Nitric acid
- Formula: HNO3
- Molecular weight: 63.0128
- IUPAC Standard InChIKey: GRYLNZFGIOXLOG-UHFFFAOYSA-N
- CAS Registry Number: 7697-37-2
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: (NO3- • HNO3) + HNO3 = (NO3- • 2HNO3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 76.6 ± 4.2 | kJ/mol | TDAs | Davidson, Fehsenfeld, et al., 1977 | gas phase; B,M |
ΔrH° | 66.9 ± 3.3 | kJ/mol | TDAs | Wlodek, Luczynski, et al., 1980 | gas phase; B,M |
ΔrH° | 77.0 | kJ/mol | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
ΔrH° | 74.1 | kJ/mol | HPMS | Lee, Keesee, et al., 1980 | gas phase; M |
ΔrH° | 83.7 | kJ/mol | ATM | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
ΔrS° | 92.5 | J/mol*K | FA | Davidson, Fehsenfeld, et al., 1977 | gas phase; M |
ΔrS° | 100. | J/mol*K | N/A | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
ΔrS° | 96.7 | J/mol*K | HPMS | Wlodek, Luczynski, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 49.0 ± 9.2 | kJ/mol | TDAs | Davidson, Fehsenfeld, et al., 1977 | gas phase; B,M |
ΔrG° | 37.7 ± 1.3 | kJ/mol | TDAs | Wlodek, Luczynski, et al., 1980 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
52.7 | 233. | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
57.7 | 250. | ATM | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
By formula: (NO3- • 2HNO3) + HNO3 = (NO3- • 3HNO3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 67.4 ± 4.2 | kJ/mol | TDAs | Davidson, Fehsenfeld, et al., 1977 | gas phase; B,M |
ΔrH° | 58.2 ± 5.9 | kJ/mol | TDAs | Wlodek, Luczynski, et al., 1980 | gas phase; B,M |
ΔrH° | 66.9 | kJ/mol | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
ΔrH° | 66.9 | kJ/mol | HPMS | Lee, Keesee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
ΔrS° | 121. | J/mol*K | FA | Davidson, Fehsenfeld, et al., 1977 | gas phase; M |
ΔrS° | 112. | J/mol*K | HPMS | Wlodek, Luczynski, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 31. ± 9.2 | kJ/mol | TDAs | Davidson, Fehsenfeld, et al., 1977 | gas phase; B |
ΔrG° | 24.7 ± 1.7 | kJ/mol | TDAs | Wlodek, Luczynski, et al., 1980 | gas phase; B |
ΔrG° | 29. | kJ/mol | FA | Fehsenfeld, Howard, et al., 1975 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
42.7 | 233. | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1357.7 ± 0.84 | kJ/mol | TDEq | Davidson, Fehsenfeld, et al., 1977 | gas phase; Relative to HBr, reevaluated with current HBr acidity. Excited state at 3.0 eV,81WU /TIE.; B |
ΔrH° | 1380. ± 20. | kJ/mol | NBAE | Mathur, Rothe, et al., 1976 | gas phase; From HNO3; B |
ΔrH° | 1377. ± 24. | kJ/mol | Endo | Refaey and Franklin, 1976 | gas phase; I- + HNO3 ->.; B |
ΔrH° | 1357.7 ± 2.1 | kJ/mol | TDEq | Ferguson, Dunkin, et al., 1972 | gas phase; B |
ΔrH° | 1490.8 | kJ/mol | Endo | Berkowitz, Chupka, et al., 1971 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1329.7 ± 0.84 | kJ/mol | TDEq | Davidson, Fehsenfeld, et al., 1977 | gas phase; Relative to HBr, reevaluated with current HBr acidity. Excited state at 3.0 eV,81WU /TIE.; B |
By formula: (Br- • HNO3) + HNO3 = (Br- • 2HNO3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 75.7 | kJ/mol | FA | Davidson, Fehsenfeld, et al., 1977 | gas phase; From thermochemical cycle(Br-/NO3- - HNO3/HBr), Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 98.7 | J/mol*K | N/A | Davidson, Fehsenfeld, et al., 1977 | gas phase; From thermochemical cycle(Br-/NO3- - HNO3/HBr), Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 46.4 | kJ/mol | FA | Davidson, Fehsenfeld, et al., 1977 | gas phase; From thermochemical cycle(Br-/NO3- - HNO3/HBr), Entropy change calculated or estimated; M |
By formula: Br- + HNO3 = (Br- • HNO3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 83.7 | kJ/mol | FA | Davidson, Fehsenfeld, et al., 1977 | gas phase; From thermochemical cycle,switching reaction(Br-/NO3-HNO3/HBr), ΔrH>; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 77.4 | J/mol*K | FA | Davidson, Fehsenfeld, et al., 1977 | gas phase; From thermochemical cycle,switching reaction(Br-/NO3-HNO3/HBr), ΔrH>; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
56.1 | 367. | FA | Davidson, Fehsenfeld, et al., 1977 | gas phase; From thermochemical cycle,switching reaction(Br-/NO3-HNO3/HBr), ΔrH>; M |
