Cyclohexane
- Formula: C6H12
- Molecular weight: 84.1595
- IUPAC Standard InChIKey: XDTMQSROBMDMFD-UHFFFAOYSA-N
- CAS Registry Number: 110-82-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Benzene, hexahydro-; Hexahydrobenzene; Hexamethylene; Hexanaphthene; Cicloesano; Cykloheksan; Rcra waste number U056; UN 1145; NSC 406835
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C6H10 + H2 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -118. ± 6. | kJ/mol | AVG | N/A | Average of 8 values; Individual data points |
By formula: H4N+ + C6H12 = (H4N+ • C6H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40. | kJ/mol | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
12. | 317. | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M |
By formula: C6H6+ + C6H12 = (C6H6+ • C6H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.9 | kJ/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
13. | 295. | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; Entropy change calculated or estimated; M |
C6H11- + =
By formula: C6H11- + H+ = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1750. ± 8.4 | kJ/mol | Bran | Peerboom, Rademaker, et al., 1992 | gas phase; B |
ΔrH° | 1702.1 ± 3.8 | kJ/mol | G+TS | Bohme, Lee-Ruff, et al., 1972 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1713. ± 9.2 | kJ/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase; B |
ΔrG° | >1665.2 | kJ/mol | IMRB | Bohme, Lee-Ruff, et al., 1972 | gas phase; B |
By formula: 2H2 + C6H8 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -224.4 ± 1.2 | kJ/mol | Chyd | Turner, Mallon, et al., 1973 | liquid phase; solvent: Glacial acetic acid; ALS |
ΔrH° | -229.6 ± 0.42 | kJ/mol | Chyd | Kistiakowsky, Ruhoff, et al., 1936 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -231.7 ± 0.4 kJ/mol; At 355 °K; ALS |
By formula: 2H2 + C6H8 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -233. | kJ/mol | Chyd | Roth, Adamczak, et al., 1991 | liquid phase; ALS |
ΔrH° | -225.5 ± 1.4 | kJ/mol | Chyd | Turner, Mallon, et al., 1973 | liquid phase; solvent: Glacial acetic acid; ALS |
By formula: C3H9Si+ + C6H12 = (C3H9Si+ • C6H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 159. | kJ/mol | PHPMS | Li and Stone, 1989 | gas phase; condensation; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 201. | J/mol*K | PHPMS | Li and Stone, 1989 | gas phase; condensation; M |
By formula: 3H2 + C6H6 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -205.3 ± 0.63 | kJ/mol | Chyd | Kistiakowsky, Ruhoff, et al., 1936 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -208.4 ± 0.63 kJ/mol; At 355 °K; ALS |
By formula: HI + C6H11I = C6H12 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -32.6 ± 8.4 | kJ/mol | Cm | Brennan and Ubbelohde, 1956 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -28. ± 4.2 kJ/mol; ALS |
By formula: Li+ + C6H12 = (Li+ • C6H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 100. | kJ/mol | ICR | Staley and Beauchamp, 1975 | gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M |
By formula: C6H12 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -14.69 | kJ/mol | Eqk | Glasebrook and Lovell, 1939 | liquid phase; Heat of isomerization; ALS |
By formula: 2H2 + C6H8 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -426.8 ± 7.9 | kJ/mol | Chyd | Roth, Adamczak, et al., 1991 | liquid phase; ALS |
By formula: C6H12O = C6H12 + H2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 63.4 ± 2.3 | kJ/mol | Eqk | Fedoseenko, Yursha, et al., 1983 | gas phase; At 502 K; ALS |
By formula: C6H11Cl + HCl = C6H12 + Cl2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -143.1 | kJ/mol | Cm | Kirkbride, 1956 | liquid phase; ALS |
By formula: C6H12 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.1 ± 1.2 | kJ/mol | Eqk | Kabo and Andreevskii, 1973 | liquid phase; ALS |
Vibrational and/or electronic energy levels
Go To: Top, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Takehiko Shimanouchi
Symmetry: D3d Symmetry Number σ = 6
Sym. | No | Approximate | Selected Freq. | Infrared | Raman | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
Species | type of mode | Value | Rating | Value | Phase | Value | Phase | |||
a1g | 1 | CH2 a-str | 2930 | E | ia | 2938 VS p | liq. | FR(2ν3) | ||
a1g | 1 | CH2 a-str | 2930 | E | ia | 2923 VS p | liq. | FR(2ν3) | ||
a1g | 2 | CH2 s-str | 2852 | C | ia | 2852 VS p | liq. | |||
a1g | 3 | CH2 scis | 1465 | C | ia | 1465 M p | liq. | |||
a1g | 4 | CH2 rock | 1157 | C | ia | 1157 S p | liq. | |||
a1g | 5 | CC str | 802 | C | ia | 802 VS p | liq. | |||
a1g | 6 | CCC deform + CC torsion | 383 | C | ia | 383 M p | liq. | |||
a1u | 7 | CH2 twist | 1383 | C | 1383 | gas | ia | Observed in the crystalline state at about ν90 K | ||
a1u | 8 | CH2 wag | 1157 | C | 1157 | gas | ia | Observed in the crystalline state at about ν90 K | ||
a1u | 9 | CC str + CC torsion | 1057 | C | 1057 | gas | ia | Observed in the crystalline state at about ν90 K | ||
a2g | 10 | CH2 wag | 1437 | C | 1437 | gas | ia | Observed in the crystalline state at about ν90 K | ||
