Carbon monoxide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas-26.417 ± 0.041kcal/molReviewCox, Wagman, et al., 1984CODATA Review value
Δfgas-26.417kcal/molReviewChase, 1998Data last reviewed in September, 1965
Quantity Value Units Method Reference Comment
gas,1 bar47.2419 ± 0.001cal/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar47.242cal/mol*KReviewChase, 1998Data last reviewed in September, 1965

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1300.1300. to 6000.
A 6.1108018.401219
B 1.4570110.310730
C 0.969086-0.049216
D -0.6384560.003239
E 0.031315-0.784603
F -28.20480-30.55390
G 54.3419055.38050
H -26.41661-26.41661
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in September, 1965 Data last reviewed in September, 1965

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil81.63KN/AMullins, Kirk, et al., 1963Uncertainty assigned by TRC = 0.05 K; TRC
Tboil81.61KN/AClayton and Giauque, 1932Uncertainty assigned by TRC = 0.07 K; TRC
Quantity Value Units Method Reference Comment
Ttriple67.95KN/AGill and Morrison, 1966Crystal phase 1 phase; Uncertainty assigned by TRC = 0.06 K; TRC
Ttriple68.12KN/AMullins, Kirk, et al., 1963Crystal phase 1 phase; Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple68.09KN/AClayton and Giauque, 1932Crystal phase 1 phase; Uncertainty assigned by TRC = 0.07 K; TRC
Quantity Value Units Method Reference Comment
Tc134.45KN/ACardoso, 1915Uncertainty assigned by TRC = 0.4 K; 4 determinations with same result; TRC
Quantity Value Units Method Reference Comment
Pc34.5300atmN/ACardoso, 1915Uncertainty assigned by TRC = 0.2999 atm; TRC
Pc34.5300atmN/ACardoso, 1915Uncertainty assigned by TRC = 0.2999 atm; TRC
Pc34.6900atmN/ACardoso, 1915Uncertainty assigned by TRC = 0.2999 atm; TRC
Pc34.7500atmN/ACardoso, 1915Uncertainty assigned by TRC = 0.2999 atm; TRC
Quantity Value Units Method Reference Comment
ρc11.1mol/lN/ACardoso, 1915Uncertainty assigned by TRC = 0.04 mol/l; extrapolation of rectilinear diameter to Tc; TRC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
1.493.AStephenson and Malanowski, 1987Based on data from 68. to 108. K.; AC
1.481.N/AClayton and Giauque, 1932, 2Based on data from 69. to 83. K.; AC
1.481.CClayton and Giauque, 1932, 2AC

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
1.858.N/AStephenson and Malanowski, 1987Based on data from 54. to 61. K.; AC
1.960.AStull, 1947Based on data from 51. to 68. K.; AC
1.962.ACrommelin, Bijleveld, et al., 1931Based on data from 57. to 68. K.; AC

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Manganese, tricarbonyl(η5-2,4-cyclopentadien-1-yl)- (solution) + Heptane (solution) = C14H21MnO2 (solution) + Carbon monoxide (solution)

By formula: C8H5MnO3 (solution) + C7H16 (solution) = C14H21MnO2 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr47. ± 2.kcal/molAVGN/AAverage of 18 values; Individual data points

Chromium hexacarbonyl (solution) + Heptane (solution) = C12H16CrO5 (solution) + Carbon monoxide (solution)

By formula: C6CrO6 (solution) + C7H16 (solution) = C12H16CrO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr27.1 ± 0.8kcal/molAVGN/AAverage of 13 values; Individual data points

Chromium hexacarbonyl (solution) = C5CrO5 (solution) + Carbon monoxide (solution)

By formula: C6CrO6 (solution) = C5CrO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr40.20 ± 0.60kcal/molKinSGraham and Angelici, 1967solvent: Decalin; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Cr(CO)6(solution) with PBu3(solution).; MS
Δr38.10kcal/molKinSWerner and Prinz, 1966solvent: n-Decane+cyclohexane mixture; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reactions of Cr(CO)6(solution) with a phosphine and an amine. The results were quoted from Graham and Angelici, 1967.; MS

Molybdenum hexacarbonyl (solution) = C5MoO5 (solution) + Carbon monoxide (solution)

By formula: C6MoO6 (solution) = C5MoO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr31.7 ± 1.4kcal/molKinSGraham and Angelici, 1967solvent: Decalin; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Mo(CO)6(solution) with PBu3(solution).; MS
Δr30.21kcal/molKinSWerner and Prinz, 1966solvent: n-Decane+cyclohexane mixture; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reactions of Mo(CO)6(solution) with a phosphine and an amine. The results were quoted from Graham and Angelici, 1967.; MS

Tungsten hexacarbonyl (solution) = C5O5W (solution) + Carbon monoxide (solution)

By formula: C6O6W (solution) = C5O5W (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr39.9 ± 1.6kcal/molKinSGraham and Angelici, 1967solvent: Decalin; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of W(CO)6(solution) with PBu3(solution).; MS
Δr39.01kcal/molKinSWerner and Prinz, 1966solvent: n-Decane+cyclohexane mixture; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reactions of W(CO)6(solution) with a phosphine and an amine. The results were quoted from Graham and Angelici, 1967.; MS

C11H2O11Os (solution) + Carbon monoxide (solution) = Hydrogen (g) + Osmium, dodecacarbonyltri-, triangulo (solution)

By formula: C11H2O11Os (solution) + CO (solution) = H2 (g) + C12O12Os3 (solution)

Quantity Value Units Method Reference Comment
Δr-9.0 ± 2.3kcal/molES/KSPoë, Sampson, et al., 1993solvent: Decalin; Calculated from equilibrium and kinetic data Poë, Sampson, et al., 1993.; MS
Δr-18.5 ± 2.3kcal/molN/APoë, Sampson, et al., 1993solvent: Decalin; Calculated from data for the reactions Os3(CO)10(H)2(solution) + CO(solution) = Os3(CO)11(H)2(solution) (hrxn [kJ/mol]=-39.7±1.3, srxn [J/(mol K)]=-80.3±3.8) and Os3(CO)11(H)2(solution) + CO(solution) = Os3(CO)12(solution) + H2(g) (hrxn [kJ/mol]=-37.7±9.6, srxn [J/(mol K)]=-32.6±27.6) Poë, Sampson, et al., 1993.; MS

Iron pentacarbonyl (g) = C4FeO4 (g) + Carbon monoxide (g)

By formula: C5FeO5 (g) = C4FeO4 (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr41.5 ± 3.0kcal/molLPHPLewis, Golden, et al., 1984Please also see Smith and Laine, 1981. Temperature range: 670-780 K. The reaction enthalpy at 298 K relies on an activation energy of 40.01 kcal/mol and assumes a negligible activation barrier for product recombination. The enthalpy of formation relies on -173.0 ± 1.6 kcal/mol for the enthalpy of formation of Fe(CO)5(g). At least two other estimates of the activation energy for the Fe(CO)4(g) + CO(g) recombination have been reported: 1.7 kcal/mol Miller and Grant, 1985 and 3.99 kcal/mol Walsh, 1986. In Lewis, Golden, et al., 1984 authors have considered that the Fe(CO)4(g) fragment is in its singlet excited state. However, it has also been suggested that the fragment is formed in its triplet ground state Ray, Brandow, et al., 1988 Sunderlin, Wang, et al., 1992; MS
Δr55. ± 11.kcal/molN/AEngelking and Lineberger, 1979Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS

Molybdenum hexacarbonyl (g) = C5MoO5 (g) + Carbon monoxide (g)

By formula: C6MoO6 (g) = C5MoO5 (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr34.9 ± 5.0kcal/molKinGGanske and Rosenfeld, 1990MS
Δr40.5 ± 3.0kcal/molLPHPLewis, Golden, et al., 1984The reaction enthalpy at 298 K relies on an activation energy of 39.01 kcal/mol and assumes a negligible activation barrier for product recombination. The enthalpy of formation relies on -218.8 ± 0.50 kcal/mol for the enthalpy of formation of Mo(CO)6(g); MS
Δr30.21kcal/molKinGCetini and Gambino, 1963Please also see Graham and Angelici, 1967. The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Mo(CO)6(g) with CO(g) Cetini and Gambino, 1963. The results were quoted from Graham and Angelici, 1967.; MS

Tungsten hexacarbonyl (g) = C5O5W (g) + Carbon monoxide (g)

By formula: C6O6W (g) = C5O5W (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr46.0 ± 3.0kcal/molLPHPLewis, Golden, et al., 1984The reaction enthalpy at 298 K relies on an activation energy of 44.50 kcal/mol and assumes a negligible activation barrier for product recombination. The enthalpy of formation relies on -211.3 ± 0.65 kcal/mol for the enthalpy of formation of W(CO)6(g); MS
Δr39.79kcal/molKinGCetini and Gambino, 1963, 2Please also see Graham and Angelici, 1967. The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of W(CO)6(g) with CO(g) Cetini and Gambino, 1963, 2. The results were quoted from Graham and Angelici, 1967.; MS

Chromium hexacarbonyl (g) = C5CrO5 (g) + Carbon monoxide (g)

By formula: C6CrO6 (g) = C5CrO5 (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr37.0 ± 5.0kcal/molKinGFletcher and Rosenfeld, 1988MS
Δr36.8 ± 3.0kcal/molLPHPLewis, Golden, et al., 1984Temperature range: 740-820 K. The reaction enthalpy at 298 K relies on an activation energy of 35.30 kcal/mol and assumes a negligible activation barrier for product recombination.; MS
Δr38.70kcal/molKinGPajaro, Calderazzo, et al., 1960Please also see Graham and Angelici, 1967. The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Cr(CO)6(g) with CO(g) Pajaro, Calderazzo, et al., 1960. The results were quoted from Graham and Angelici, 1967.; MS

C10H5CrNO5 (solution) + Carbon monoxide (solution) = Chromium hexacarbonyl (solution) + 1,3-Diazine (solution)

By formula: C10H5CrNO5 (solution) + CO (solution) = C6CrO6 (solution) + C4H4N2 (solution)

Quantity Value Units Method Reference Comment
Δr-14.8kcal/molKinSWovkulich and Atwood, 1980solvent: Hexane; The data rely on the enthalpy and entropy of activation for the forward reaction, 25.4 ± 1.1 kcal/mol and 13.0±14.6 J/(mol K) Dennenberg and Darensbourg, 1972, and also on the enthalpy and entropy of activation for the Cr-CO dissociation in Cr(CO)6, 40.20 ± 0.60 kcal/mol and 94.6±6.3 J/(mol K) Graham and Angelici, 1967. The latter data were obtained in decalin; MS

CO+ + Carbon monoxide = (CO+ • Carbon monoxide)

By formula: CO+ + CO = (CO+ • CO)

Quantity Value Units Method Reference Comment
Δr16.kcal/molPIPECONorwood, Guo, et al., 1988gas phase; CO+ in state B, ΔrH>; M
Δr22.4kcal/molPILinn, Ono, et al., 1981gas phase; M
Δr28. ± 7.kcal/molEIMunson and Franlin, 1962gas phase; from IP'switching reaction and heats of formation; M
Δr25.4kcal/molPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; ΔrH>, DG>; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; ΔrH>, DG>; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
4.9340.HPMSChong and Franklin, 1971gas phase; equilibrium uncertain; M
11.5695.PHPMSMeot-Ner (Mautner) and Field, 1974gas phase; ΔrH>, DG>; M

Tungsten hexacarbonyl (cr) = 6Carbon monoxide (g) + tungsten (cr)

By formula: C6O6W (cr) = 6CO (g) + W (cr)

Quantity Value Units Method Reference Comment
Δr71.4 ± 1.1kcal/molTD-HFC, HAL-HFCAl-Takhin, Connor, et al., 1984The reaction enthalpy corresponds to the TD experiments and leads to -229.9 ± 1.1 kcal/mol for the enthalpy of formation. The value -960±3 was recommended by the authors Al-Takhin, Connor, et al., 1984. Other values for the enthalpy of sublimation have been reported: 17.5 ± 0.2 kcal/mol Adedeji, Brown, et al., 1975, 17.7 ± 1.0 kcal/mol Hieber and Romberg, 1935, 16.7 ± 1.0 kcal/mol Rezukhina and Shvyrev, 1952, and 18.9 ± 0.26 kcal/mol Daamen, Ernsting, et al., 1979 Boxhoorn, Ernsting, et al., 1980. See also Pilcher, Ware, et al., 1975; MS
Δr70.77 ± 0.43kcal/molTD-HZCBarnes, Pilcher, et al., 1974Please also see Pedley and Rylance, 1977 and Tel'noi and Rabinovich, 1977.; MS

Tri-ruthenium dodecacarbonyl (solution) + 3Carbon monoxide (solution) = 3C5O5Ru (solution)

By formula: C12O12Ru3 (solution) + 3CO (solution) = 3C5O5Ru (solution)

Quantity Value Units Method Reference Comment
Δr-3.11 ± 0.26kcal/molEqSKoelliker and Bor, 1991solvent: Isooctane; Temperature range: 373-448 K; MS
Δr-6.48 ± 0.45kcal/molEqSBor, 1986solvent: n-Hexane; Temperature range: ca. 348-448 K; MS

Dicobalt octacarbonyl (solution) = C7Co2O7 (solution) + Carbon monoxide (solution)

By formula: C8Co2O8 (solution) = C7Co2O7 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr22.2kcal/molKinSUngváry and Markó, 1974solvent: Heptane; Temperature range: 298-328 K; MS
Δr21.0kcal/molKinSUngváry, 1972solvent: Heptane; Temperature range: 307-337 K; MS

Tungsten hexacarbonyl (cr) + 1,3-Diazine (l) = C10H5NO5W (cr) + Carbon monoxide (g)

By formula: C6O6W (cr) + C4H4N2 (l) = C10H5NO5W (cr) + CO (g)

Quantity Value Units Method Reference Comment
Δr8.27kcal/molN/ANakashima and Adamson, 1982The reaction enthalpy was calculated from the enthalpy of the reaction W(CO)6(solution) + py(solution) = W(CO)5(py)(solution) + CO(solution) in cyclohexane, 6.55 ± 0.69 kcal/mol, together with the enthalpies of solution of W(CO)6(cr), W(CO)5(py)(cr), and py(l), 35.7, 36.4, and 1.9 kcal/mol, respectively Nakashima and Adamson, 1982.; MS