By formula: (NO3- • HNO3) + H2O = (NO3- • H2O • HNO3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.4 | kJ/mol | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
31. | 233. | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
By formula: (HO4S- • 2H2O4S) + HNO3 = (HO4S- • HNO3 • 2H2O4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66.5 | kJ/mol | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
43.1 | 233. | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
By formula: (HO4S- • 3H2O4S) + HNO3 = (HO4S- • HNO3 • 3H2O4S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70.7 | kJ/mol | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
46.4 | 233. | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
(HO4S- • ) + HO3S = (HO4S- • HO3S • )
By formula: (HO4S- • HNO3) + HO3S = (HO4S- • HO3S • HNO3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 90.8 | kJ/mol | ATM | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
64.9 | 250. | ATM | Arnold and Qiu, 1984 | gas phase; Entropy change calculated or estimated; M |
By formula: (HO4S- • HNO3) + H2O = (HO4S- • H2O • HNO3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.4 | kJ/mol | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
30. | 233. | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
By formula: (HO4S- • HNO3) + HNO3 = (HO4S- • 2HNO3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 77.0 | kJ/mol | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
52.7 | 233. | ATM | Arnold, Viggiano, et al., 1982 | gas phase; Entropy change calculated or estimated; M |
By formula: (NO3- • 3HNO3) + HNO3 = (NO3- • 4HNO3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 39. ± 5.4 | kJ/mol | TDAs | Wlodek, Luczynski, et al., 1980 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 83.3 | J/mol*K | HPMS | Wlodek, Luczynski, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 13.4 ± 1.7 | kJ/mol | TDAs | Wlodek, Luczynski, et al., 1980 | gas phase; B |
ΔrG° | 29. ± 4.2 | kJ/mol | IMRE | Fehsenfeld, Howard, et al., 1975 | gas phase; B |
By formula: (NO3- • HNO3) + HBr = (NO3- • HBr • HNO3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66.9 | kJ/mol | FA | Davidson, Fehsenfeld, et al., 1977 | gas phase; switching reaction(NO3-)2HNO3; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 95.8 | J/mol*K | FA | Davidson, Fehsenfeld, et al., 1977 | gas phase; switching reaction(NO3-)2HNO3; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 38. | kJ/mol | FA | Davidson, Fehsenfeld, et al., 1977 | gas phase; switching reaction(NO3-)2HNO3; M |
By formula: (NO3- • 5HNO3) + HNO3 = (NO3- • 6HNO3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.2 ± 3.8 | kJ/mol | TDAs | Wlodek, Luczynski, et al., 1980 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 31. | J/mol*K | HPMS | Wlodek, Luczynski, et al., 1980 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.0 ± 2.9 | kJ/mol | TDAs | Wlodek, Luczynski, et al., 1980 | gas phase; B |
By formula: (NO3- • 4HNO3) + HNO3 = (NO3- • 5HNO3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31. ± 5.0 | kJ/mol | TDAs | Wlodek, Luczynski, et al., 1980 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 77.8 | J/mol*K | HPMS | Wlodek, Luczynski, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.9 ± 4.2 | kJ/mol | TDAs | Wlodek, Luczynski, et al., 1980 | gas phase; B |
By formula: (NO3- • HBr) + HNO3 = (NO3- • HNO3 • HBr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66.9 ± 8.4 | kJ/mol | TDEq | Davidson, Fehsenfeld, et al., 1977 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 40. ± 12. | kJ/mol | TDEq | Davidson, Fehsenfeld, et al., 1977 | gas phase; B |
By formula: C3H6N2O7 + HNO3 = C3H5N3O9 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -6. ± 1. | kJ/mol | Eqk | Kazakov, Kirpichev, et al., 1990 | liquid phase; Heat of nitration; ALS |
ΔrH° | -5. ± 1. | kJ/mol | Cm | Kazakov, Lagodzinskaya, et al., 1989 | liquid phase; ALS |
By formula: C3H8O3 + HNO3 = C3H7NO5 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -19. ± 2. | kJ/mol | Eqk | Kazakov, Kirpichev, et al., 1990 | liquid phase; Heat of Nitration; ALS |
