7H8 + 2H2 = C7H12

Quantity Value Units Method Reference Comment
Δr-70.8 ± 0.3kcal/molChydDoering, Roth, et al., 1988gas phase
Δr-69.77 ± 0.36kcal/molChydRogers, Choi, et al., 1980liquid phase; solvent: Hexane
Δr-68.11 ± 0.41kcal/molChydTurner, Meador, et al., 1957liquid phase; solvent: Acetic acid

Hydrogen + Tricyclo[2.2.1.0(2,6)]heptane = Norbornane

By formula: H2 + C7H10 = C7H12

Quantity Value Units Method Reference Comment
Δr-31.1 ± 0.2kcal/molChydFlury, Grob, et al., 1988liquid phase; solvent: Isooctane
Δr-32.58 ± 0.52kcal/molChydRogers, Choi, et al., 1980liquid phase; solvent: Hexane; Author was aware that data differs from previously reported values

2Hydrogen + Tetracyclo[3.2.0.0(2,7).0(4,6)]heptane = Norbornane

By formula: 2H2 + C7H8 = C7H12

Quantity Value Units Method Reference Comment
Δr-91.95 ± 0.43kcal/molChydRogers, Choi, et al., 1980liquid phase; solvent: Hexane
Δr-92.03 ± 0.49kcal/molChydTurner, Goebel, et al., 1968liquid phase; solvent: Acetic acid

Hydrogen + Tricyclo-[3.2.0.0(2,7)]heptane = Norbornane

By formula: H2 + C7H10 = C7H12

Quantity Value Units Method Reference Comment
Δr-52.6 ± 0.2kcal/molChydFlury, Grob, et al., 1988liquid phase; solvent: Isooctane

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C7H12+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.77 ± 0.03eVN/AN/AL

Ionization energy determinations

IE (eV) Method Reference Comment
9.74PEDemeo and Yencha, 1970RDSH
9.80PEBodor, Dewar, et al., 1970RDSH
9.93 ± 0.02EIWinters and Collins, 1968RDSH
10.2PEHeilbronner and Martin, 1972Vertical value; LLK
10.15PEBischof, Heilbronner, et al., 1971Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H3+14.03 ± 0.09?EIWinters and Collins, 1968RDSH
C3H5+13.22 ± 0.12?EIWinters and Collins, 1968RDSH
C4H5+13.44 ± 0.11?EIWinters and Collins, 1968RDSH
C4H6+11.12 ± 0.03?EIWinters and Collins, 1968RDSH
C4H7+10.60 ± 0.10?EIWinters and Collins, 1968RDSH
C5H7+10.60 ± 0.10C2H5EIWinters and Collins, 1968RDSH
C5H8+10.30 ± 0.07C2H4EIWinters and Collins, 1968RDSH
C6H9+10.17 ± 0.06CH3EIWinters and Collins, 1968RDSH

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

An, Zhu, et al., 1987
An, X-W.; Zhu, H-P.; Hu, R-H., Heats of combustion and formation of norbornane, Thermochim. Acta, 1987, 121, 473-477. [all data]

Steele, 1978
Steele, W.V., The standard enthalpies of formation of a series of C7, bridged-ring hydrocarbons: norbornane, norbornene, nortricyclene, norbornadiene, and quadricyclane, J. Chem. Thermodyn., 1978, 10, 919-927. [all data]

Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P., Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]

Boyd, Sanwal, et al., 1971
Boyd, R.H.; Sanwal, S.N.; Shary-Tehrany, S.; McNally, D., The thermochemistry, thermodynamic functions, and molecular structures of some cyclic hydrocarbons, J. Phys. Chem., 1971, 75, 1264-1271. [all data]

Bedford, Beezer, et al., 1963
Bedford, A.F.; Beezer, A.E.; Mortimer, C.T.; Springall, H.D., Heats of combustion and molecular structure. Part IX. Bicylo[2,2,1]heptane, 7-oxabicyclo[2,2,1]heptane, and exo- and endo-2-methyl-7-oxabicyclo[2,2,1]heptane, J. Chem. Soc., 1963, 3823-3828. [all data]