Formyl cation + Carbon monoxide = (Formyl cation • Carbon monoxide)

By formula: CHO+ + CO = (CHO+ • CO)

Quantity Value Units Method Reference Comment
Δr10.8kcal/molPHPMSJennings, Headley, et al., 1982gas phase; M
Δr12.8kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Δr11.7kcal/molPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr22.5cal/mol*KPHPMSJennings, Headley, et al., 1982gas phase; M
Δr24.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Δr20.9cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; M

Cobalt ion (1+) + Carbon monoxide = (Cobalt ion (1+) • Carbon monoxide)

By formula: Co+ + CO = (Co+ • CO)

Quantity Value Units Method Reference Comment
Δr41.6 ± 1.7kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr39. ± 3.kcal/molMKERCarpenter, van Koppen, et al., 1995gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
41.5 (+1.6,-0.) CIDGoebel, Haynes, et al., 1995gas phase; guided ion beam CID; M
39.0 (+4.8,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Molybdenum hexacarbonyl (solution) + Heptane (solution) = C12H16MoO5 (solution) + Carbon monoxide (solution)

By formula: C6MoO6 (solution) + C7H16 (solution) = C12H16MoO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr32.3 ± 2.9kcal/molPACJohnson, Popov, et al., 1991solvent: Heptane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation.; MS
Δr31.8 ± 1.3kcal/molPACMorse, Parker, et al., 1989solvent: Heptane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation; MS

C2FeO2 (g) = Carbon monoxide (g) + CFeO (g)

By formula: C2FeO2 (g) = CO (g) + CFeO (g)

Quantity Value Units Method Reference Comment
Δr36.7 ± 3.5kcal/molFA-SIFTSunderlin, Wang, et al., 1992MS
Δr>27.0kcal/molN/AVenkataraman, Bandukwalla, et al., 1989Method: Velocity distributions of photofragments from Fe(CO)5.; MS
Δr23.9 ± 6.9kcal/molN/AEngelking and Lineberger, 1979Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS

Nickel tetracarbonyl (g) = 4Carbon monoxide (g) + nickel (cr)

By formula: C4NiO4 (g) = 4CO (g) + Ni (cr)

Quantity Value Units Method Reference Comment
Δr38.34 ± 0.60kcal/molEqGMonteil, Raffin, et al., 1988The reaction enthalpy is the average of several 2nd and 3rd law results Monteil, Raffin, et al., 1988; MS

Nickel ion (1+) + Carbon monoxide = (Nickel ion (1+) • Carbon monoxide)

By formula: Ni+ + CO = (Ni+ • CO)

Quantity Value Units Method Reference Comment
Δr39. ± 3.kcal/molMKERCarpenter, van Koppen, et al., 1995gas phase; determined from MKER and theory; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
41.7 (+2.5,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M
42.5 (+2.2,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

C3FeO3 (g) = Carbon monoxide (g) + C2FeO2 (g)

By formula: C3FeO3 (g) = CO (g) + C2FeO2 (g)

Quantity Value Units Method Reference Comment
Δr29.0 ± 5.8kcal/molFA-SIFTSunderlin, Wang, et al., 1992MS
Δr25.1kcal/molN/AVenkataraman, Bandukwalla, et al., 1989Method: Velocity distributions of photofragments from Fe(CO)5.; MS
Δr32.7 ± 6.9kcal/molN/AEngelking and Lineberger, 1979Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS

CFeO (g) = Carbon monoxide (g) + iron (g)

By formula: CFeO (g) = CO (g) + Fe (g)

Quantity Value Units Method Reference Comment
Δr8.4 ± 3.5kcal/molFA-SIFTSunderlin, Wang, et al., 1992MS
Δr<39.0kcal/molN/AVenkataraman, Bandukwalla, et al., 1989Method: Velocity distributions of photofragments from Fe(CO)5.; MS
Δr21. ± 6.9kcal/molN/AEngelking and Lineberger, 1979Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS

C4FeO4 (g) = C3FeO3 (g) + Carbon monoxide (g)

By formula: C4FeO4 (g) = C3FeO3 (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr28.0 ± 8.6kcal/molFA-SIFTSunderlin, Wang, et al., 1992MS
Δr10.kcal/molN/AVenkataraman, Bandukwalla, et al., 1989Method: Velocity distributions of photofragments from Fe(CO)5.; MS
Δr4.5 ± 9.3kcal/molN/AEngelking and Lineberger, 1979Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS

Nickel tetracarbonyl (solution) = C3NiO3 (solution) + Carbon monoxide (solution)

By formula: C4NiO4 (solution) = C3NiO3 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr22.6kcal/molKinSTurner, Simpson, et al., 1983solvent: Liquid krypton; The reaction enthalpy relies on the experimental value for the activation enthalpy, 22.6 kcal/mol, and on the assumption that the activation enthalpy for product recombination is negligible Turner, Simpson, et al., 1983.; MS

(CAS Reg. No. 71564-27-7 • 4294967295Carbon monoxide) + Carbon monoxide = CAS Reg. No. 71564-27-7

By formula: (CAS Reg. No. 71564-27-7 • 4294967295CO) + CO = CAS Reg. No. 71564-27-7

Quantity Value Units Method Reference Comment
Δr34.7 ± 9.6kcal/molN/ANakajima, Taguwa, et al., 1994gas phase; Vertical Detachment Energy: 3.02±0.13 eV; B
Δr36. ± 12.kcal/molN/AEngelking and Lineberger, 1979gas phase; B
Δr41.7 ± 2.5kcal/molCIDTSunderlin, Wang, et al., 1992gas phase; Affinity: CO..Fe(CO)3-; B

2-Cyclopropen-1-one, 2,3-diphenyl- = Diphenylacetylene + Carbon monoxide

By formula: C15H10O = C14H10 + CO

Quantity Value Units Method Reference Comment
Δr-6.7 ± 1.2kcal/molCphaHung and Grabowski, 1992liquid phase; solvent: Alkane; ALS
Δr4.2 ± 2.5kcal/molCphaHerman and Goodman, 1989solid phase; solvent: Acetonitrile/water; ALS
Δr-9.9 ± 2.9kcal/molCphaGrabowski, Simon, et al., 1984liquid phase; solvent: Benzene; ALS

(Formyl cation • 2Carbon monoxide) + Carbon monoxide = (Formyl cation • 3Carbon monoxide)

By formula: (CHO+ • 2CO) + CO = (CHO+ • 3CO)

Quantity Value Units Method Reference Comment
Δr4.7 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr6.3kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr15.8cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr26.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Formyl cation • 3Carbon monoxide) + Carbon monoxide = (Formyl cation • 4Carbon monoxide)

By formula: (CHO+ • 3CO) + CO = (CHO+ • 4CO)

Quantity Value Units Method Reference Comment
Δr4.5 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr6.2kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr18.2cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr29.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Formyl cation • 4Carbon monoxide) + Carbon monoxide = (Formyl cation • 5Carbon monoxide)

By formula: (CHO+ • 4CO) + CO = (CHO+ • 5CO)

Quantity Value Units Method Reference Comment
Δr4.2 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr5.8kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr22.9cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr32.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Formyl cation • Carbon monoxide) + Carbon monoxide = (Formyl cation • 2Carbon monoxide)

By formula: (CHO+ • CO) + CO = (CHO+ • 2CO)

Quantity Value Units Method Reference Comment
Δr4.9 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr6.6kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr15.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr24.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

CNiO (g) = Carbon monoxide (g) + nickel (g)

By formula: CNiO (g) = CO (g) + Ni (g)

Quantity Value Units Method Reference Comment
Δr40.6 ± 5.8kcal/molFA-SIFTSunderlin, Wang, et al., 1992MS
Δr25.8kcal/molN/AMcQuaid, Morris, et al., 1988Method: Chemiluminescence spectroscopy.; MS
Δr29. ± 15.kcal/molN/AStevens, Feigerle, et al., 1982Please also see Compton and Stockdale, 1976. Method: LPS and collision with low energy electrons.; MS

(Cobalt ion (1+) • Carbon monoxide) + Carbon monoxide = (Cobalt ion (1+) • 2Carbon monoxide)

By formula: (Co+ • CO) + CO = (Co+ • 2CO)

Quantity Value Units Method Reference Comment
Δr36.6 ± 2.2kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
36.4 (+2.1,-0.) CIDGoebel, Haynes, et al., 1995gas phase; guided ion beam CID; M
32.9 (+4.8,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Iron ion (1+) + Carbon monoxide = (Iron ion (1+) • Carbon monoxide)

By formula: Fe+ + CO = (Fe+ • CO)

Quantity Value Units Method Reference Comment
Δr30.8 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr32. ± 3.kcal/molMKERCarpenter, van Koppen, et al., 1995gas phase; determined from MKER and theory; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
31.3 (+1.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Manganese, pentacarbonylmethyl- (solution) + Carbon monoxide (solution) = Manganese, acetylpentacarbonyl-, (OC-6-21)- (solution)

By formula: C6H3MnO5 (solution) + CO (solution) = C7H3MnO6 (solution)

Quantity Value Units Method Reference Comment
Δr-13.4 ± 1.0kcal/molRSCNolan, López de la Vega, et al., 1986solvent: Tetrahydrofuran; MS
Δr-12.6kcal/molEqSCalderazzo, 1977solvent: 2,2'-diethoxydiethyl ether; MS

Cobalt, tetracarbonylhydro- (g) = 0.5Hydrogen (g) + 4Carbon monoxide (g) + cobalt (cr)

By formula: C4HCoO4 (g) = 0.5H2 (g) + 4CO (g) + Co (cr)

Quantity Value Units Method Reference Comment
Δr30.38 ± 0.50kcal/molEqGBronshstein, Gankin, et al., 1966Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970. Temperature range: ca. 423-533 K; MS

(Sodium ion (1+) • Carbon monoxide) + Carbon monoxide = (Sodium ion (1+) • 2Carbon monoxide)

By formula: (Na+ • CO) + CO = (Na+ • 2CO)

Quantity Value Units Method Reference Comment
Δr5.7 ± 0.7kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr5.7 ± 0.7kcal/molCIDTWalter, Sievers, et al., 1998RCD
Δr7.5kcal/molHPMSCastleman, Peterson, et al., 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr15.1cal/mol*KHPMSCastleman, Peterson, et al., 1983gas phase; M

Tungsten hexacarbonyl (solution) + 1,3-Diazine (solution) = C10H5NO5W (solution) + Carbon monoxide (solution)

By formula: C6O6W (solution) + C4H4N2 (solution) = C10H5NO5W (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr6.55 ± 0.69kcal/molPCNakashima and Adamson, 1982solvent: Cyclohexane; MS
Δr5.95 ± 0.69kcal/molPCNakashima and Adamson, 1982solvent: Benzene; MS
Δr4.40 ± 0.1kcal/molPCNakashima and Adamson, 1982solvent: Tetrahydrofuran; MS

Sodium ion (1+) + Carbon monoxide = (Sodium ion (1+) • Carbon monoxide)

By formula: Na+ + CO = (Na+ • CO)

Quantity Value Units Method Reference Comment
Δr7.6 ± 1.9kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr7.6 ± 1.9kcal/molCIDTWalter, Sievers, et al., 1998RCD
Δr12.6kcal/molHPMSCastleman, Peterson, et al., 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr20.4cal/mol*KHPMSCastleman, Peterson, et al., 1983gas phase; M

Nickel tetracarbonyl (g) = C3NiO3 (g) + Carbon monoxide (g)

By formula: C4NiO4 (g) = C3NiO3 (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr25. ± 2.kcal/molN/AStevens, Feigerle, et al., 1982Please also see Compton and Stockdale, 1976. The enthalpy of formation relies on -144.0 ± 0.62 kcal/mol for the enthalpy of formation of Ni(CO)4(g) Method: LPS and collision with low energy electrons.; MS

(CO+ • 2Carbon monoxide) + Carbon monoxide = (CO+ • 3Carbon monoxide)

By formula: (CO+ • 2CO) + CO = (CO+ • 3CO)

Quantity Value Units Method Reference Comment
Δr7.21kcal/molPHPMSHiraoka and Mori, 1991gas phase; two isomers, at low and high temperatures; M
Quantity Value Units Method Reference Comment
Δr24.5cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; two isomers, at low and high temperatures; M

(CO+ • 5Carbon monoxide) + Carbon monoxide = (CO+ • 6Carbon monoxide)

By formula: (CO+ • 5CO) + CO = (CO+ • 6CO)

Quantity Value Units Method Reference Comment
Δr2.70kcal/molPHPMSHiraoka and Mori, 1991gas phase; two isomers, at low and high temperatures; M
Quantity Value Units Method Reference Comment
Δr19.1cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; two isomers, at low and high temperatures; M

C34H52OTh (solution) + Carbon monoxide (solution) = C35H52O2Th (solution)

By formula: C34H52OTh (solution) + CO (solution) = C35H52O2Th (solution)

Quantity Value Units Method Reference Comment
Δr-5.9 ± 1.5kcal/molEqSMoloy and Marks, 1984solvent: Toluene; Temperature range: ca. 180-200 K; MS

C29H50OTh (solution) + Carbon monoxide (solution) = C30H50O2Th (solution)

By formula: C29H50OTh (solution) + CO (solution) = C30H50O2Th (solution)

Quantity Value Units Method Reference Comment
Δr-4.49 ± 0.91kcal/molEqSMoloy and Marks, 1984solvent: Toluene; Temperature range: ca. 180-220 K; MS

Molybdenum hexacarbonyl (cr) = 6Carbon monoxide (g) + molybdenum (cr)

By formula: C6MoO6 (cr) = 6CO (g) + Mo (cr)

Quantity Value Units Method Reference Comment
Δr77.89 ± 0.36kcal/molTD-HZCBarnes, Pilcher, et al., 1974, 2Please also see Pedley and Rylance, 1977 and Tel'noi and Rabinovich, 1977.; MS
Δr71.0 ± 1.0kcal/molTD-HFCConnor, Skinner, et al., 1972Please also see Pedley and Rylance, 1977 and Tel'noi and Rabinovich, 1977.; MS