ΔrH° | -10.0 | kJ/mol | Cm | Tsvetkov, Sopin, et al., 1986 | liquid phase; ALS |
By formula: NO3- + HNO3 = (NO3- • HNO3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrS° | 100. | J/mol*K | N/A | Davidson, Fehsenfeld, et al., 1977 | gas phase; Entropy change calculated or estimated, DG>, ΔrH>; M |
By formula: Na+ + HNO3 = (Na+ • HNO3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 86.2 | kJ/mol | FA | Perry, Rowe, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84.9 | J/mol*K | FA | Perry, Rowe, et al., 1980 | gas phase; M |
By formula: C3H7NO5 + HNO3 = C3H6N2O7 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -15. ± 3. | kJ/mol | Eqk | Kazakov, Kirpichev, et al., 1990 | liquid phase; Heat of nitration; ALS |
By formula: C3H8O3 + HNO3 = C3H7NO5 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -10. ± 3. | kJ/mol | Eqk | Kazakov, Kirpichev, et al., 1990 | liquid phase; Heat of nitration; ALS |
By formula: C3H6N2O7 + H2O = C3H7NO5 + HNO3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7. ± 3. | kJ/mol | Eqk | Kazakov, Kirpichev, et al., 1990 | liquid phase; Heat of nitration; ALS |
By formula: C3H6N2O7 + HNO3 = C3H5N3O9 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -10. ± 1. | kJ/mol | Eqk | Kazakov, Kirpichev, et al., 1990 | liquid phase; Heat of nitration; ALS |
By formula: C3H7NO5 + 2HNO3 = C3H5N3O9 + 2H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -18. ± 1. | kJ/mol | Cm | Kazakov, Lagodzinskaya, et al., 1989 | liquid phase; ALS |
By formula: C3H8O3 + 3HNO3 = C3H5N3O9 + 3H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -36. ± 2. | kJ/mol | Cm | Kazakov, Lagodzinskaya, et al., 1989 | liquid phase; ALS |
By formula: C4H10O3 + HNO3 = C4H9NO5 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -11.3 | kJ/mol | Cm | Tsvetkov, Sopin, et al., 1986 | liquid phase; ALS |
By formula: CH3NO2 + HNO3 = 2NO2 + CH4O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66.48 | kJ/mol | Eqk | Silverwood and Thomas, 1967 | gas phase; ALS |
+ = C2F3NO4 +
By formula: C4F6O3 + HNO3 = C2F3NO4 + C2HF3O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -27.6 | kJ/mol | Cm | Tsvetkov, Shmakov, et al., 1989 | liquid phase; ALS |
+ = C5H11NO6 +
By formula: C5H12O4 + HNO3 = C5H11NO6 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -15.5 | kJ/mol | Cm | Tsvetkov, Sopin, et al., 1986 | liquid phase; ALS |
By formula: C2H6O2 + HNO3 = C2H5NO4 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -7.9 | kJ/mol | Cm | Tsvetkov, Sopin, et al., 1986 | liquid phase; ALS |
By formula: C4H10O3 + HNO3 = C4H9NO5 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -8.8 | kJ/mol | Cm | Tsvetkov, Sopin, et al., 1986 | liquid phase; ALS |
By formula: C2H3NO4 + C2H4O2 = C4H6O3 + HNO3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.7 | kJ/mol | Cm | Tsvetkov, Shmakov, et al., 1989 | liquid phase; ALS |
By formula: C3H8O + HNO3 = C3H7NO3 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -23.4 | kJ/mol | Eqk | Rubtsov, 1986 | liquid phase; ALS |
By formula: CH4O + HNO3 = CH3NO3 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -27.6 | kJ/mol | Eqk | Rubtsov, 1986 | liquid phase; ALS |
By formula: C2H6O + HNO3 = C2H5NO3 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -25.1 | kJ/mol | Eqk | Rubtsov, 1986 | liquid phase; ALS |
By formula: C3H8O + HNO3 = C3H7NO3 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -21.8 | kJ/mol | Eqk | Rubtsov, 1986 | liquid phase; ALS |
Vibrational and/or electronic energy levels
Go To: Top, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Marilyn E. Jacox
State: ?
Energy (cm-1) |
Med. | Transition | λmin (nm) |
λmax (nm) |
References | ||
---|---|---|---|---|---|---|---|
Tx = 73500 | gas | Beddard, Giachardi, et al., 1974 | |||||
Okabe, 1980 | |||||||
State: ?
Energy (cm-1) |
Med. | Transition | λmin (nm) |
λmax (nm) |
References | ||
---|---|---|---|---|---|---|---|
Tx = 54900 | gas | Beddard, Giachardi, et al., 1974 | |||||
Okabe, 1980 | |||||||
State: ?
Energy (cm-1) |
Med. | Transition | λmin (nm) |
λmax (nm) |
References | ||
---|---|---|---|---|---|---|---|
Tx = 38500 | gas | Johnston and Graham, 1973 | |||||
Biaume, 1973 | |||||||
Rattigan, Lutman, et al., 1992 | |||||||
State: ?