Walsh R., 1975
Walsh R., The enthalpy of formation of bicyclo[2.2.1]hepta-2,5-diene. Thermodynamic functions of bicyclo[2.2.1]heptane and bicyclo[2.2.1]hepta-2,5-diene, J. Chem. Thermodyn., 1975, 7, 149-154. [all data]

Boyd R.H., 1971
Boyd R.H., The thermochemistry, thermodynamic functions, and molecular structures of some cyclic hydrocarbons, J. Phys. Chem., 1971, 75, 1264-1271. [all data]

Lenz T.G., 1989
Lenz T.G., Force-field calculations giving accurate conformation, Hf(T), S(T), and Cp(T) for unsaturated acyclic and cyclic hydrocarbons, J. Phys. Chem., 1989, 93, 1588-1592. [all data]

Doering, Roth, et al., 1988
Doering, W.E.; Roth, W.R.; Breuckmann, R.; Figge, L.; Lennartz, H.-W.; Fessner, W.-D.; Prinzbach, F.H., Verbotene Reaktionen. - [2 + 2]-Cycloreversion starrer Cyclobutane, Chem. Ber., 1988, 121, 1-9. [all data]

Rogers, Choi, et al., 1980
Rogers, D.W.; Choi, L.S.; Girellini, R.S., Heats of hydrogenation and formation of quadricyclene, norbornadiene, norbornene, and nortricyclene, J. Phys. Chem., 1980, 84, 1810-1814. [all data]

Turner, Meador, et al., 1957
Turner, R.B.; Meador, W.R.; Winkler, R.E., Heats of hydrogenation. I. Apparatus and the heats of hydrogenation of bicyclo[2,2,1]heptene, bicyclo[2,2,1]heptadiene, bicyclo[2,2,2]octene and bicyclo[2,2,2]octadiene, J. Am. Chem. Soc., 1957, 79, 4116-4121. [all data]

Flury, Grob, et al., 1988
Flury, P.; Grob, C.A.; Wang, G.Y.; Lennatz, H.-W.; Roth, W.R., 113. Norbornanes. Bridging strain in norbornyl and oxanorbornyl cations, Helv. Chim. Acta, 1988, 71, 1017-1024. [all data]

Turner, Goebel, et al., 1968
Turner, R.B.; Goebel, P.; Mallon, B.J.; Doering, W.E.; Coburn, J.F., Jr.; Pomerantz, M., Heats of hydrogenation. VIII. Compounds with three- and four-membered rings, J. Am. Chem. Soc., 1968, 90, 4315-4322. [all data]

Demeo and Yencha, 1970
Demeo, D.A.; Yencha, A.J., Photoelectron spectra of bicyclic and exocyclic olefins, J. Chem. Phys., 1970, 53, 4536. [all data]

Bodor, Dewar, et al., 1970
Bodor, N.; Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. III. Ionization potentials of some cyclic hydrocarbons and their derivatives, and heats of formation and ionization potentials calculated by the MINDO SCF MO method, J. Am. Chem. Soc., 1970, 92, 19. [all data]

Winters and Collins, 1968
Winters, R.E.; Collins, J.H., Mass spectrometric studies of structural isomers. I. Mono- and bicyclic C7H12 molecules, J. Am. Chem. Soc., 1968, 90, 1235. [all data]

Heilbronner and Martin, 1972
Heilbronner, E.; Martin, H.D., The π-orbital sequence in norbornadiene and related hydrocarbons, Helv. Chim. Acta, 1972, 55, 1490. [all data]

Bischof, Heilbronner, et al., 1971
Bischof, P.; Heilbronner, E.; Prinzbach, H.; Martin, H.D., A photoelectron-spectroscopic investigation of the homoconjugative interaction between π- and Walsh-orbitals in endo- and exo- cyclopropano-norbornene, Helv. Chim. Acta, 1971, 54, 1072. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References