(Formyl cation • 14Carbon monoxide) + Carbon monoxide = (Formyl cation • 15Carbon monoxide)

By formula: (CHO+ • 14CO) + CO = (CHO+ • 15CO)

Quantity Value Units Method Reference Comment
Δr1.76kcal/molPHPMSHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KN/AHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M

bis(η(5)-Cyclopentadienyl) chromium (solution) + Carbon monoxide (solution) = C11H10CrO (solution)

By formula: C10H10Cr (solution) + CO (solution) = C11H10CrO (solution)

Quantity Value Units Method Reference Comment
Δr-18.8 ± 0.50kcal/molEqSWong and Brintzinger, 1975solvent: Toluene; Temperature range: 280-308 K; MS

Chromium hexacarbonyl (cr) = 6Carbon monoxide (g) + chromium (cr)

By formula: C6CrO6 (cr) = 6CO (g) + Cr (cr)

Quantity Value Units Method Reference Comment
Δr63.6 ± 1.kcal/molTD-HFCAl-Takhin, Connor, et al., 1984, 2MS
Δr75.3 ± 0.2kcal/molTD-HZCPittam, Pilcher, et al., 1975Please also see Pedley and Rylance, 1977 and Tel'noi and Rabinovich, 1977.; MS
Δr64.4 ± 1.1kcal/molTD-HFCConnor, Skinner, et al., 1972MS

2Dicobalt octacarbonyl (solution) = C12Co4O12 (solution) + 4Carbon monoxide (solution)

By formula: 2C8Co2O8 (solution) = C12Co4O12 (solution) + 4CO (solution)

Quantity Value Units Method Reference Comment
Δr29.49 ± 0.50kcal/molEqSBor and Dietler, 1980solvent: Hexane; Temperature range: 378-418 K; MS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess

View reactions leading to CO+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)14.014 ± 0.0003eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)142.kcal/molN/AHunter and Lias, 1998at C; HL
Proton affinity (review)101.9kcal/molN/AHunter and Lias, 1998at O; HL
Quantity Value Units Method Reference Comment
Gas basicity134.5kcal/molN/AHunter and Lias, 1998at C; HL
Gas basicity96.13kcal/molN/AHunter and Lias, 1998at O; HL
Quantity Value Units Method Reference Comment
Δf(+) ion296.7kcal/molN/AN/A 
Quantity Value Units Method Reference Comment
ΔfH(+) ion,0K296.0kcal/molN/AN/A 

Electron affinity determinations

EA (eV) Method Reference Comment
1.32608R-ARefaey and Franklin, 1976G3MP2B3 calculations indicate an EA of ca.-1.6 eV, anion unbound; B

Ionization energy determinations

IE (eV) Method Reference Comment
14.0142 ± 0.0003LSErman, Karawajczyk, et al., 1993LL
14.1PEKimura, Katsumata, et al., 1981LLK
14.014SFock, Gurtler, et al., 1980LLK
14.07 ± 0.05EIHille and Mark, 1978LLK
14.0PIRabalais, Debies, et al., 1974LLK
14.01PENatalis, 1973LLK
14.0139SOgawa and Ogawa, 1972LLK
14.01PEHotop and Niehaus, 1970RDSH
14.01PECollin and Natalis, 1969RDSH
14.00PETurner and May, 1966RDSH
14.013 ± 0.004SKrupenie, 1966RDSH
13.985PICook, Metzger, et al., 1965RDSH
14.01PEPotts and Williams, 1974Vertical value; LLK
14.01PEKatrib, Debies, et al., 1973Vertical value; LLK
14.0PEThomas, 1970Vertical value; RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+20.94 ± 0.02O-PIOertel, Schenk, et al., 1980LLK
C+20.89O-(2P)EISmyth, Schiavone, et al., 1974LLK
C+20.88 ± 0.02O-EILocht and Momigny, 1971LLK
C+22.45 ± 0.10OEIHierl and Franklin, 1967RDSH
C+20.82 ± 0.05O-EIHierl and Franklin, 1967RDSH
C+22.57 ± 0.20OEIFineman and Petrocelli, 1961RDSH
C+20.89 ± 0.09O-EIFineman and Petrocelli, 1961RDSH
CO+19.5 ± 0.2O-?PIWeissler, Samson, et al., 1959RDSH
O+23.44C-EISmyth, Schiavone, et al., 1974LLK
O+23.20 ± 0.05C-EIHierl and Franklin, 1967RDSH
O+24.65 ± 0.05CEIHierl and Franklin, 1967RDSH
O+23.41 ± 0.17C-EIFineman and Petrocelli, 1961RDSH
O+24.78 ± 0.23CEIFineman and Petrocelli, 1961RDSH

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Silver ion (1+) + Carbon monoxide = (Silver ion (1+) • Carbon monoxide)

By formula: Ag+ + CO = (Ag+ • CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
21.2 (+1.2,-0.) CIDMeyer, Chen, et al., 1995gas phase; guided ion beam CID; M

(Silver ion (1+) • Carbon monoxide) + Carbon monoxide = (Silver ion (1+) • 2Carbon monoxide)

By formula: (Ag+ • CO) + CO = (Ag+ • 2CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
26.1 (+0.9,-0.) CIDMeyer, Chen, et al., 1995gas phase; guided ion beam CID; M

(Silver ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Silver ion (1+) • 3Carbon monoxide)

By formula: (Ag+ • 2CO) + CO = (Ag+ • 3CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
13.1 (+1.8,-0.) CIDMeyer, Chen, et al., 1995gas phase; guided ion beam CID; M

(Silver ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Silver ion (1+) • 4Carbon monoxide)

By formula: (Ag+ • 3CO) + CO = (Ag+ • 4CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
10.8 (+0.9,-0.) CIDMeyer, Chen, et al., 1995gas phase; guided ion beam CID; M

Ar+ + Carbon monoxide = (Ar+ • Carbon monoxide)

By formula: Ar+ + CO = (Ar+ • CO)

Quantity Value Units Method Reference Comment
Δr18. ± 4.kcal/molPIPECONorwood, Guo, et al., 1989gas phase; Ar+(2P3/2); M

(Ar+ • Carbon monoxide) + Carbon monoxide = (Ar+ • 2Carbon monoxide)

By formula: (Ar+ • CO) + CO = (Ar+ • 2CO)

Quantity Value Units Method Reference Comment
Δr3.kcal/molPIPECONorwood, Guo, et al., 1989gas phase; approximate value from Ar+(2P3/2) 2CO -> Ar+(2P3/2) + 2CO; M

Trifluoromethyl cation + Carbon monoxide = (Trifluoromethyl cation • Carbon monoxide)

By formula: CF3+ + CO = (CF3+ • CO)

Quantity Value Units Method Reference Comment
Δr16.0kcal/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr30.cal/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • Carbon monoxide) + Carbon monoxide = (Trifluoromethyl cation • 2Carbon monoxide)

By formula: (CF3+ • CO) + CO = (CF3+ • 2CO)

Quantity Value Units Method Reference Comment
Δr6.3kcal/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • 2Carbon monoxide) + Carbon monoxide = (Trifluoromethyl cation • 3Carbon monoxide)

By formula: (CF3+ • 2CO) + CO = (CF3+ • 3CO)

Quantity Value Units Method Reference Comment
Δr5.8kcal/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • 3Carbon monoxide) + Carbon monoxide = (Trifluoromethyl cation • 4Carbon monoxide)

By formula: (CF3+ • 3CO) + CO = (CF3+ • 4CO)

Quantity Value Units Method Reference Comment
Δr5.4kcal/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • 4Carbon monoxide) + Carbon monoxide = (Trifluoromethyl cation • 5Carbon monoxide)

By formula: (CF3+ • 4CO) + CO = (CF3+ • 5CO)

Quantity Value Units Method Reference Comment
Δr3.2kcal/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • 5Carbon monoxide) + Carbon monoxide = (Trifluoromethyl cation • 6Carbon monoxide)

By formula: (CF3+ • 5CO) + CO = (CF3+ • 6CO)

Quantity Value Units Method Reference Comment
Δr2.9kcal/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • 6Carbon monoxide) + Carbon monoxide = (Trifluoromethyl cation • 7Carbon monoxide)

By formula: (CF3+ • 6CO) + CO = (CF3+ • 7CO)

Quantity Value Units Method Reference Comment
Δr2.6kcal/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(CFeO- • 4294967295Carbon monoxide) + Carbon monoxide = CFeO-

By formula: (CFeO- • 4294967295CO) + CO = CFeO-

Quantity Value Units Method Reference Comment
Δr34.8 ± 3.5kcal/molN/AVillalta and Leopold, 1993gas phase; B
Δr33.7 ± 3.5kcal/molCIDTSunderlin, Wang, et al., 1992gas phase; B

Formyl cation + Carbon monoxide = (Formyl cation • Carbon monoxide)

By formula: CHO+ + CO = (CHO+ • CO)

Quantity Value Units Method Reference Comment
Δr10.8kcal/molPHPMSJennings, Headley, et al., 1982gas phase; M
Δr12.8kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Δr11.7kcal/molPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr22.5cal/mol*KPHPMSJennings, Headley, et al., 1982gas phase; M
Δr24.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Δr20.9cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; M

(Formyl cation • Carbon monoxide) + Carbon monoxide = (Formyl cation • 2Carbon monoxide)

By formula: (CHO+ • CO) + CO = (CHO+ • 2CO)

Quantity Value Units Method Reference Comment
Δr4.9 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr6.6kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr15.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr24.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Formyl cation • 2Carbon monoxide) + Carbon monoxide = (Formyl cation • 3Carbon monoxide)

By formula: (CHO+ • 2CO) + CO = (CHO+ • 3CO)

Quantity Value Units Method Reference Comment
Δr4.7 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr6.3kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr15.8cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr26.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Formyl cation • 3Carbon monoxide) + Carbon monoxide = (Formyl cation • 4Carbon monoxide)

By formula: (CHO+ • 3CO) + CO = (CHO+ • 4CO)

Quantity Value Units Method Reference Comment
Δr4.5 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr6.2kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr18.2cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr29.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Formyl cation • 4Carbon monoxide) + Carbon monoxide = (Formyl cation • 5Carbon monoxide)

By formula: (CHO+ • 4CO) + CO = (CHO+ • 5CO)

Quantity Value Units Method Reference Comment
Δr4.2 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr5.8kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr22.9cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr32.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Formyl cation • 5Carbon monoxide) + Carbon monoxide = (Formyl cation • 6Carbon monoxide)

By formula: (CHO+ • 5CO) + CO = (CHO+ • 6CO)

Quantity Value Units Method Reference Comment
Δr2.4 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr19.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 6Carbon monoxide) + Carbon monoxide = (Formyl cation • 7Carbon monoxide)

By formula: (CHO+ • 6CO) + CO = (CHO+ • 7CO)

Quantity Value Units Method Reference Comment
Δr2.3 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr21.1cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 7Carbon monoxide) + Carbon monoxide = (Formyl cation • 8Carbon monoxide)

By formula: (CHO+ • 7CO) + CO = (CHO+ • 8CO)

Quantity Value Units Method Reference Comment
Δr2.2 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr22.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 8Carbon monoxide) + Carbon monoxide = (Formyl cation • 9Carbon monoxide)

By formula: (CHO+ • 8CO) + CO = (CHO+ • 9CO)

Quantity Value Units Method Reference Comment
Δr2.1 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr22.6cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 9Carbon monoxide) + Carbon monoxide = (Formyl cation • 10Carbon monoxide)

By formula: (CHO+ • 9CO) + CO = (CHO+ • 10CO)

Quantity Value Units Method Reference Comment
Δr2.0 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr22.3cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 10Carbon monoxide) + Carbon monoxide = (Formyl cation • 11Carbon monoxide)

By formula: (CHO+ • 10CO) + CO = (CHO+ • 11CO)

Quantity Value Units Method Reference Comment
Δr2.0 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr23.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 11Carbon monoxide) + Carbon monoxide = (Formyl cation • 12Carbon monoxide)

By formula: (CHO+ • 11CO) + CO = (CHO+ • 12CO)

Quantity Value Units Method Reference Comment
Δr1.9 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr23.2cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 12Carbon monoxide) + Carbon monoxide = (Formyl cation • 13Carbon monoxide)

By formula: (CHO+ • 12CO) + CO = (CHO+ • 13CO)

Quantity Value Units Method Reference Comment
Δr1.8 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr23.2cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 13Carbon monoxide) + Carbon monoxide = (Formyl cation • 14Carbon monoxide)

By formula: (CHO+ • 13CO) + CO = (CHO+ • 14CO)

Quantity Value Units Method Reference Comment
Δr1.8 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr23.1cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 14Carbon monoxide) + Carbon monoxide = (Formyl cation • 15Carbon monoxide)

By formula: (CHO+ • 14CO) + CO = (CHO+ • 15CO)

Quantity Value Units Method Reference Comment
Δr1.76kcal/molPHPMSHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KN/AHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M

(CHO- • 4294967295Carbon monoxide) + Carbon monoxide = CHO-

By formula: (CHO- • 4294967295CO) + CO = CHO-

Quantity Value Units Method Reference Comment
Δr5.42 ± 0.45kcal/molN/AMurray, Miller, et al., 1986gas phase; B

(CNiO- • 4294967295Carbon monoxide) + Carbon monoxide = CNiO-

By formula: (CNiO- • 4294967295CO) + CO = CNiO-

Quantity Value Units Method Reference Comment
Δr33.0 ± 5.8kcal/molN/AStevens, Feigerle, et al., 1982gas phase; B
Δr32.4 ± 5.8kcal/molCIDTSunderlin, Wang, et al., 1992gas phase; Affinity: CO..Ni-; B

CO+ + Carbon monoxide = (CO+ • Carbon monoxide)

By formula: CO+ + CO = (CO+ • CO)

Quantity Value Units Method Reference Comment
Δr16.kcal/molPIPECONorwood, Guo, et al., 1988gas phase; CO+ in state B, ΔrH>; M
Δr22.4kcal/molPILinn, Ono, et al., 1981gas phase; M
Δr28. ± 7.kcal/molEIMunson and Franlin, 1962gas phase; from IP'switching reaction and heats of formation; M
Δr25.4kcal/molPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; ΔrH>, DG>; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; ΔrH>, DG>; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
4.9340.HPMSChong and Franklin, 1971gas phase; equilibrium uncertain; M
11.5695.PHPMSMeot-Ner (Mautner) and Field, 1974gas phase; ΔrH>, DG>; M