Energy (cm-1) |
Med. | Transition | λmin (nm) |
λmax (nm) |
References | ||
---|---|---|---|---|---|---|---|
Td = 30300 | U | gas | Johnston and Graham, 1973 | ||||
Biaume, 1973 | |||||||
Rattigan, Lutman, et al., 1992 | |||||||
State: X
Additional references: Jacox, 1994, page 271; Jacox, 1998, page 289; Jacox, 2003, page 274; Millen and Morton, 1960; Cox and Riveros, 1965; Johnston, Chang, et al., 1974; Cazzoli and De Lucia, 1979; Bowman, Helminger, et al., 1981; Ghosh, Blom, et al., 1981; Margitan and Watson, 1982; Messer, De Lucia, et al., 1984; Crownover, Booker, et al., 1988; Tan, Looi, et al., 1991; Tan, Looi, et al., 1991, 2; Turnipseed, Vaghjiani, et al., 1992; Maki, Tan, et al., 1993; Schiffman, Nelson, et al., 1993; Tan, Looi, et al., 1994; Cox, Ellis, et al., 1994; Chou, Petkie, et al., 2002; Petkie, Helminger, et al., 2003
Notes
w | Weak |
m | Medium |
s | Strong |
vs | Very strong |
U | Upper bound |
x | Energy separation between the band maximum of the excited electronic state and the v = 0 level of the ground state. |
d | Photodissociation threshold |
References
Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Davidson, Fehsenfeld, et al., 1977
Davidson, J.A.; Fehsenfeld, F.C.; Howard, C.J.,
The heats of formation of NO3- and NO3- association complexes with HNO3 and HBr,
Int. J. Chem. Kinet., 1977, 9, 17. [all data]
Wlodek, Luczynski, et al., 1980
Wlodek, S.; Luczynski, Z.; Wincel, H.,
Stabilities of gas-phase NO3-.(HNO3)n,n ≤ 6, clusters,
Int. J. Mass Spectrom. Ion Phys., 1980, 35, 39. [all data]
Arnold, Viggiano, et al., 1982
Arnold, F.; Viggiano, A.A.; Schlager, H.,
Implications for Trace Gases and Aerosols of Large Negative Ions Clusters in the Stratosphere,
Nature, 1982, 297, 5865, 371, https://doi.org/10.1038/297371a0
. [all data]
Lee, Keesee, et al., 1980
Lee, N.; Keesee, R.G.; Castleman, A.W., Jr.,
The properties of clusters in the gas phase. IV. Complexes of H2O and HNOx clustering on NOx-,
J. Chem. Phys., 1980, 72, 1089. [all data]
Arnold and Qiu, 1984
Arnold, F.; Qiu, S.,
Upper Stratosphere Negative Ion Composition Measurements and Infrared Trace Gas Abundances,
Planet. Space Sci., 1984, 32, 2, 169, https://doi.org/10.1016/0032-0633(84)90151-X
. [all data]
Fehsenfeld, Howard, et al., 1975
Fehsenfeld, F.C.; Howard, C.J.; Schmeltkopf, A.L.,
Gas Phase Ion Chemistry of HNO3,
J. Chem. Phys., 1975, 63, 7, 2835, https://doi.org/10.1063/1.431722
. [all data]
Mathur, Rothe, et al., 1976
Mathur, B.P.; Rothe, E.W.; Tang, S.Y.; Mahajan, K.; Reck, G.P.,
Negative gaseous ions from nitric acid,
J. Chem. Phys., 1976, 64, 1247. [all data]
Refaey and Franklin, 1976
Refaey, K.M.A.; Franklin, J.L.,
Endoergic ion-molecule-collision processes of negative ions. V. Collision of I- on HNO3. The electron affinity of NO3,
J. Chem. Phys., 1976, 64, 4810. [all data]
Ferguson, Dunkin, et al., 1972
Ferguson, E.E.; Dunkin, D.B.; Fehsenfeld, F.C.,
Reactions of NO2- and NO3- with HCl and HBr,
J. Chem. Phys., 1972, 57, 1459. [all data]
Berkowitz, Chupka, et al., 1971
Berkowitz, J.; Chupka, W.A.; Gutman, D.,
Electron Affinities of O2, O3, NO, NO2, and NO3 by Endothermic Charge Transfer,
J. Chem. Phys., 1971, 55, 6, 2733, https://doi.org/10.1063/1.1676488
. [all data]
Kazakov, Kirpichev, et al., 1990
Kazakov, A.I.; Kirpichev, E.P.; Lagodzinskaya, G.V.; Andrienko, L.P.; Yunda, N.G.; Korolev, A.M.; Rubstov, Yu.I.; Manelis, G.B.; Eremenko, L.T.,
