Titanium dioxide (anatase)


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas-305.43kJ/molReviewChase, 1998Data last reviewed in December, 1973
Quantity Value Units Method Reference Comment
gas,1 bar260.14J/mol*KReviewChase, 1998Data last reviewed in December, 1973

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 4000. to 6000.
A 63.82818
B -4.418178
C 1.080707
D -0.058816
E -5.216235
F -336.0739
G 323.0094
H -305.4324
ReferenceChase, 1998
Comment Data last reviewed in December, 1973

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfliquid-894.05kJ/molReviewChase, 1998Data last reviewed in December, 1973
Quantity Value Units Method Reference Comment
liquid,1 bar72.32J/mol*KReviewChase, 1998Data last reviewed in December, 1973

Liquid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 2130. to 4000.
A 100.4160
B 5.991573×10-8
C -1.796728×10-8
D 1.839876×10-9
E 3.592186×10-8
F -955.6758
G 145.6358
H -894.0539
ReferenceChase, 1998
Comment Data last reviewed in December, 1973

Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Marilyn E. Jacox

State:   A


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 17593 ± 5 gas A-X 530 571 Wu and Wang, 1997
Wang, Steimle, et al., 2009
Zhuang, Le, et al., 2010
To = 19084 ± 5 Ne A-X 405 524 McIntyre, Thompson, et al., 1971
Garkusha, Nagy, et al., 2008


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 1 Sym. stretch 874 ± 5 gas MPI Zhuang, Le, et al., 2010
1 Sym. stretch 850 T Ne AB Garkusha, Nagy, et al., 2008
2 Bend 185 ± 5 gas MPI Zhuang, Le, et al., 2010
2 Bend 180 T Ne AB Garkusha, Nagy, et al., 2008
b2 3 Asym. stretch 324 H gas MPI Zhuang, Le, et al., 2010

State:   a


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 15800 ± 800 gas Wu and Wang, 1997
To = 15924 ± 5 Ne a-X 509 628 Garkusha, Nagy, et al., 2008


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

Σg+ 1 Sym. stretch 826 ± 5 Ne AB Garkusha, Nagy, et al., 2008

State:   X


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 1 Sym. stretch 959 gas IR LF DeVore and Gallaher, 1983
Wu and Wang, 1997
Zhuang, Le, et al., 2010
1 Sym. stretch 962.0 Ne IR McIntyre, Thompson, et al., 1971
1 Sym. stretch 946.9 Ar IR Chertihin and Andrews, 1995
2 Bend 323 w gas LF Wang, Steimle, et al., 2009
Zhuang, Le, et al., 2010
b2 3 Asym. stretch 944 gas IR DeVore and Gallaher, 1983
3 Asym. stretch 934.8 Ne IR McIntyre, Thompson, et al., 1971
Garkusha, Nagy, et al., 2008
3 Asym. stretch 917.1 Ar IR Chertihin and Andrews, 1995

Additional references: Jacox, 1998, page 176; Jacox, 2003, page 103; Brunken, Mullere, et al., 2008; Kania, Hermanns, et al., 2011

Notes

wWeak
H(1/2)(2ν)
TTentative assignment or approximate value
oEnergy separation between the v = 0 levels of the excited and electronic ground states.

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Wu and Wang, 1997
Wu, H.; Wang, L.-S., Electronic Structures of Titanium Oxide Clusters: TiOy (y=1-3) and (TiO2)n (n=1-4), J. Phys. Chem., 1997, 107, 20, 8221, https://doi.org/10.1063/1.475026 . [all data]

Wang, Steimle, et al., 2009
Wang, H.; Steimle, T.C.; Apetrei, C.; Maier, J.P., Characterization of the X 1A1 and à 1B2 electronic states of titanium dioxide, TiO2, Phys. Chem. Chem. Phys., 2009, 11, 15, 2649, https://doi.org/10.1039/b821849h . [all data]

Zhuang, Le, et al., 2010
Zhuang, X.; Le, A.; Steimle, T.C.; Nagarajan, R.; Gupta, V.; Maier, J.P., Visible spectrum of titanium dioxide, Phys. Chem. Chem. Phys., 2010, 12, 45, 15018, https://doi.org/10.1039/c0cp00861c . [all data]

McIntyre, Thompson, et al., 1971
McIntyre, N.S.; Thompson, K.R.; Weltner, W., Jr., Spectroscopy of titanium oxide and titanium dioxide molecules in inert matrices at 4.deg.K, J. Phys. Chem., 1971, 75, 21, 3243, https://doi.org/10.1021/j100690a008 . [all data]

Garkusha, Nagy, et al., 2008
Garkusha, I.; Nagy, A.; Guennoun, Z.; Maier, J.P., Electronic absorption spectrum of titanium dioxide in neon matrices, Chem. Phys., 2008, 353, 1-3, 115, https://doi.org/10.1016/j.chemphys.2008.08.003 . [all data]

DeVore and Gallaher, 1983
DeVore, T.C.; Gallaher, T.N., High Temp. Sci., 1983, 16, 269. [all data]

Chertihin and Andrews, 1995
Chertihin, G.V.; Andrews, L., Reactions of Laser Ablated Titanium, Zirconium, and Hafnium Atoms with Oxygen Molecules in Condensing Argon, J. Phys. Chem., 1995, 99, 17, 6356, https://doi.org/10.1021/j100017a015 . [all data]

Jacox, 1998
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement A, J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017 . [all data]

Jacox, 2003
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement B, J. Phys. Chem. Ref. Data, 2003, 32, 1, 1-441, https://doi.org/10.1063/1.1497629 . [all data]

Brunken, Mullere, et al., 2008
Brunken, S.; Mullere, H.S.P.; Menten, K.M.; McCarthy, M.C.; Thaddeus, P., The Rotational Spectrum of TiO, Astrophys. J., 2008, 676, 2, 1367, https://doi.org/10.1086/528934 . [all data]

Kania, Hermanns, et al., 2011
Kania, P.; Hermanns, M.; Brunken, S.; Muller, H.S.P.; Giesen, T.F., Millimeter-wave spectroscopy of titanium dioxide, TiO2, J. Mol. Spectrosc., 2011, 268, 1-2, 173, https://doi.org/10.1016/j.jms.2011.04.013 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Vibrational and/or electronic energy levels, References