(CO+ • Carbon monoxide) + Carbon monoxide = (CO+ • 2Carbon monoxide)

By formula: (CO+ • CO) + CO = (CO+ • 2CO)

Quantity Value Units Method Reference Comment
Δr12.5kcal/molPHPMSHiraoka and Mori, 1991gas phase; M
Δr3.7kcal/molPILinn, Ono, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr35.5cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; M

(CO+ • 2Carbon monoxide) + Carbon monoxide = (CO+ • 3Carbon monoxide)

By formula: (CO+ • 2CO) + CO = (CO+ • 3CO)

Quantity Value Units Method Reference Comment
Δr7.21kcal/molPHPMSHiraoka and Mori, 1991gas phase; two isomers, at low and high temperatures; M
Quantity Value Units Method Reference Comment
Δr24.5cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; two isomers, at low and high temperatures; M

(CO+ • 3Carbon monoxide) + Carbon monoxide = (CO+ • 4Carbon monoxide)

By formula: (CO+ • 3CO) + CO = (CO+ • 4CO)

Quantity Value Units Method Reference Comment
Δr4.40kcal/molPHPMSHiraoka and Mori, 1991gas phase; two isomers; M
Quantity Value Units Method Reference Comment
Δr20.5cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; two isomers; M

(CO+ • 4Carbon monoxide) + Carbon monoxide = (CO+ • 5Carbon monoxide)

By formula: (CO+ • 4CO) + CO = (CO+ • 5CO)

Quantity Value Units Method Reference Comment
Δr4.25kcal/molPHPMSHiraoka and Mori, 1991gas phase; two isomers; M
Quantity Value Units Method Reference Comment
Δr24.4cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; two isomers; M

(CO+ • 5Carbon monoxide) + Carbon monoxide = (CO+ • 6Carbon monoxide)

By formula: (CO+ • 5CO) + CO = (CO+ • 6CO)

Quantity Value Units Method Reference Comment
Δr2.70kcal/molPHPMSHiraoka and Mori, 1991gas phase; two isomers, at low and high temperatures; M
Quantity Value Units Method Reference Comment
Δr19.1cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; two isomers, at low and high temperatures; M

(CO+ • 6Carbon monoxide) + Carbon monoxide = (CO+ • 7Carbon monoxide)

By formula: (CO+ • 6CO) + CO = (CO+ • 7CO)

Quantity Value Units Method Reference Comment
Δr2.25kcal/molPHPMSHiraoka and Mori, 1991gas phase; break in the van't Hoff plot; M
Quantity Value Units Method Reference Comment
Δr21.1cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; break in the van't Hoff plot; M

(CO+ • 7Carbon monoxide) + Carbon monoxide = (CO+ • 8Carbon monoxide)

By formula: (CO+ • 7CO) + CO = (CO+ • 8CO)

Quantity Value Units Method Reference Comment
Δr1.58kcal/molPHPMSHiraoka and Mori, 1991gas phase; break in the van't Hoff plot; M
Quantity Value Units Method Reference Comment
Δr12.4cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; break in the van't Hoff plot; M

(CO+ • 9Carbon monoxide) + Carbon monoxide = (CO+ • 10Carbon monoxide)

By formula: (CO+ • 9CO) + CO = (CO+ • 10CO)

Quantity Value Units Method Reference Comment
Δr1.85kcal/molPHPMSHiraoka and Mori, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr19.1cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; M

(CO+ • 11Carbon monoxide) + Carbon monoxide = (CO+ • 12Carbon monoxide)

By formula: (CO+ • 11CO) + CO = (CO+ • 12CO)

Quantity Value Units Method Reference Comment
Δr2.13kcal/molPHPMSHiraoka and Mori, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr27.1cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; M

(CO+ • 12Carbon monoxide) + Carbon monoxide = (CO+ • 13Carbon monoxide)

By formula: (CO+ • 12CO) + CO = (CO+ • 13CO)

Quantity Value Units Method Reference Comment
Δr2.10kcal/molPHPMSHiraoka and Mori, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr27.7cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; M

(CO+ • 13Carbon monoxide) + Carbon monoxide = (CO+ • 14Carbon monoxide)

By formula: (CO+ • 13CO) + CO = (CO+ • 14CO)

Quantity Value Units Method Reference Comment
Δr2.08kcal/molPHPMSHiraoka and Mori, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr28.6cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; M

(CO+ • 14Carbon monoxide) + Carbon monoxide = (CO+ • 15Carbon monoxide)

By formula: (CO+ • 14CO) + CO = (CO+ • 15CO)

Quantity Value Units Method Reference Comment
Δr1.92kcal/molPHPMSHiraoka and Mori, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr26.8cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; M

(CO+ • 15Carbon monoxide) + Carbon monoxide = (CO+ • 16Carbon monoxide)

By formula: (CO+ • 15CO) + CO = (CO+ • 16CO)

Quantity Value Units Method Reference Comment
Δr1.92kcal/molPHPMSHiraoka and Mori, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr27.6cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; M

(CO+ • 16Carbon monoxide) + Carbon monoxide = (CO+ • 17Carbon monoxide)

By formula: (CO+ • 16CO) + CO = (CO+ • 17CO)

Quantity Value Units Method Reference Comment
Δr1.88kcal/molPHPMSHiraoka and Mori, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr27.6cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; M

COPt3- + Carbon monoxide = C2O2Pt3-

By formula: COPt3- + CO = C2O2Pt3-

Quantity Value Units Method Reference Comment
Δr53. ± 12.kcal/molN/AGrushow and Ervin, 1997gas phase; B

C2O2Pt3- + Carbon monoxide = C3O3Pt3-

By formula: C2O2Pt3- + CO = C3O3Pt3-

Quantity Value Units Method Reference Comment
Δr52.6 ± 5.3kcal/molN/AGrushow and Ervin, 1997gas phase; B
Δr49.2 ± 3.3kcal/molPDisShi, Spasov, et al., 2001gas phase; B

C3CrO3- + Carbon monoxide = (C3CrO3- • Carbon monoxide)

By formula: C3CrO3- + CO = (C3CrO3- • CO)

Quantity Value Units Method Reference Comment
Δr39.7 ± 3.9kcal/molCIDTSunderlin, Wang, et al., 1993gas phase; B

C3MnO3- + Carbon monoxide = C4MnO4-

By formula: C3MnO3- + CO = C4MnO4-

Quantity Value Units Method Reference Comment
Δr41.1 ± 3.0kcal/molCIDTSunderlin, Wang, et al., 1993gas phase; B

C3O3Pt3- + Carbon monoxide = C4O4Pt3-

By formula: C3O3Pt3- + CO = C4O4Pt3-

Quantity Value Units Method Reference Comment
Δr24.4 ± 3.2kcal/molN/AGrushow and Ervin, 1997gas phase; B

C3O3V- + Carbon monoxide = C4O4V-

By formula: C3O3V- + CO = C4O4V-

Quantity Value Units Method Reference Comment
Δr40.4 ± 5.8kcal/molCIDTSunderlin, Wang, et al., 1993gas phase; B

C4O4Pt3- + Carbon monoxide = C5O5Pt3-

By formula: C4O4Pt3- + CO = C5O5Pt3-

Quantity Value Units Method Reference Comment
Δr26.1 ± 4.4kcal/molN/AGrushow and Ervin, 1997gas phase; B

C4O4V- + Carbon monoxide = C5O5V-

By formula: C4O4V- + CO = C5O5V-

Quantity Value Units Method Reference Comment
Δr31.1 ± 3.0kcal/molCIDTSunderlin, Wang, et al., 1993gas phase; B

C5O5Pt3- + Carbon monoxide = C6O6Pt3-

By formula: C5O5Pt3- + CO = C6O6Pt3-

Quantity Value Units Method Reference Comment
Δr41.5 ± 6.9kcal/molN/AGrushow and Ervin, 1997gas phase; B
Δr39.7 ± 3.3kcal/molPDisShi, Spasov, et al., 2001gas phase; B

C5O5V- + Carbon monoxide = C6O6V-

By formula: C5O5V- + CO = C6O6V-

Quantity Value Units Method Reference Comment
Δr30.8 ± 3.5kcal/molCIDTSunderlin, Wang, et al., 1993gas phase; B

C6H5MnO- + Carbon monoxide = C6H5MnO-

By formula: C6H5MnO- + CO = C6H5MnO-

Quantity Value Units Method Reference Comment
Δr5.00 ± 0.50kcal/molN/ASunderlin and Squires, 1999gas phase; B

C6H5MnO- + Carbon monoxide = C7H5MnO2-

By formula: C6H5MnO- + CO = C7H5MnO2-

Quantity Value Units Method Reference Comment
Δr7.80 ± 0.60kcal/molN/ASunderlin and Squires, 1999gas phase; B

C6O6Pt4- + Carbon monoxide = C8O8Pt4-

By formula: C6O6Pt4- + CO = C8O8Pt4-

Quantity Value Units Method Reference Comment
Δr18.4 ± 6.9kcal/molN/AGrushow and Ervin, 1997gas phase; B

C7H5CrO2- + Carbon monoxide = C8H5CrO3-

By formula: C7H5CrO2- + CO = C8H5CrO3-

Quantity Value Units Method Reference Comment
Δr8.70 ± 0.80kcal/molN/ASunderlin and Squires, 1999gas phase; B

C7H5O2V- + Carbon monoxide = C7H5O2V-

By formula: C7H5O2V- + CO = C7H5O2V-

Quantity Value Units Method Reference Comment
Δr7.90 ± 0.70kcal/molN/ASunderlin and Squires, 1999gas phase; B

C7H5O2V- + Carbon monoxide = C8H5O3V-

By formula: C7H5O2V- + CO = C8H5O3V-

Quantity Value Units Method Reference Comment
Δr7.60 ± 0.60kcal/molN/ASunderlin and Squires, 1999gas phase; B

Cobalt ion (1+) + Carbon monoxide = (Cobalt ion (1+) • Carbon monoxide)

By formula: Co+ + CO = (Co+ • CO)

Quantity Value Units Method Reference Comment
Δr41.6 ± 1.7kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr39. ± 3.kcal/molMKERCarpenter, van Koppen, et al., 1995gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
41.5 (+1.6,-0.) CIDGoebel, Haynes, et al., 1995gas phase; guided ion beam CID; M
39.0 (+4.8,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Cobalt ion (1+) • Carbon monoxide) + Carbon monoxide = (Cobalt ion (1+) • 2Carbon monoxide)

By formula: (Co+ • CO) + CO = (Co+ • 2CO)

Quantity Value Units Method Reference Comment
Δr36.6 ± 2.2kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
36.4 (+2.1,-0.) CIDGoebel, Haynes, et al., 1995gas phase; guided ion beam CID; M
32.9 (+4.8,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Cobalt ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Cobalt ion (1+) • 3Carbon monoxide)

By formula: (Co+ • 2CO) + CO = (Co+ • 3CO)

Quantity Value Units Method Reference Comment
Δr19.6 ± 2.9kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
19.6 (+2.8,-0.) CIDGoebel, Haynes, et al., 1995gas phase; guided ion beam CID; M

(Cobalt ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Cobalt ion (1+) • 4Carbon monoxide)

By formula: (Co+ • 3CO) + CO = (Co+ • 4CO)

Quantity Value Units Method Reference Comment
Δr17.9 ± 1.4kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
18.0 (+1.4,-0.) CIDGoebel, Haynes, et al., 1995gas phase; guided ion beam CID; M

(Cobalt ion (1+) • 4Carbon monoxide) + Carbon monoxide = (Cobalt ion (1+) • 5Carbon monoxide)

By formula: (Co+ • 4CO) + CO = (Co+ • 5CO)

Quantity Value Units Method Reference Comment
Δr17.9 ± 1.2kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
18.0 (+1.2,-0.) CIDGoebel, Haynes, et al., 1995gas phase; guided ion beam CID; M

Chromium ion (1+) + Carbon monoxide = (Chromium ion (1+) • Carbon monoxide)

By formula: Cr+ + CO = (Cr+ • CO)

Quantity Value Units Method Reference Comment
Δr21.4 ± 0.9kcal/molCIDTKhan, Clemmer, et al., 1993RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
21.5 (+1.0,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Chromium ion (1+) • Carbon monoxide) + Carbon monoxide = (Chromium ion (1+) • 2Carbon monoxide)

By formula: (Cr+ • CO) + CO = (Cr+ • 2CO)

Quantity Value Units Method Reference Comment
Δr22.6 ± 0.7kcal/molCIDTKhan, Clemmer, et al., 1993RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
22.7 (+0.7,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Chromium ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Chromium ion (1+) • 3Carbon monoxide)

By formula: (Cr+ • 2CO) + CO = (Cr+ • 3CO)

Quantity Value Units Method Reference Comment
Δr12.9 ± 1.4kcal/molCIDTKhan, Clemmer, et al., 1993RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
12.9 (+1.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Chromium ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Chromium ion (1+) • 4Carbon monoxide)

By formula: (Cr+ • 3CO) + CO = (Cr+ • 4CO)

Quantity Value Units Method Reference Comment
Δr12.2 ± 1.8kcal/molCIDTKhan, Clemmer, et al., 1993RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
12.2 (+1.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Chromium ion (1+) • 4Carbon monoxide) + Carbon monoxide = (Chromium ion (1+) • 5Carbon monoxide)

By formula: (Cr+ • 4CO) + CO = (Cr+ • 5CO)

Quantity Value Units Method Reference Comment
Δr14.8 ± 0.7kcal/molCIDTKhan, Clemmer, et al., 1993RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
14.8 (+0.7,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Chromium ion (1+) • 5Carbon monoxide) + Carbon monoxide = (Chromium ion (1+) • 6Carbon monoxide)

By formula: (Cr+ • 5CO) + CO = (Cr+ • 6CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
31.0 (+1.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Copper ion (1+) + Carbon monoxide = (Copper ion (1+) • Carbon monoxide)