Study of nitration equilibrium in the glycerin-aqueous nitric acid system. 2. Changes in ΔH and ΔS in the nitration reaction,
Bull. Acad. Sci. USSR, Div. Chem. Sci., 1990, 1565-1570. [all data]
Kazakov, Lagodzinskaya, et al., 1989
Kazakov, A.I.; Lagodzinskaya, E.P.; Kirpichev, E.P.; Andrienko, L.P.; Yunda, N.G.; Korolev, A.M.; Robtsov, Yu.I.; Manelis, G.V.; Eremenko, L.T.,
Thermodynamics of nitration of glycerol,
Dokl. Phys. Chem. (Engl. Transl.), 1989, 305, 287-291. [all data]
Tsvetkov, Sopin, et al., 1986
Tsvetkov, V.G.; Sopin, V.P.; Tsvetkova, L.Ya.; Marchenko, G.N.,
Enthalpy of reaction of nitric acid with some organic compounds,
J. Gen. Chem. USSR, 1986, 56, 471-474. [all data]
Perry, Rowe, et al., 1980
Perry, R.A.; Rowe, B.R.; Viggiano, A.A.; Albritton, D.L.; Ferguson, E.E.; Fehsenfeld, F.C.,
Laboratory Measurements of Stratospheric Sodium Ion Measurements,
Geophys. Res. Lett., 1980, 7, 9, 693, https://doi.org/10.1029/GL007i009p00693
. [all data]
Silverwood and Thomas, 1967
Silverwood, R.; Thomas, J.H.,
Reaction between methanol and nitrogen dioxide. Part 1.-Low-temperature reaction and the thermodynamic constants of methyl nitrite,
J. Chem. Soc. Faraday Trans., 1967, 63, 2476-2479. [all data]
Tsvetkov, Shmakov, et al., 1989
Tsvetkov, V.G.; Shmakov, V.A.; Sopin, V.F.; Ivanov, A.V.; Ikonnikov, A.A.; Marchenko, G.N.,
Enthalpies of reaction of nitric acid with acetic and trifluoroacetic anhydrides,
J. Gen. Chem. USSR, 1989, 59, 1220-1222. [all data]
Rubtsov, 1986
Rubtsov, Yu.I.,
Thermodynamic calculation of equilibrium in nitration of alcohols,
Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 19-22. [all data]
Beddard, Giachardi, et al., 1974
Beddard, G.S.; Giachardi, D.J.; Wayne, R.P.,
The vacuum ultra-violet absorption spectrum of anhydrous nitric acid,
J. Photochem., 1974, 3, 2, 321, https://doi.org/10.1016/0047-2670(74)80041-9
. [all data]
Okabe, 1980
Okabe, H.,
Photodissociation of nitric acid and water in the vacuum ultraviolet; vibrational and rotational distributions of OH 2Σ+,
J. Chem. Phys., 1980, 72, 12, 6642, https://doi.org/10.1063/1.439123
. [all data]
Johnston and Graham, 1973
Johnston, H.; Graham, R.,
Gas-phase ultraviolet absorption spectrum of nitric acid vapor,
J. Phys. Chem., 1973, 77, 1, 62, https://doi.org/10.1021/j100620a013
. [all data]
Biaume, 1973
Biaume, F.,
Nitric acid vapour absorption cross-section spectrum and its photodissociation in the stratosphere,
J. Photochem., 1973, 2, 2, 139, https://doi.org/10.1016/0047-2670(73)80012-7
. [all data]
Rattigan, Lutman, et al., 1992
Rattigan, O.; Lutman, E.R.; Jones, R.L.; Cox, R.A.,
Temperature Dependent Absorption Cross-sections and Atmospheric Photolysis Rates of Nitric Acid,
Ber. Bunsenges. Phys. Chem., 1992, 96, 3, 399, https://doi.org/10.1002/bbpc.19920960331
. [all data]
McGraw, Bernitt, et al., 1965
McGraw, G.E.; Bernitt, D.L.; Hisatsune, I.C.,
Vibrational Spectra of Isotopic Nitric Acids,
J. Chem. Phys., 1965, 42, 1, 237, https://doi.org/10.1063/1.1695682
. [all data]
Cheng, Lee, et al., 1991
Cheng, B.-M.; Lee, J.-W.; Lee, Y.-P.,
Photolysis of nitric acid in solid argon: the infrared absorption of peroxynitrous acid (HOONO),
J. Phys. Chem., 1991, 95, 7, 2814, https://doi.org/10.1021/j100160a034
. [all data]
Guillory and Bernstein, 1975
Guillory, W.A.; Bernstein, M.L.,
Infrared spectrum of matrix-isolated nitric acid,