a2g | 11 | CH2 twist | 1090 | C | 1090 | gas | ia | Observed in the crystalline state at about ν90 K | ||
a2u | 12 | CH2 a-str | 2915 | E | 2915 M | gas | ia | |||
a2u | 13 | CH2 s-str | 2860 | E | ia | SF(ν2,ν18,ν26) | ||||
a2u | 14 | CH2 scis | 1437 | C | 1437 M | gas | ia | |||
a2u | 15 | CH2 rock | 1030 | D | 1040 M | gas | ia | FR(ν23+ν32) | ||
a2u | 15 | CH2 rock | 1030 | D | 1016 M | gas | ia | FR(ν23+ν32) | ||
a2u | 16 | CCC deform | 523 | A | 523 W | gas | ia | |||
eg | 17 | CH2 a-str | 2930 | E | ia | SF(ν1,ν12,ν25) | ||||
eg | 18 | CH2 s-str | 2897 | E | ia | 2897 M vb | ||||
eg | 19 | CH2 scis | 1443 | C | ia | 1443 S dp | ||||
eg | 20 | CH2 wag | 1347 | C | ia | 1347 S dp | ||||
eg | 21 | CH2 twist | 1266 | C | ia | 1266 VS dp | ||||
eg | 22 | CC str | 1027 | C | ia | 1027 VS dp | ||||
eg | 23 | CH2 rock | 785 | C | 785 | gas | 785 VW dp | liq. | Observed in the crystalline state at about ν90 K | |
eg | 24 | CCC deform + CC torsion | 426 | C | ia | 426 S dp | liq. | |||
eu | 25 | CH2 a-str | 2933 | A | 2933 VS | gas | ia | |||
eu | 26 | CH2 s-str | 2863 | A | 2863 VS | gas | ia | |||
eu | 27 | CH2 scis | 1457 | A | 1457 VS | gas | ia | |||
eu | 28 | CH2 wag | 1355 | B | 1355 W | gas | ia | |||
eu | 29 | CH2 twist | 1261 | A | 1261 S | gas | ia | |||
eu | 30 | CH2 rock | 907 | B | 907 S | gas | ia | |||
eu | 31 | CC str | 863 | A | 863 S | gas | ia | |||
eu | 32 | CCC deform + CC torsion | 248 | C | 248 VW | liq. | ia | |||
Source: Shimanouchi, 1972
Notes
VS | Very strong |
S | Strong |
M | Medium |
W | Weak |
VW | Very weak |
ia | Inactive |
vb | Very broad |
p | Polarized |
dp | Depolarized |
FR | Fermi resonance with an overtone or a combination tone indicated in the parentheses. |
SF | Calculation shows that the frequency approximately equals that of the vibration indicated in the parentheses. |
A | 0~1 cm-1 uncertainty |
B | 1~3 cm-1 uncertainty |
C | 3~6 cm-1 uncertainty |
D | 6~15 cm-1 uncertainty |
E | 15~30 cm-1 uncertainty |
References
Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M.,
Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives,
J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034
. [all data]
Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H.,
Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies,
J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034
. [all data]
Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M.,
Stabilization of Cycloalkyl Carbanions in the Gas Phase,
Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608
. [all data]
Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B.,
Acidity order of selected bronsted acids in the gas phase at 300K,
J. Am. Chem. Soc., 1972, 94, 5153. [all data]
Turner, Mallon, et al., 1973
Turner, R.B.; Mallon, B.J.; Tichy, M.; Doering, W.v.E.; Roth, W.R.; Schroder, G.,
Heats of hydrogenation. X. Conjugative interaction in cyclic dienes and trienes,
J. Am. Chem. Soc., 1973, 95, 8605-8610. [all data]
Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E.,
Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene,
J. Am. Chem. Soc., 1936, 58, 146-153. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R.,
Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld,
Chem. Ber., 1991, 124, 2499-2521. [all data]
Li and Stone, 1989
Li, X.; Stone, J.A.,
Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes,
J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013
. [all data]
Brennan and Ubbelohde, 1956
Brennan, D.; Ubbelohde, A.R.,
A thermochemical evaluation of bond strengths in some carbon compounds. Part IV. Bond-strength differences based on the reaction: RI + HI = RH + I2, where R = p-methoxyphenyl and cyclohexyl,
J. Chem. Soc., 1956, 3011-3016. [all data]
Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L.,
Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases,
J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050
. [all data]
Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P.,
Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n,
J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013
. [all data]
Glasebrook and Lovell, 1939
Glasebrook, A.L.; Lovell, W.G.,
The isomerization of cyclohexane and methylcyclopentane,
J. Am. Chem. Soc., 1939, 61, 1717-1720. [all data]
Fedoseenko, Yursha, et al., 1983
Fedoseenko, V.I.; Yursha, I.A.; Kabo, G.Ya.,
Equilibrium and thermodynamics of cyclohexanol dehydrogenation reactions,
Dokl. Akad. Nauk BSSR, 1983, 27, 926-929. [all data]
Kirkbride, 1956
Kirkbride, F.W.,
The heats of chlorination of some hydrocarbons and their chloro-derivatives,
J. Appl. Chem., 1956, 6, 11-21. [all data]
Kabo and Andreevskii, 1973
Kabo, G.Ya.; Andreevskii, D.N.,
Thermodynamic characteristics of the cyclohexane = methylcyclopentane isomerization,
Zh. Fiz. Khim., 1973, 47, 272-273. [all data]
Shimanouchi, 1972
Shimanouchi, T.,
Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]
Notes
Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, References
- Symbols used in this document:
T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.