By formula: Cu+ + CO = (Cu+ • CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
35.5 (+1.6,-0.) CIDMeyer, Chen, et al., 1995gas phase; guided ion beam CID; M

(Copper ion (1+) • Carbon monoxide) + Carbon monoxide = (Copper ion (1+) • 2Carbon monoxide)

By formula: (Cu+ • CO) + CO = (Cu+ • 2CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
41.1 (+0.7,-0.) CIDMeyer, Chen, et al., 1995gas phase; guided ion beam CID; M

(Copper ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Copper ion (1+) • 3Carbon monoxide)

By formula: (Cu+ • 2CO) + CO = (Cu+ • 3CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
18.0 (+0.9,-0.) CIDMeyer, Chen, et al., 1995gas phase; guided ion beam CID; M

(Copper ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Copper ion (1+) • 4Carbon monoxide)

By formula: (Cu+ • 3CO) + CO = (Cu+ • 4CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
12.6 (+0.7,-0.) CIDMeyer, Chen, et al., 1995gas phase; guided ion beam CID; M

Iron ion (1+) + Carbon monoxide = (Iron ion (1+) • Carbon monoxide)

By formula: Fe+ + CO = (Fe+ • CO)

Quantity Value Units Method Reference Comment
Δr30.8 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr32. ± 3.kcal/molMKERCarpenter, van Koppen, et al., 1995gas phase; determined from MKER and theory; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
31.3 (+1.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Iron ion (1+) • Carbon monoxide) + Carbon monoxide = (Iron ion (1+) • 2Carbon monoxide)

By formula: (Fe+ • CO) + CO = (Fe+ • 2CO)

Quantity Value Units Method Reference Comment
Δr35.4 ± 1.2kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
36.1 (+3.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Iron ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Iron ion (1+) • 3Carbon monoxide)

By formula: (Fe+ • 2CO) + CO = (Fe+ • 3CO)

Quantity Value Units Method Reference Comment
Δr16.5 ± 1.4kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
15.8 (+1.2,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Iron ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Iron ion (1+) • 4Carbon monoxide)

By formula: (Fe+ • 3CO) + CO = (Fe+ • 4CO)

Quantity Value Units Method Reference Comment
Δr23.4 ± 1.4kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
24.6 (+1.7,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Iron ion (1+) • 4Carbon monoxide) + Carbon monoxide = (Iron ion (1+) • 5Carbon monoxide)

By formula: (Fe+ • 4CO) + CO = (Fe+ • 5CO)

Quantity Value Units Method Reference Comment
Δr23.2 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
26.8 (+1.0,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Iron ion (1+) • 3Carbon monoxide • 2iron) + Carbon monoxide = (Iron ion (1+) • 4Carbon monoxide • 2iron)

By formula: (Fe+ • 3CO • 2Fe) + CO = (Fe+ • 4CO • 2Fe)

Quantity Value Units Method Reference Comment
Δr56.9kcal/molPDissTecklenberg, Bricker, et al., 1988gas phase; ΔrH<; M

(Iron ion (1+) • iron) + Carbon monoxide = (Iron ion (1+) • Carbon monoxide • iron)

By formula: (Fe+ • Fe) + CO = (Fe+ • CO • Fe)

Quantity Value Units Method Reference Comment
Δr58.6kcal/molPDissTecklenberg, Bricker, et al., 1988gas phase; ΔrH<; M

Potassium ion (1+) + Carbon monoxide = (Potassium ion (1+) • Carbon monoxide)

By formula: K+ + CO = (K+ • CO)

Quantity Value Units Method Reference Comment
Δr4.3 ± 1.2kcal/molCIDTRodgers and Armentrout, 2000RCD

Kr+ + Carbon monoxide = (Kr+ • Carbon monoxide)

By formula: Kr+ + CO = (Kr+ • CO)

Quantity Value Units Method Reference Comment
Δr24.7 ± 1.8kcal/molSIFTPraxmarer, Jordan, et al., 1993gas phase; switching reaction(Kr+)Kr; Wadt, 1978, Radzig and Smirnov, 1985; M

Lithium ion (1+) + Carbon monoxide = (Lithium ion (1+) • Carbon monoxide)

By formula: Li+ + CO = (Li+ • CO)

Quantity Value Units Method Reference Comment
Δr13.1 ± 3.1kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr13.1 ± 2.9kcal/molCIDTWalter, Sievers, et al., 1998RCD

(Lithium ion (1+) • Carbon monoxide) + Carbon monoxide = (Lithium ion (1+) • 2Carbon monoxide)

By formula: (Li+ • CO) + CO = (Li+ • 2CO)

Quantity Value Units Method Reference Comment
Δr8.6 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr8.6 ± 1.0kcal/molCIDTWalter, Sievers, et al., 1998RCD

(Lithium ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Lithium ion (1+) • 3Carbon monoxide)

By formula: (Li+ • 2CO) + CO = (Li+ • 3CO)

Quantity Value Units Method Reference Comment
Δr8.4 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr8.4 ± 1.0kcal/molCIDTWalter, Sievers, et al., 1998RCD

Magnesium ion (1+) + Carbon monoxide = (Magnesium ion (1+) • Carbon monoxide)

By formula: Mg+ + CO = (Mg+ • CO)

Quantity Value Units Method Reference Comment
Δr9.9 ± 1.4kcal/molCIDTAndersen, Muntean, et al., 2000RCD

(Magnesium ion (1+) • Carbon monoxide) + Carbon monoxide = (Magnesium ion (1+) • 2Carbon monoxide)

By formula: (Mg+ • CO) + CO = (Mg+ • 2CO)

Quantity Value Units Method Reference Comment
Δr9.2 ± 0.7kcal/molCIDTAndersen, Muntean, et al., 2000RCD

Manganese ion (1+) + Carbon monoxide = (Manganese ion (1+) • Carbon monoxide)

By formula: Mn+ + CO = (Mn+ • CO)

Quantity Value Units Method Reference Comment
Δr7.kcal/molKERDSDearden, Hayashibara, et al., 1989gas phase; ΔrH>; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
6.0 (+2.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Manganese ion (1+) • Carbon monoxide) + Carbon monoxide = (Manganese ion (1+) • 2Carbon monoxide)

By formula: (Mn+ • CO) + CO = (Mn+ • 2CO)

Quantity Value Units Method Reference Comment
Δr25.kcal/molKERDSDearden, Hayashibara, et al., 1989gas phase; ΔrH<; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
15.1 (+2.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Manganese ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Manganese ion (1+) • 3Carbon monoxide)

By formula: (Mn+ • 2CO) + CO = (Mn+ • 3CO)

Quantity Value Units Method Reference Comment
Δr31. ± 6.kcal/molKERDSDearden, Hayashibara, et al., 1989gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
17.7 (+2.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Manganese ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Manganese ion (1+) • 4Carbon monoxide)

By formula: (Mn+ • 3CO) + CO = (Mn+ • 4CO)

Quantity Value Units Method Reference Comment
Δr20. ± 3.kcal/molKERDSDearden, Hayashibara, et al., 1989gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
15.5 (+2.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Manganese ion (1+) • 4Carbon monoxide) + Carbon monoxide = (Manganese ion (1+) • 5Carbon monoxide)

By formula: (Mn+ • 4CO) + CO = (Mn+ • 5CO)

Quantity Value Units Method Reference Comment
Δr16. ± 3.kcal/molKERDSDearden, Hayashibara, et al., 1989gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
28.9 (+2.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Manganese ion (1+) • 5Carbon monoxide) + Carbon monoxide = (Manganese ion (1+) • 6Carbon monoxide)

By formula: (Mn+ • 5CO) + CO = (Mn+ • 6CO)

Quantity Value Units Method Reference Comment
Δr32. ± 5.kcal/molKERDSDearden, Hayashibara, et al., 1989gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
34.0 (+2.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Sodium ion (1+) + Carbon monoxide = (Sodium ion (1+) • Carbon monoxide)

By formula: Na+ + CO = (Na+ • CO)

Quantity Value Units Method Reference Comment
Δr7.6 ± 1.9kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr7.6 ± 1.9kcal/molCIDTWalter, Sievers, et al., 1998RCD
Δr12.6kcal/molHPMSCastleman, Peterson, et al., 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr20.4cal/mol*KHPMSCastleman, Peterson, et al., 1983gas phase; M

(Sodium ion (1+) • Carbon monoxide) + Carbon monoxide = (Sodium ion (1+) • 2Carbon monoxide)

By formula: (Na+ • CO) + CO = (Na+ • 2CO)

Quantity Value Units Method Reference Comment
Δr5.7 ± 0.7kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr5.7 ± 0.7kcal/molCIDTWalter, Sievers, et al., 1998RCD
Δr7.5kcal/molHPMSCastleman, Peterson, et al., 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr15.1cal/mol*KHPMSCastleman, Peterson, et al., 1983gas phase; M

Nickel ion (1+) + Carbon monoxide = (Nickel ion (1+) • Carbon monoxide)

By formula: Ni+ + CO = (Ni+ • CO)

Quantity Value Units Method Reference Comment
Δr39. ± 3.kcal/molMKERCarpenter, van Koppen, et al., 1995gas phase; determined from MKER and theory; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
41.7 (+2.5,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M
42.5 (+2.2,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Nickel ion (1+) • Carbon monoxide) + Carbon monoxide = (Nickel ion (1+) • 2Carbon monoxide)

By formula: (Ni+ • CO) + CO = (Ni+ • 2CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
40.1 (+2.5,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion bema CID; M
40.4 (+2.2,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Nickel ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Nickel ion (1+) • 3Carbon monoxide)

By formula: (Ni+ • 2CO) + CO = (Ni+ • 3CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
21.9 (+1.4,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M
22.7 (+1.0,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Nickel ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Nickel ion (1+) • 4Carbon monoxide)

By formula: (Ni+ • 3CO) + CO = (Ni+ • 4CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
17.3 (+0.7,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M
17.2 (+1.2,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Oxygen anion + Carbon monoxide = (Oxygen anion • Carbon monoxide)

By formula: O2- + CO = (O2- • CO)

Quantity Value Units Method Reference Comment
Δr<13.60kcal/molIMRBAdams and Bohme, 1970gas phase; CO..O2- + O2 -> O4- + CO. G3MP2B3 calculations indicate a HOF(A-) ca. -38 kcal/mol; B

Platinum ion (1+) + Carbon monoxide = (Platinum ion (1+) • Carbon monoxide)

By formula: Pt+ + CO = (Pt+ • CO)

Quantity Value Units Method Reference Comment
Δr50.7 ± 2.4kcal/molCIDTZhang and Armentrout, 2001RCD

(Platinum ion (1+) • Carbon monoxide) + Carbon monoxide = (Platinum ion (1+) • 2Carbon monoxide)

By formula: (Pt+ • CO) + CO = (Pt+ • 2CO)

Quantity Value Units Method Reference Comment
Δr46.1 ± 2.4kcal/molCIDTZhang and Armentrout, 2001RCD

(Platinum ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Platinum ion (1+) • 3Carbon monoxide)

By formula: (Pt+ • 2CO) + CO = (Pt+ • 3CO)

Quantity Value Units Method Reference Comment
Δr23.4 ± 1.2kcal/molCIDTZhang and Armentrout, 2001RCD

(Platinum ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Platinum ion (1+) • 4Carbon monoxide)

By formula: (Pt+ • 3CO) + CO = (Pt+ • 4CO)

Quantity Value Units Method Reference Comment
Δr12.7 ± 1.2kcal/molCIDTZhang and Armentrout, 2001RCD

Pt3- + Carbon monoxide = COPt3-

By formula: Pt3- + CO = COPt3-

Quantity Value Units Method Reference Comment
Δr53.0 ± 6.9kcal/molN/AGrushow and Ervin, 1997gas phase; B

Pt4- + Carbon monoxide = (Pt4- • Carbon monoxide)

By formula: Pt4- + CO = (Pt4- • CO)

Quantity Value Units Method Reference Comment
Δr60.0 ± 9.2kcal/molN/AGrushow and Ervin, 1997gas phase; B

Pt5- + Carbon monoxide = (Pt5- • Carbon monoxide)

By formula: Pt5- + CO = (Pt5- • CO)

Quantity Value Units Method Reference Comment
Δr57.7 ± 9.2kcal/molN/AGrushow and Ervin, 1997gas phase; B

Titanium ion (1+) + Carbon monoxide = (Titanium ion (1+) • Carbon monoxide)

By formula: Ti+ + CO = (Ti+ • CO)

Quantity Value Units Method Reference Comment
Δr28.2 ± 1.4kcal/molCIDTMeyer and Armentrout, 1996RCD

(Titanium ion (1+) • Carbon monoxide) + Carbon monoxide = (Titanium ion (1+) • 2Carbon monoxide)

By formula: (Ti+ • CO) + CO = (Ti+ • 2CO)

Quantity Value Units Method Reference Comment
Δr27.0 ± 1.0kcal/molCIDTMeyer and Armentrout, 1996RCD

(Titanium ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Titanium ion (1+) • 3Carbon monoxide)

By formula: (Ti+ • 2CO) + CO = (Ti+ • 3CO)

Quantity Value Units Method Reference Comment
Δr23.9 ± 1.0kcal/molCIDTMeyer and Armentrout, 1996RCD

(Titanium ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Titanium ion (1+) • 4Carbon monoxide)

By formula: (Ti+ • 3CO) + CO = (Ti+ • 4CO)

Quantity Value Units Method Reference Comment
Δr20.8 ± 1.0kcal/molCIDTMeyer and Armentrout, 1996RCD

(Titanium ion (1+) • 4Carbon monoxide) + Carbon monoxide = (Titanium ion (1+) • 5Carbon monoxide)

By formula: (Ti+ • 4CO) + CO = (Ti+ • 5CO)

Quantity Value Units Method Reference Comment
Δr16.7 ± 1.0kcal/molCIDTMeyer and Armentrout, 1996RCD

(Titanium ion (1+) • 5Carbon monoxide) + Carbon monoxide = (Titanium ion (1+) • 6Carbon monoxide)

By formula: (Ti+ • 5CO) + CO = (Ti+ • 6CO)

Quantity Value Units Method Reference Comment
Δr17.7 ± 0.7kcal/molCIDTMeyer and Armentrout, 1996RCD