J. Chem. Phys., 1975, 62, 3, 1058, https://doi.org/10.1063/1.430519
. [all data]
Chen, Lo, et al., 1992
Chen, W.-J.; Lo, W.-J.; Cheng, B.-M.; Lee, Y.-P.,
Photolysis of nitric acid in solid nitrogen,
J. Chem. Phys., 1992, 97, 10, 7167, https://doi.org/10.1063/1.463541
. [all data]
Bair and Brockman, 1979
Bair, C.H.; Brockman, P.,
High-resolution spectral measurement of the HNO_3 59-µm band using a tunable diode laser,
Appl. Opt., 1979, 18, 24, 4152, https://doi.org/10.1364/AO.18.004152
. [all data]
Maki and Wells, 1980
Maki, A.G.; Wells, J.S.,
High-resolution measurement and analysis of the infrared spectrum of nitric acid near 1700 cm-1,
J. Mol. Spectrosc., 1980, 82, 2, 427, https://doi.org/10.1016/0022-2852(80)90126-5
. [all data]
May, Webster, et al., 1987
May, R.D.; Webster, C.R.; Molina, L.T.,
Tunable diode laser measurements of absolute linestrengths in the HNO3 ν2 band near 5.8 μm,
J. Quant. Spectrosc. Radiat. Transfer, 1987, 38, 5, 381, https://doi.org/10.1016/0022-4073(87)90032-X
. [all data]
Kleiner, Godefroid, et al., 1987
Kleiner, I.; Godefroid, M.; Herman, M.; McKellar, A.R.W.,
Infrared laser Stark spectrum of HNO_3 at 6 µm,
J. Opt. Soc. Amer. B, 1987, 4, 7, 1159, https://doi.org/10.1364/JOSAB.4.001159
. [all data]
Maki, 1988
Maki, A.G.,
High-resolution measurements of the ν2 band of HNO3 and the ν3 band of trans-HONO,
J. Mol. Spectrosc., 1988, 127, 1, 104, https://doi.org/10.1016/0022-2852(88)90012-4
. [all data]
Tan, Looi, et al., 1992
Tan, T.L.; Looi, E.C.; Lua, K.T.,
Improved spectroscopic constants for the ν2 infrared band of HNO3,
J. Mol. Spectrosc., 1992, 155, 2, 420, https://doi.org/10.1016/0022-2852(92)90532-S
. [all data]
Webster, May, et al., 1985
Webster, C.R.; May, R.D.; Gunson, M.R.,
Tunable diode laser Stark modulation spectroscopy for rotational assignment of the HNO3 7.5 μm band,
Chem. Phys. Lett., 1985, 121, 4-5, 429, https://doi.org/10.1016/0009-2614(85)87208-0
. [all data]
Perrin, Lado-Bordowsky, et al., 1989
Perrin, A.; Lado-Bordowsky, O.; Valentin, A.,
The,
Mol. Phys., 1989, 67, 2, 249, https://doi.org/10.1080/00268978900101061
. [all data]
May and Webster, 1989
May, R.D.; Webster, C.R.,
Measurements of line positions, intensities, and collisional air-broadening coefficients in the HNO3 7.5-μm band using a computer-controlled tunable diode laser spectrometer,
J. Mol. Spectrosc., 1989, 138, 2, 383, https://doi.org/10.1016/0022-2852(89)90006-4
. [all data]
Perrin, Flaud, et al., 1993
Perrin, A.; Flaud, J.-M.; Camy-Peyret, C.; Jaouen, V.; Farrenq, R.; Guelachvili, G., et al.,
Line Intensities in the 11- and 7.6-μm-Band of HNO3,
J. Mol. Spectrosc., 1993, 160, 2, 524, https://doi.org/10.1006/jmsp.1993.1199
. [all data]
Harwood, Jones, et al., 1993
Harwood, M.H.; Jones, R.L.; Cox, R.A.; Lutman, E.; Rattigan, O.V.,
Temperature-dependent absorption cross-sections of N2O5,
J. Photochem. Photobiol. A: Chem., 1993, 73, 3, 167, https://doi.org/10.1016/1010-6030(93)90001-2
. [all data]
Maki and Wells, 1984
Maki, A.G.; Wells, J.S.,
High resolution spectrum of the ν5 band of nitric acid (HNO3) near 880 cm-1,
J. Mol. Spectrosc., 1984, 108, 1, 17, https://doi.org/10.1016/0022-2852(84)90283-2
. [all data]
Maki and Wells, 1992
Maki, A.G.; Wells, J.S.,
Measurement and analysis of the Fermi resonance between ν5 and 2ν9 of nitric acid,
J. Mol. Spectrosc., 1992, 152, 1, 69, https://doi.org/10.1016/0022-2852(92)90117-7