(Titanium ion (1+) • 6Carbon monoxide) + Carbon monoxide = (Titanium ion (1+) • 7Carbon monoxide)

By formula: (Ti+ • 6CO) + CO = (Ti+ • 7CO)

Quantity Value Units Method Reference Comment
Δr12.4 ± 1.7kcal/molCIDTMeyer and Armentrout, 1996RCD

Vanadium ion (1+) + Carbon monoxide = (Vanadium ion (1+) • Carbon monoxide)

By formula: V+ + CO = (V+ • CO)

Quantity Value Units Method Reference Comment
Δr28.7 ± 3.3kcal/molCIDArmentrout and Kickel, 1994gas phase; ΔrH(0 K0, guided ion beam CID; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
27.0 (+0.7,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M

(Vanadium ion (1+) • Carbon monoxide) + Carbon monoxide = (Vanadium ion (1+) • 2Carbon monoxide)

By formula: (V+ • CO) + CO = (V+ • 2CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
21.7 (+0.7,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M
25.3 (+1.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Vanadium ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Vanadium ion (1+) • 3Carbon monoxide)

By formula: (V+ • 2CO) + CO = (V+ • 3CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
16.6 (+0.9,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M
14.6 (+2.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Vanadium ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Vanadium ion (1+) • 4Carbon monoxide)

By formula: (V+ • 3CO) + CO = (V+ • 4CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
20.5 (+2.3,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M
22.7 (+3.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Vanadium ion (1+) • 4Carbon monoxide) + Carbon monoxide = (Vanadium ion (1+) • 5Carbon monoxide)

By formula: (V+ • 4CO) + CO = (V+ • 5CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
21.7 (+0.7,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M
22.2 (+1.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Vanadium ion (1+) • 5Carbon monoxide) + Carbon monoxide = (Vanadium ion (1+) • 6Carbon monoxide)

By formula: (V+ • 5CO) + CO = (V+ • 6CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
23.8 (+1.6,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M
29.6 (+1.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Vanadium ion (1+) • 6Carbon monoxide) + Carbon monoxide = (Vanadium ion (1+) • 7Carbon monoxide)

By formula: (V+ • 6CO) + CO = (V+ • 7CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
12.0 (+2.1,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through October, 1976

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 12C16O
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Absorption in the 100 -20 Å region. K absorption of C and O. 1
Nakamura, Morioka, et al., 1971
Absorption cross sections from 650 - 180 Å.
Lee, Carlson, et al., 1973; Watson, Stewart, et al., 1975; Wight, van der Wiel, et al., 1976
Several weak and fragmentary progressions in the region 620 - 530 Å (161000 - 186000 cm-1), probably corresponding to excitation of two electrons and tentatively assigned as first members of Rydberg series converging to higher electronic states of CO+ derived from the photoelectron spectrum [revised assignments Asbrink, Fridh, et al., 1974]. 2
Codling and Potts, 1974
Rydberg series converging to B 2Σ+ (v=0) of CO+ (also series or fragments if series with v'=1, 2)3:
(ndσ,π) 4Ogawa and Ogawa's series IV (joining on to R)
ν = 158664 - R/(n-0.19)2; n = 3,4,...,10.
missing citation
(npσ,π) 5Tanaka's diffuse series (joining on to D2, D3)
ν = 158664 - R/(n-0.55)2; n = 4,5,...,9.
missing citation; missing citation
Ogawa and Ogawa's series V (joining on to U)
ν = 158664 - R/(n-0.61)2; n = 5,6,7.
missing citation
Tanaka's sharp series (joining on to S1, S2)
ν = 158664 - R/(n-0.650-0.084/n-0.13/n2)2; n = 3,4,...,13.
missing citation; missing citation
(nsσ) 7Ogawa and Ogawa's series III (joining on to T6)
(npσ)ν = 158664 - R/(n-0.902-0.232/n)2; n = 4,5,...,18.
missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
D3 (153271) (1705) (18.5)        D3 ← X 8 153037
missing citation; missing citation
U (153199) [1676]         U ← X 152955
missing citation
D2 (149294) (1730) (30)        D2 ← X 8 149070
missing citation; missing citation
S2 (148929) (1750) (30)        S2 ← X 148715
missing citation; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
T (147065) (1658) (11)  9      T ← X 146810
missing citation
R (144939) (1735) (28)  9      R ← X 144718
missing citation
S1 (138038) (1771) (29)  9      S1 ← X 137835
missing citation
Rydberg series10 converging to A 2Π(v=0) of CO+ [also series with v'=1...8 (Ogawa a. Ogawa) and v'=1,2,3 (Tanaka)]3
(nsσ)Ogawa and Ogawa's series 11 (joining on to W [n=3, see Ogawa and Ogawa, 1974] and O1, O2)
ν = 133484(A 2Π1/2) - R/(n-1.077)2; n = 4,5,...,12.
missing citation
(npσ,π)Tanaka's alpha series (joining on to P)
ν = 133380(A 2Π3/2) - R/(n-0.67)2; n = 4,5,...,8.
missing citation; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Q 129043 1558 10.6  9      Q ← X 10 R 128738
Tanaka, 1942
O2 (1Π) 126729 1560 13.3        O2 ← X R 126424
missing citation; missing citation
P 123656 [1521]         P ← X R 123335
missing citation; missing citation
O1 (1Π) 121137 1570 13.4  9      O1 ← X R 120837
Henning, 1932; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
N (119882) (1600)         N ← X 10 (119600)
Henning, 1932
Rydberg series10 converging to X 2Σ+(v=0) of CO+ [also series with v'=1]3:
npπOgawa and Ogawa's series11 (joining on to E, L)
νinf = 113029; formula not given, merging into npσ above n=8.
missing citation
npσOgawa and Ogawa's series11 (joining on to C, K)
νinf = 113029 - R/(n-0.615 - 0.263/n - 0.165/n2)2; n=3,4,...,32.
missing citation
nsσLindholm's series (joining on to B, J, I')
νinf = 113029; formula not given, n=3,4,...,10.
missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
I' (5sσ)           I' ← X 106383 12
missing citation; Lindholm, 1969
Z 1Σ+     [(1.9)]     [(1.14)] Z ↔ X 10 R (105724) 13 (Z)
Tilford and Simmons, 1974
H15 (1Π) (105811) (1097) (47)        H ← X 10 14 R 105266
Hopfield and Birge, 1927
H' 1Π     [1.415]     [1.318] H' ← X R 104119.6 Z
Ogawa and Ogawa, 1974
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
L 1Π 4pπ 103251 2181 Z (15)  [1.9812]   [0.000014]  [1.114] L ← X V 103271.5 Z
missing citation; Ogawa and Ogawa, 1974
L' (1Π)           L' ← X R 103215 HQ
Ogawa and Ogawa, 1974
K 1Σ+ 4pσ     [1.9189]   [0.000066]  [1.132] K ← X R 103054.3 Z
missing citation; Ogawa and Ogawa, 1974
W 1Π     [1.5585]   [0.000065]  [1.256] W ↔ X R 102807.1 Z
Ogawa and Ogawa, 1974; Tilford and Simmons, 1974
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
W' 1Π     [1.536]     [1.265] W' ← X R 102310.6 Z
missing citation
J 1Σ+ 4sσ (101409) [2235.3] Z (15)  [1.9203] 16   [0.0000058] 16  [1.1315] 16 J ← X R (101456) (Z)
missing citation
G 1Π(3dπ)     [1.9625]   [0.000007]  [1.1193] G ← X V 101031 Z
missing citation
G' 1Π     [(1.59)]     [1.24] G' ← X R 100651
missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
h (3Σ+,4sσ)           h ← X R (100392) (Z)
Ogawa and Ogawa, 1974
Y 1Σ+     [(1.83)]     [1.16] Y → X R (99963) (Z)
Tilford and Simmons, 1974
F 1Σ+(3dσ) (99803) [2034.4] Z 17  [1.86] 18  [0.00008] 18  [1.15] F ← X R 99739 Z
missing citation
V 1Π     [1.7]     [1.2] V ↔ → X R 98919 HQ
Ogawa and Ogawa, 1974; Tilford and Simmons, 1974
A 1Π state at 98836 cm-1 reported by Tschulanovsky, 1939 was shown ( Tilford and Simmons, 1974) to be due to N2.
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
g 3Σ+           g ← X R (98129.1) (Z)
Ogawa and Ogawa, 1974
E 1Π 3pπ (92903) [2153.8] Z (42)  1.9771 19 0.0254  [0.0000065]  1.1152 E → A V 28185.18 20 Z
missing citation; Kepa, Knot-Wisniewska, et al., 1975
           E ← X 21 V 92930.03 Z
missing citation; Ogawa and Ogawa, 1974
c 3Π 3pπ [93158.5]    [1.935] 22   [-0.000131] 23  [1.127] c → a V 43603.7
missing citation
           c ← X V 92076.9 Z
missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
C 1Σ+ 3pσ 91916.5 2175.92 Z 14.76 24  1.9533 25 0.0196  0.0000062  1.1219 C → A 26 27 V 27174.4 20 Z
Schmid and Gero, 1935
           C ↔ X 26 28 V 91919.15 Z
Tilford and Vanderslice, 1968; Aarts and de Heer, 1970
j (3Σ+3pσ) 90975 [2166] Z (15)  [1.8785] 29 (0.02)  [0.0000079]  [1.1441] j ← X R 90988.04 Z
Tilford and Vanderslice, 1968
            30
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
k [90972] 31          k → a V 41417 H
Kaplan, 1930
B 1Σ+ 3sσ 86945.2 2112.7 Z 15.22 32  1.9612 33 0.0261  0.0000071  1.1197 B → A 34 35 V 22171.35 20 Z
Schmid and Gero, 1935
           B → X 34 36 V 86916.16 Z
missing citation; Aarts and de Heer, 1970
b 3Σ+ 3sσ (83814) 2199.3 Z   1.986 37 38 0.042    1.113 b → a 39 40 V 35358.5 Z
Dieke and Mauchly, 1933; Gero, 1936; Beer, 1937
           b ← X 40 V 83831.7 H
Hopfield and Birge, 1927
f (3Σ+)This state, first suggested by Schmid and Gero, 1937 and listed by missing citation at T0 = 83744, is in all probability not a separate state but represents v = 31 and 35 of a' 3Σ+.41
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
D 1Δ 65928 1094 10.2  1.257 0.017    1.399 D ← X R 65391 42
missing citation; Simmons and Tilford, 1971; Tilford and Simmons, 1972
I 1Σ- 65084.40 1092.22 10.704 43  1.2705 44 0.01848 45  D2 = 9.0E-6  1.3911 I ← X R 64546.26 Z
missing citation; Simmons and Tilford, 1971; missing citation
A 1Π 65075.77 1518.24 19.4 46  1.6115 47 0.02325 48  0.00000733 49  1.2353 A ↔ X 50 51 52 R 64748.48 53 Z
missing citation; missing citation
e 3Σ- 64230.24 1117.72 10.686 54  1.2836 55 0.01753 56  0.00000677 57  1.384 e → a 58 R 15231.6
missing citation; Barrow, 1961
           e ← X T 63704.85 Z
missing citation; Simmons and Tilford, 1971; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
d 3Δi 61120 59 1171.94 10.635 60  1.3108 61 0.01782 62  0.00000659 57  1.3696 d → a 63 58 R 12148.7
Gero and Szabo, 1939; Carroll, 1962; Slanger and Black, 1970
           d ← X R 60621.9 60 Z
Herzberg, Hugo, et al., 1970; missing citation
a' 3Σ+ 55825.49 1228.6 10.468 64  1.3446 65 0.01892 66  0.00000641 57  1.3523 a' → a 67 68 R 6882.4
Asundi, 1929; Beer, 1937; Gero and Lorinezi, 1939
           a' ← X 68 R 55355.6 Z
missing citation; Simmons and Tilford, 1971; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
a 3Πr 48686.7 69 1743.41 14.36 70  1.69124 71 0.01904 72  0.00000636 73  1.20574 a ↔ X 74 75 R 48473.22 70
missing citation; Field, Tilford, et al., 1972; missing citation
X 1Σ+ 0 2169.81358 13.28831 76  1.93128087 77 0.01750441 78  6.12147E-06 79  1.128323 80 81  
3-0
Bouanich, Levy, et al., 1967; Bouanich, Levy, et al., 1968; Bouanich and Brodbeck, 1974
2-082
Mantz and Maillard, 1974
1-083
Rank, Skorinko, et al., 1960; Rao, Humphreys, et al., 1966
Rotation sp.:
Far IR sp. 84
Loewenstein, 1960
Microwave sp.
Rosenblum, Nethercot, et al., 1958; Helminger, De Lucia, et al., 1970; Lovas and Krupenie, 1974
Molecular beam el. reson.85
Muenter, 1975
Mol. beam magn. reson.86
Ozier, Yi, et al., 1967; Ozier, Crapo, et al., 1968

Notes

1Preceding the two K limits (see 88) are strong Rydberg series of absorption bands. The longest-wavelength absorptions correspond to excitation to the 2π orbital yielding a weak 3Π ← X 1Σ+ and a strong 1Π ← X 1Σ+ peak at 283 and 285 eV for the transitions from lsC and at 529 and 532 eV for the transitions from 1s0 Nakamura, Morioka, et al., 1971. The transitions to the 1Π states have also been observed in electron impact experiments at 287.7 and 534.4 eV van der Wiel, El-Sherbini, et al., 1970.
2Dissociation produced by absorption in these bands and subsequent atomic fluorescence Lee, Carlson, et al., 1975; predissociation into C+ + O- Locht and Durer, 1975.
3Calcu1ated Franck-Condon factors for ionization: X 2Σ+ ← X 1Σ+, A 2Π ← 1Σ+, and B 2Σ+ ← X 1Σ+, see Krupenie and Benesch, 1968 and Nicholls, 1968. Observed Franck-Condon factors from photoelectron spectrum Turner and May, 1966, Comes and Speier, 1971, Gardner and Samson, 1974; absolute ionization cross-sections Judge and Lee, 1972, Samson and Gardner, 1976.
4Tanaka's diffuse series (joining on to D2, D3)
5Ogawa and Ogawa's series III (joining on to T6)
6The progression P5 of Tanaka, 1942 [called T in MOLSPEC 1 and missing citation] must be reclassified as representing the members n=6, 7, and 9 of series III; see the spectrograms of Tanaka, 1942 and Ogawa and Ogawa, 1972.
7ν = 158664 - R/(n-0.902-0.232/n)2; n = 4,5,...,18.
8Diffuse looking bands.
9Preionization observed in electro-ionization of CO Carbonneau and Marmet, 1973.
10Absorption and photoionization coefficients from 1000 to 600 Å Cook, Metzger, et al., 1965.
11These series and progressions from the high resolution work of Ogawa and Ogawa, 1972 agree only partially with the early work Tanaka, 1942, Takamine, Tanaka, et al., 1943 at lower resolution.
12This strong absorption band is clearly present but not assigned on the spectrogram of Ogawa and Ogawa, 1972.
13An absorption band at this wavenumber is visible but not identified on the published spectrogram of Ogawa and Ogawa, 1972.
14This is the strongest system of Hopfield and Birge, 1927. It is clearly present on the reproduction of Ogawa and Ogawa, 1972, but these authors consider the first band at 950 Å as due to v'=1 of K(4pσ)←X. Do not assign the second (strongest) band at 941 Å and consider the third band at 933 Å as n=5, v'=0 of the Rydberg series which starts with C(3pσ) and E(3pπ).
15Previously called G [see missing citation]. The present G 1Π is from Ogawa and Ogawa, 1974.
16v=0 diffuse by predissociation, v=1 sharp. The rotational constants are for v=1 Ogawa and Ogawa, 1974.
17 Jevons, 1932 gives ωe = 2112 Jevons, 1932, ωexe = 198 Jevons, 1932, presumably from private communication by Hopfield-Birge.
18B1 = 1.837, D1 = 3E-6.
19Clear case of accidental predissociation for J=31 (e level) at 94872 cm-1 above v=0, J=0 of X 1Σ+ Simmons and Tilford, 1974.
20The ν00 values for B→A, C→A, E→A are not deperturbed and, therefore, do not add up with the deperturbed ν00 for A-X (see also 53) to the ν00 values listed for B-X, C-X, and E-X.
21Oscillator strength f00 = 0.094 Lassettre and Skerbele, 1971.
22Λ-type doubling, Δν = 0.011N(N+1). Triplet splitting unobservably small as for most Rydberg states.
23H0 = -1.9E-7. The rotational constants represent average values for the two Λ-doubling components.
24Only v=0 and 1 observed in absorption, only v=0 in emission. ωe, ωexe derived with the aid of isotope (12,13CO) data, see Tilford and Vanderslice, 1968.
25μel = 4.5 D Fisher and Dalby, 1976, from Stark effect observations on the Herzberg bands Fisher and Dalby, 1976.
26Lifetime τ(v=0) = 1.5 ns Hesser, 1968, Dotchin and Chupp, 1973; electronic branching ratios Dotchin and Chupp, 1973.
27 Kepa, 1969 and Asundi, Dhumwad, et al., 1970 have studied the bands of the isotopic molecules 13C16O and 12C18O.
28Osci1lator strength f00 = 0.163 Lassettre and Skerbele, 1971.
29Rotational lines are diffuse because of predissociation.
30In the electron energy loss spectrum Swanson, Celotta, et al., 1975 find a peak at 90858 cm-1 which, according to them, cannot be identified with the j 3Σ+ state.
31single 0-v" progression.
32Only two vibrational levels observed, ΔG(1/2) = 2082.26. ωe, ωexe derived with the aid of isotope data Tilford and Vanderslice, 1968.
33A partial breaking off of the rotational structure in the Å bands occurs above J=37 in v'=0 and above J=17 in v'=1 leading to a dissociation limit at 89595 ± 30 cm-1 Douglas and Moller, 1955. RKR potential missing citation. μel = 1.60 D Fisher and Dalby, 1976 from Stark effect measurements on the Å bands Fisher and Dalby, 1976.
34Lifetime τ(v=0) = 21.8 ns Imhof, Read, et al., 1972, good agreement with Hesser, 1968, Rogers and Anderson, 1970, Dotchin and Chupp, 1973. τ(v=1) = 15.5 ns Imhof, Read, et al., 1972; Rogers and Anderson, 1970 give 23.8 ns. Electronic branching ratios Dotchin and Chupp, 1973.
35Franck-Condon factors missing citation. Kepa and Rytel, 1970 have studied the rotational structure in the Å bands of the isotopic molecules 12C18O, 13C16O, 13C18O and the perturbations in these isotopes as well as in 12C16O; see also Douglas and Moller, 1955, Janjic, Pesic, et al., 1969.
36Oscillator strength f00 = 0.0153 Lassettre and Skerbele, 1971. Discussion of the r-dependence of the transition moment Imhof, Read, et al., 1972.
37This state is strongly perturbed by the higher vibrational levels of the a' 3Σ+ state (near its dissociation limit). Dieke and Mauchly, 1933 derived B0 = 1.89 from lines with N values between 7 and 15. Gero, 1935 from deperturbed term values derived B0 = 2.058 ; Schmid and Gero, 1935, 2 gave α = 0.033 Schmid and Gero, 1935, 2. The listed values of Be and αe are from a revised deperturbation by Stepanov, 1940 who also gives the deperturbed constants ΔG(1/2) = 2188 Stepanov, 1940 and τ0 = 83816 Stepanov, 1940.
38Only two vibrational levels, v=0 and 1, have been observed. Breaking off on account of predissociation in v=0 above N=55, in v=1 above N=42 Gero, 1935, Gero, 1936. The absence of v=2 is puzzling since it is expected to lie below the dissociation limit Barrow, Gratzer, et al., 1956.
39Lifetimes τ(v=0) =53.6 ns Rogers and Anderson, 1970, 2, Smith, Imhof, et al., 1973, τ(v=1) = 69.1 ns Rogers and Anderson, 1970, 2, Smith, Imhof, et al., 1973.
40Franck-Condon factors missing citation.
41This interpretation was first suggested by Gero, 1938. It is in agreement with the data of Tilford and Simmons, 1972 on the a'-X system. The occurrence of these particular vibrational levels of a' 3Σ+ in the emission spectrum is due to strong interaction with b 3Σ+. Indeed, the levels mentioned were observed as "extra" bands accompanying the b 3Σ+ → a 3Π (third positive) bands.
42Extrapo1ated, only v'=1, 6, 21 observed.
43ωexe= +0.0554(v+1/2)3- ...; for higher order coefficients see Tilford and Simmons, 1972.
44RKR potential Tilford and Simmons, 1972.
45αv= +0.000291(v+1/2)2 - + ...; for higher order coefficients see Tilford and Simmons, 1972. Revised coefficients from deperturbed Bv values in Field, 1971.
46missing note
47Numerous perturbations produced by e 3Σ-, d 3Δ, a' 3Σ+, D 1Δ, I 1Σ-, discussed by many investigators and summarized in Simmons, Bass, et al., 1969. Deperturbed Tv and Bv values are given by Field, Wicke, et al., 1972, see also Field, 1971. RKR potential Tilford and Simmons, 1972; the potential function has a maximum, the last observed level lies above the dissociation limit.
48αv= +0.00159(v+1/2)2 - + ...; higher order coefficients in Tilford and Simmons, 1972, revised coefficients from deperturbed B values in Field, 1971.
49Calculated value, βe = +0.10E-6; see Field, Wicke, et al., 1972.
50Lifetimes Hesser, 1968, Imhof and Read, 1971, Burnham, Isler, et al., 1972 : τ=10.7 ns; v=0, τ=10.4 ns; v=1, τ=9.4 ns; v=2, τ=9.0 ns; v=3, τ=9.7 ns; v=4, τ=9.8 ns; v=5, τ=10.5 ns;v=6. Values that are about 50% larger were given by Chervenak and Anderson, 1971.
51Oscillator strength fel = 0.195 Lassettre and Skerbele, 1971, f00 = 0.020 Lassettre and Skerbele, 1971. f values from lifetime measurements Hesser, 1968 are approximately a factor of 2 smaller. See also Mumma, Stone, et al., 1971 [r-dependence of electronic transition moment, fel ~ 0.15 Mumma, Stone, et al., 1971] and Pilling, Bass, et al., 1971, Vargin, Pasynkova, et al., 1973. Franck-Condon factors Halmann and Laulicht, 1966, missing citation, Shimauchi, 1976.
52See Shvangiradze, Oganezov, et al., 1960, Rytel and Siwiec, 1973 for spectroscopic data on 13CO and C18O.
53This is a nominal, rotationally deperturbed value. The lowest observed levels (v=0, J=1) lie at 64747.90(-) and at 64748.09(+) which would correspond to a J=0 level at 64744.8 cm-1.
54ωexe= +0.1174(v+1/2)3- + ... Tilford and Simmons, 1972; from Tilford and Simmons, 1972, see also Field, 1971.
55Spin-splitting constant λ0= +0.51; for its dependence on v see Field, 1971, Field and Lefebvre-Brion, 1974. RKR potential Tilford and Simmons, 1972.
56αv= +7.1E-6(v+1/2)2 + - ...; the coefficients are from Tilford and Simmons, 1972, but considerably different values for the higher order terms were obtained by Field, 1971 from deperturbed rotational constants.
57Calculated value, see Field, 1971.
58Intensity distribution, relative electronic transition moments: e→a Slanger and Black, 1976, d→a Slanger and Black, 1972. Franck-Condon factors; d→a missing citation. Rotational intensity distribution in the "triplet" bands Kovacs and Toros, 1965.
59Av = -16.005 - 0.113(v+1/2) - 0.00357(v+1/2)2 Field, 1971.
60ωexe= +0.0785(v+1/2)3-0.001634(v+1/2)4 Tilford and Simmons, 1972. The constants refer to the 3Δ2 component Tilford and Simmons, 1972; see also Field, 1971.
61RKR potential Tilford and Simmons, 1972.
62αv= +0.000113(v+1/2)2 Tilford and Simmons, 1972. The constants refer to the 3Δ2 component Tilford and Simmons, 1972. From properly averaged term values of v=3,4,7,9 Carroll, 1962 gives Be = 1.3099 Carroll, 1962, αe = 0.01677 Carroll, 1962 in good agreement with the first two of the expansion coefficients determined by Field, 1971.
63Lifetime strongly dependent on J and Ω because of perturbations by A 1Π Slanger and Black, 1973.
64ωexe= +0.0091(v+1/2)3 + 0.00259(v+1/2)4- + ... Tilford and Simmons, 1972. Revised coefficients from deperturbed Tv values in Field, 1971.
65Spin-splitting constants λ0 = -1.23, γ0 ~ -0.007; dependence on v Field, 1971, Field and Lefebvre-Brion, 1974. See also Sink, Lefebvre-Brion, et al., 1975. Dipole moment μel = 1.06 D (-CO+), from the radiofrequency spectrum of a3Π; see Wicke, Field, et al., 1972, Wicke, Klemperer, et al., 1975. RKR potential Tilford and Simmons, 1972.
66αv= +0.000345(v+1/2)2 - + ... Tilford and Simmons, 1972; revised coefficients from deperturbed Bv values in Field, 1971.
67Lifetime τ= 3.7 to 2.9 μs; v=5 to 8 Hartfuss and Schmillen, 1968.
68Franck-Condon factors Halmann and Laulicht, 1966, missing citation.
69Av =+ 41.53 - 0.14(v+1/2) - 0.009(v+1/2)2; AJ(v=0) = -0.000206.
70ωexe= -0.045(v+1/2)3 + 0.0025(v+1/2)4; all vibrational and rotational constants for this state are from deperturbed levels Field, Tilford, et al., 1972, Field, Wicke, et al., 1972.
71Very precise values for the Λ-type doubling in 3Π1 and 3Π2, v=0-7, J=1-8, have been obtained Stern, Gammon, et al., 1970, Gammon, Stern, et al., 1971, Wicke, Field, et al., 1972, Wicke, Klemperer, et al., 1975 from the study of the radiofrequency spectrum in a molecular beam electric resonance apparatus. While these doublings are small and increase rapidly with J the Λ-doubling for 3Π0 [from combination defects Dieke and Mauchly, 1933, Freund and Klemperer, 1965] is fairly large at low J (~1.7 cm-1) and decreases with J. Hyperfine structure in 13C16O Gammon, Stern, et al., 1971, 2. Dipole moment (+CO-) from molecular beam electric resonance spectrum μel(v=0) = 1.374 D Wicke, Field, et al., 1972; dipole moment function and radiative lifetimes for vibrational transitions in a 3Π Wicke and Klemperer, 1975, Wicke and Klemperer, 1975, 2.
72αv= -0.000041(v+1/2)2; see β.
73Calculated value, βe = +0.04E-6 Field, Tilford, et al., 1972, Field, Wicke, et al., 1972.
74Lifetime from time of flight studies τ= ~9.5 ms Johnson, 1972; from afterglow decay τ= 7.5 ms Lawrence, 1971, Wauchop and Broida, 1972; theoretical values James, 1971.
75missing note
76ωexe= +0.010511(v+1/2)3 + 5.74E-5(v+1/2)4 + 9.83E-7(v+1/2)5 - 3.166E-8(v+1/2)6; v≤37 Mantz and Maillard, 1975.
77RKR potential functions Mantz, Watson, et al., 1971, Dickinson, 1972, Fleming and Rao, 1972.
78αv= +5.487E-7(v+1/2)2 + 2.54E-8(v+1/2)3 Mantz and Maillard, 1975.
79Dv= -1.153E-9(v+1/2) + 1.805E-10(v+1/2)2 Mantz and Maillard, 1975; Hv = [5.83 - 0.1738(v+1/2)]E-12 Mantz and Maillard, 1975.
80From the effective Be value; the "true" Be = 1.93160 Bunker, 1970 found by Bunker, 1970 after introducing adiabatic and non-adiabatic corrections (and using older data) leads to re = 1.12823 Å 469. See also Bunker, 1972, Watson, 1973.
81Rot.-vibr. sp. 96, 97:
82Δv=2 sequence up to 33-31 in chemiluninescence Schwartz and Thrush, 1969 and flames Mantz and Maillard, 1974.
83Δv=1 sequence up to 37-36 in the CO laser Mantz, Nichols, et al., 1970, Yardley, 1970, Kildal, Eng, et al., 1974; 1-0 band in resonance fluorescence Millikan, 1963, McCaa and Williams, 1964.
84Line widths and intensities Dowling, 1969, Sanderson, Scott, et al., 1971. High pressure gas and liquid far IR absorption spectra in Ar Buontempo, Cunsolo, et al., 1973; the quadrupole moment derived from this and other experimental and theoretical work [see Billingsley and Krauss, 1974] is Qm= -2.0E-26 esu cm2.
85μel(v=0, J=0) = 0.10980 D (-CO+); with the dipole moment function of Toth, Hunt, et al., 1969 (see 97) this gives 0.1222 D at re Muenter, 1975.
86gJ = -0.26890 μN Ozier, Yi, et al., 1967 for 12C16O Ozier, Yi, et al., 1967; gJ = -0.25691 μN Ozier, Crapo, et al., 1968 for 13C16O Ozier, Crapo, et al., 1968.
87From the predissociation in the B 1Σ+ state (see 33). The uncertainty of ±0.017 eV corresponds to the uncertainty as to which combination of 3P component states arises at the dissociation limit.
88From Rydberg series Ogawa and Ogawa, 1972. For the second and third I.P. (1π and 4σ orbitals) see the higher Rydberg limits in the Table. The fourth, fifth, and sixth I.P. (3σ, 2σ, 1σ) have been determined from X-ray photoelectron spectroscopy to be 38.9, 296.24 (K limit of C), and 542.57 eV. (K limit of O), respectively Siegbahn, Nordling, et al., 1969, Thomas, 1970, Smith and Thomas, 1976. See also 3.
89Absorption and photoionization coefficients from 1000 to 600 Å Cook, Metzger, et al., 1965.
90Calcu1ated Franck-Condon factors for ionization: X 2Σ+ ← X 1Σ+, A 2Π ← 1Σ+, and B 2Σ+ ← X 1Σ+, see Krupenie and Benesch, 1968 and Nicholls, 1968. Observed Franck-Condon factors from photoelectron spectrum Turner and May, 1966, Comes and Speier, 1971, Gardner and Samson, 1974; absolute ionization cross-sections Judge and Lee, 1972, Samson and Gardner, 1976.
91cf. Ogawa and Ogawa's Rydberg series converging to A 2Π1/2.
92The b→a bands with v'=1 were previously called "5B" bands Asundi, 1929.
93Lifetime of this state (and/or D 1Δ) 97 ± 15 μs Wells, Borst, et al., 1973.
94ωexe= +0.766(v+1/2)3 - + ...; higher order coefficients in Tilford and Simmons, 1972. Because of numerous perturbations (see 95) these constants do not accurately represent the observed (v≤23) vibrational levels. Revised coefficients from deperturbed Tv values [see Field, Wicke, et al., 1972] in Field, 1971.
95Franck-Condon factors Halmann and Laulicht, 1966, missing citation.
96For data on 13C16O, 12C18O, 13C18O see Johns, McKellar, et al., 1974, Chen, Rao, et al., 1976.
97Intensities in 1-0, 2-0, 3-0 rotation-vibration bands and dipole moment function Young and Eachus, 1966, Toth, Hunt, et al., 1969, Moskalenko and Mirumyants, 1971, Roux, Effantin, et al., 1972, Billingsley and Krauss, 1974, 2, Bouanich and Brodbeck, 1974, 2, Varanasi and Sarangi, 1975 Tipping, 1976; for Δv=1 transitions with v=4-10 Weisbach and Chackerian, 1973. Pressure shift and pressure broadening Hunt, Toth, et al., 1968, Hoover and Williams, 1969, Bouanich, Larvor, et al., 1969, Bouanich and Brodbeck, 1974, Varanasi, 1975, Moskalenko, 1975.