. [all data]
Tan, Looi, et al., 1992, 2
Tan, T.L.; Looi, E.C.; Lua, K.T.,
Spectrochim. Acta, 1992, 48A, 975. [all data]
Perrin, Jaouen, et al., 1993
Perrin, A.; Jaouen, V.; Valentin, A.; Flaud, J.-M.; Camy-Peyret, C.,
The ν5 and 2ν9 Bands of Nitric Acid,
J. Mol. Spectrosc., 1993, 157, 1, 112, https://doi.org/10.1006/jmsp.1993.1009
. [all data]
Maki and Olson, 1989
Maki, A.G.; Olson, W.B.,
Infrared spectrum of the ν6, ν7, and ν8 bands of NHO3,
J. Mol. Spectrosc., 1989, 133, 1, 171, https://doi.org/10.1016/0022-2852(89)90251-8
. [all data]
Tan, Wang, et al., 1996
Tan, T.L.; Wang, W.F.; Looi, E.C.; Ong, P.P.,
Spectrochim. Acta, 1996, 52A, 1315. [all data]
Looi, Tan, et al., 1996
Looi, E.C.; Tan, T.L.; Wang, W.F.; Ong, P.P.,
Improved Spectroscopic Constants for the ν7and ν8Bands of HNO3,
J. Mol. Spectrosc., 1996, 176, 1, 222, https://doi.org/10.1006/jmsp.1996.0080
. [all data]
Wang, Looi, et al., 1996
Wang, W.F.; Looi, E.C.; Tan, T.L.; Ong, P.P.,
Line Intensities in the ν8Band of HNO3,
J. Mol. Spectrosc., 1996, 178, 1, 22, https://doi.org/10.1006/jmsp.1996.0152
. [all data]
van der Veken, Pieters, et al., 1982
van der Veken, B.J.; Pieters, G.H.; Herman, M.A.; Durig, J.R.,
Internal rotation in nitric acid,
J. Mol. Struct., 1982, 80, 467, https://doi.org/10.1016/0022-2860(82)87274-8
. [all data]
Goldman, Burkholder, et al., 1988
Goldman, A.; Burkholder, J.B.; Howard, C.J.; Escribano, R.; Maki, A.G.,
Spectroscopic constants for the ν9 infrared band of HNO3,
J. Mol. Spectrosc., 1988, 131, 1, 195, https://doi.org/10.1016/0022-2852(88)90118-X
. [all data]
Sirota, Weber, et al., 1997
Sirota, J.M.; Weber, M.; Reuter, D.C.; Perrin, A.,
HNO3: Absolute Line Intensities for the ν9Fundamental,
J. Mol. Spectrosc., 1997, 184, 1, 140, https://doi.org/10.1006/jmsp.1997.7310
. [all data]
Jacox, 1994
Jacox, M.E.,
Vibrational and electronic energy levels of polyatomic transient molecules, American Chemical Society, Washington, DC, 1994, 464. [all data]
Jacox, 1998
Jacox, M.E.,
Vibrational and electronic energy levels of polyatomic transient molecules: supplement A,
J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017
. [all data]
Jacox, 2003
Jacox, M.E.,
Vibrational and electronic energy levels of polyatomic transient molecules: supplement B,
J. Phys. Chem. Ref. Data, 2003, 32, 1, 1-441, https://doi.org/10.1063/1.1497629
. [all data]
Millen and Morton, 1960
Millen, D.J.; Morton, J.R.,
J. Chem. Soc., 1960, 1523. [all data]
Cox and Riveros, 1965
Cox, A.P.; Riveros, J.M.,
Microwave Spectrum and Structure of Nitric Acid,
J. Chem. Phys., 1965, 42, 9, 3106, https://doi.org/10.1063/1.1696387
. [all data]
Johnston, Chang, et al., 1974
Johnston, H.S.; Chang, S.-G.; Whitten, G.,
Photolysis of nitric acid vapor,
J. Phys. Chem., 1974, 78, 1, 1, https://doi.org/10.1021/j100594a001
. [all data]
Cazzoli and De Lucia, 1979
Cazzoli, G.; De Lucia, F.C.,
Millimeter-wave spectrum, centrifugal distortion analysis, and energy levels of HNO3,
J. Mol. Spectrosc., 1979, 76, 1-3, 131, https://doi.org/10.1016/0022-2852(79)90222-4
. [all data]
Bowman, Helminger, et al., 1981
Bowman, W.C.; Helminger, P.; De Lucia, F.C.,
Millimeter and submillimeter wave spectra of HNO2 (cis), HNO2 (trans), and HNO3,
J. Mol. Spectrosc., 1981, 88, 2, 431, https://doi.org/10.1016/0022-2852(81)90194-6
. [all data]
Ghosh, Blom, et al., 1981
Ghosh, P.N.; Blom, C.E.; Bauder, A.,
Microwave spectrum, centrifugal distortion analysis, and harmonic force field of nitric acid,
J. Mol. Spectrosc., 1981, 89, 1, 159, https://doi.org/10.1016/0022-2852(81)90167-3
. [all data]
Margitan and Watson, 1982
Margitan, J.J.; Watson, R.T.,
Kinetics of the reaction of hydroxyl radicals with nitric acid,
J. Phys. Chem., 1982, 86, 19, 3819, https://doi.org/10.1021/j100216a022
. [all data]
Messer, De Lucia, et al., 1984
Messer, JK.; De Lucia, F.C.; Helminger, P.,
The spectrum of HNO3 in the region 550--800 GHz,
J. Mol. Spectrosc., 1984, 104, 2, 417, https://doi.org/10.1016/0022-2852(84)90136-X
. [all data]
Crownover, Booker, et al., 1988
Crownover, R.L.; Booker, R.A.; De Lucia, F.C.; Helminger, P.,
The rotational spectrum of nitric acid: The first five vibrational states,
J. Quant. Spectrosc. Radiat. Transfer, 1988, 40, 1, 39, https://doi.org/10.1016/0022-4073(88)90029-5
. [all data]
Tan, Looi, et al., 1991
Tan, T.L.; Looi, E.C.; Lua, K.T.; Maki, A.G.; Johns, J.W.C.; Noel, M.,
High resolution FTIR measurement and analysis of the ν8 band of deuterated nitric acid (DNO3),
J. Mol. Spectrosc., 1991, 149, 2, 425, https://doi.org/10.1016/0022-2852(91)90297-N
. [all data]
Tan, Looi, et al., 1991, 2
Tan, T.L.; Looi, E.C.; Lua, K.T.; Maki, A.G.; Johns, J.W.C.; Noel, M.,
Infrared spectrum of the ν9 and 2ν9-ν9 bands of deuterated nitric acid (DNO3),
J. Mol. Spectrosc., 1991, 150, 2, 486, https://doi.org/10.1016/0022-2852(91)90243-4
. [all data]
Turnipseed, Vaghjiani, et al., 1992
Turnipseed, A.A.; Vaghjiani, G.L.; Thompson, J.E.; Ravishankara, A.R.,
Photodissociation of HNO3 at 193, 222, and 248 nm: Products and quantum yields,
J. Chem. Phys., 1992, 96, 8, 5887, https://doi.org/10.1063/1.462685
. [all data]
Maki, Tan, et al., 1993
Maki, A.G.; Tan, T.L.; Looi, E.C.; Lua, K.T.; Johns, J.W.C.; Nol, M.,
Infrared Spectrum of the ν6 and ν7 Bands of Deuterated Nitric Acid (DNO3),
J. Mol. Spectrosc., 1993, 157, 1, 248, https://doi.org/10.1006/jmsp.1993.1020
. [all data]
Schiffman, Nelson, et al., 1993
Schiffman, A.; Nelson, D.D., Jr.; Nesbitt, D.J.,
Quantum yields for OH production from 193 and 248 nm photolysis of HNO3 and H2O2,
J. Chem. Phys., 1993, 98, 9, 6935, https://doi.org/10.1063/1.464735
. [all data]
Tan, Looi, et al., 1994
Tan, T.L.; Looi, E.C.; Lua, K.T.; Maki, A.G.; Johns, J.W.C.; Noel, M.,
FTIR Spectrum of the ν2 Band of Deuterated Nitric-Acid (DNO3),
J. Mol. Spectrosc., 1994, 166, 1, 97, https://doi.org/10.1006/jmsp.1994.1175
. [all data]
Cox, Ellis, et al., 1994
Cox, A.P.; Ellis, M.C.; Attfield, C.J.; Ferris, A.C.,
Microwave spectrum of DNO3, and average structures of nitric and nitrous acids,
J. Mol. Struct., 1994, 320, 91, https://doi.org/10.1016/0022-2860(93)08008-R
. [all data]
Chou, Petkie, et al., 2002
Chou, S.G.; Petkie, D.T.; Butler, R.A.H.; Miller, C.E.,
Rotational Spectroscopy of DNO3,
J. Mol. Spectrosc., 2002, 211, 2, 284, https://doi.org/10.1006/jmsp.2001.8482
. [all data]
Petkie, Helminger, et al., 2003
Petkie, D.T.; Helminger, P.; Butler, R.A.H.; Albert, S.; De Lucia, F.C.,
The millimeter and submillimeter spectra of the ground state and excited , , , and vibrational states of,
J. Mol. Spectrosc., 2003, 218, 1, 127, https://doi.org/10.1016/S0022-2852(02)00025-5
. [all data]
Notes
Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, References
- Symbols used in this document:
T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.