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Mullins, Kirk, et al., 1963
Mullins, J.C.; Kirk, B.S.; Ziegler, W.T., , U. S. A. E. C. NP-13862, 1963. [all data]

Clayton and Giauque, 1932
Clayton, J.O.; Giauque, W.F., The Heat Capacity and Entropy of Carbon Monoxide. Heat of Vaporization Vapor Pressure of Solid and Liquid. Free Energy to 5000 K from Spectroscopic Data, J. Am. Chem. Soc., 1932, 54, 2610. [all data]

Gill and Morrison, 1966
Gill, E.K.; Morrison, J.A., Thermodynamic Properties of Condensed CO, J. Chem. Phys., 1966, 45, 1585. [all data]

Cardoso, 1915
Cardoso, E., Study of the Critical Point of Several Difficultly LIquifiable Gases: Nitrogen, Carbon Monoxide, Oxygen and Methane, J. Chim. Phys. Phys.-Chim. Biol., 1915, 13, 312. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Clayton and Giauque, 1932, 2
Clayton, J.O.; Giauque, W.F., The heat capacity and entropy of carbon monoxide. Heat of vaporization. Vapor pressures of solid and liquid. Free energy to 5000°K. From spectroscopic data, J. Am. Chem. Soc., 1932, 54, 2610-2626. [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Crommelin, Bijleveld, et al., 1931
Crommelin, C.A.; Bijleveld, W.J.; Brown, E.G., Proc. R. Acad. Sci. Amsterdam, 1931, 34, 1314. [all data]

Graham and Angelici, 1967
Graham, J.R.; Angelici, R.J., Inorg. Chem., 1967, 6, 2082. [all data]

Werner and Prinz, 1966
Werner, H.; Prinz, R., Chem. Ber., 1966, 99, 3582. [all data]

Poë, Sampson, et al., 1993
Poë, A.J.; Sampson, C.N.; Smith, R.T.; Zheng, Y., J. Am. Chem. Soc., 1993, 115, 3174. [all data]

Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P., Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6, J. Am. Chem. Soc., 1984, 106, 3905. [all data]

Smith and Laine, 1981
Smith, G.P.; Laine, R.M., Organometallic bond dissociation energies. Laser pyrolysis of Fe(CO)5, J. Phys. Chem., 1981, 85, 1620. [all data]

Miller and Grant, 1985
Miller, M.E.; Grant, E.R., J. Am. Chem. Soc., 1985, 107, 3386. [all data]

Walsh, 1986
Walsh, R., NATO Advanced Workshop on the Design, Activation and Transformation of Organometallics into Common and Exotic Materials, Montpellier, France, 1986. [all data]

Ray, Brandow, et al., 1988
Ray, U.; Brandow, S.L.; Bandukwalla, G.; Venkataraman, B.K.; Zhang, Z.; Vernon, M., J. Chem. Phys., 1988, 89, 4092. [all data]

Sunderlin, Wang, et al., 1992
Sunderlin, L.S.; Wang, D.; Squires, R.R., Metal Carbonyl Bond Strengths in Fe(CO)n- and Ni(CO)n-, J. Am. Chem. Soc., 1992, 114, 8, 2788, https://doi.org/10.1021/ja00034a004 . [all data]

Engelking and Lineberger, 1979
Engelking, P.C.; Lineberger, W.C., Laser photoelectron spectrometry of the negative ions of iron and iron carbonyls. Electron affinity determination for the series Fe(CO)n,n=0,1,2,3,4, J. Am. Chem. Soc., 1979, 101, 5569. [all data]

Compton and Stockdale, 1976
Compton, R.N.; Stockdale, J.A.D., Formation of gas phase negative ions in Fe(CO)5 and Ni(CO)4, Int. J. Mass Spectrom. Ion Phys., 1976, 22, 47. [all data]

Ganske and Rosenfeld, 1990
Ganske, J.A.; Rosenfeld, R.N., J. Phys. Chem., 1990, 94, 4315. [all data]

Cetini and Gambino, 1963
Cetini, G.; Gambino, O., Atti Accad. Sci. Torino, Classe Sci. Fis. Mat. Nat., 1963, 97, 757. [all data]

Cetini and Gambino, 1963, 2
Cetini, G.; Gambino, O., Atti Accad. Sci. Torino, Classe Sci. Fis. Mat. Nat., 1963, 97, 1197. [all data]

Fletcher and Rosenfeld, 1988
Fletcher, R.T.; Rosenfeld, R.N., Recombination of Cr(CO)n with CO: Kinetics and Bond Dissociation Energies, J. Am. Chem. Soc., 1988, 110, 7, 2097, https://doi.org/10.1021/ja00215a014 . [all data]

Pajaro, Calderazzo, et al., 1960
Pajaro, G.; Calderazzo, F.; Ercoli, R., Gazz. Chim. Ital., 1960, 90, 1486. [all data]

Wovkulich and Atwood, 1980
Wovkulich, M.J.; Atwood, J.D., J. Organometal. Chem., 1980, 184, 77. [all data]

Dennenberg and Darensbourg, 1972
Dennenberg, R.J.; Darensbourg, D.J., Inorg. Chem., 1972, 11, 72. [all data]

Norwood, Guo, et al., 1988
Norwood, K.; Guo, J.H.; Luo, G.; Ng, C.Y., A Photoion - Photoelectron Coincidence Study of (CO)2, J. Chem. Phys., 1988, 88, 6, 4098, https://doi.org/10.1063/1.453814 . [all data]

Linn, Ono, et al., 1981
Linn, S.H.; Ono, Y.; Ng, C.Y., Molecular Beam Photoionization Study of CO, N2, and NO Dimers and Clusters, J. Chem. Phys., 1981, 74, 6, 3342, https://doi.org/10.1063/1.441486 . [all data]

Munson and Franlin, 1962
Munson, M.S.B. Field; Franlin, J.L., High-Pressure Mass Spectrometric Study of Reactions of Rare Gases with N2 and CO, J. Chem. Phys., 1962, 37, 8, 1790, https://doi.org/10.1063/1.1733370 . [all data]

Meot-Ner (Mautner) and Field, 1974
Meot-Ner (Mautner), M.; Field, F.H., Kinetics and Thermodynamics of the Association of CO+ with CO and of N2+ with N2 between 120 and 650 K, J. Chem. Phys., 1974, 61, 9, 3742, https://doi.org/10.1063/1.1682560 . [all data]

Chong and Franklin, 1971
Chong, S.L.; Franklin, J.L., High-Pressure Ion-Molecule Reactions in Carbon Monoxide and Carbon Monoxide - Methane Mixtures, J. Chem. Phys., 1971, 54, 4, 1487, https://doi.org/10.1063/1.1675043 . [all data]

Al-Takhin, Connor, et al., 1984
Al-Takhin, G.; Connor, J.A.; Pilcher, G.; Skinner, H.A., J. Organomet. Chem., 1984, 265, 263. [all data]

Adedeji, Brown, et al., 1975
Adedeji, F.A.; Brown, D.L.S.; Connor, J.A.; Leung, M.; Paz-Andrade, I.M.; Skinner, H.A., J. Organometal. Chem., 1975, 97, 221. [all data]

Hieber and Romberg, 1935
Hieber, W.; Romberg, E., Z. Anorg. Allg. Chem., 1935, 221, 321. [all data]

Rezukhina and Shvyrev, 1952
Rezukhina, T.N.; Shvyrev, V.V., Vestn. Moskov. Univ., 1952, 7, 41. [all data]

Daamen, Ernsting, et al., 1979
Daamen, H.; Ernsting, J.M.; Oskam, A., Thermochim. Acta, 1979, 33, 217. [all data]

Boxhoorn, Ernsting, et al., 1980
Boxhoorn, G.; Ernsting, J.M.; Stufkens, D.J.; Oskam, A., Thermochim. Acta, 1980, 42, 315. [all data]

Pilcher, Ware, et al., 1975
Pilcher, G.; Ware, M.J.; Pittam, D.A., J. Less-Common Met., 1975, 42, 223. [all data]

Barnes, Pilcher, et al., 1974
Barnes, D.S.; Pilcher, G.; Pittam, D.A.; Skinner, H.A.; Todd, D., J. Less-Common Met., 1974, 38, 53. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Tel'noi and Rabinovich, 1977
Tel'noi, V.I.; Rabinovich, I.B., Russ. Chem. Rev., 1977, 46, 689. [all data]

Koelliker and Bor, 1991
Koelliker, R.; Bor, G., J. Organometal. Chem., 1991, 417, 439. [all data]

Bor, 1986
Bor, G., Pure & Appl. Chem., 1986, 58, 543. [all data]

Ungváry and Markó, 1974
Ungváry, F.; Markó, L., J. Organometal. Chem., 1974, 71, 283. [all data]

Ungváry, 1972
Ungváry, F., J. Organometal. Chem., 1972, 36, 363. [all data]

Nakashima and Adamson, 1982
Nakashima, M.; Adamson, A.W., J. Phys. Chem., 1982, 86, 2905. [all data]

Jennings, Headley, et al., 1982
Jennings, K.R.; Headley, J.V.; Mason, R.S., The Temperature Dependence of Ion - Molecule Association Reactions, Int. J. Mass. Spectrom. Ion Phys, 1982, 45, 315. [all data]

Hiraoka, Saluja, et al., 1979
Hiraoka, K.; Saluja, P.P.S.; Kebarle, P., Stabilities of Complexes (N2)nH+, (CO)nH+ and (O2)nH+ for n = 1 to 7 Based on Gas Phase Ion Equilibrium Measurements, Can. J. Chem., 1979, 57, 16, 2159, https://doi.org/10.1139/v79-346 . [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Carpenter, van Koppen, et al., 1995
Carpenter, C.J.; van Koppen, P.A.M.; Bowers, M.T., Details of Potential Energy Surfaces Involving C-C Bond Activation: Reactions of Fe+, Co+ and Ni+ with Acetone, J. Am. Chem. Soc., 1995, 117, 44, 10976, https://doi.org/10.1021/ja00149a021 . [all data]

Goebel, Haynes, et al., 1995
Goebel, S.; Haynes, C.L.; Khan, F.A.; Armentrout, P.B., Collision-Induced Dissociation Studies of Co(CO)x, x = 1-5: Sequential Bond Energies and the Heat of Formation of Co(CO)4, J. Am. Chem. Soc., 1995, 117, 26, 6994, https://doi.org/10.1021/ja00131a023 . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Johnson, Popov, et al., 1991
Johnson, F.P.A.; Popov, V.K.; George, M.W.; Bagratashvili, V.N.; Poliakoff, M.; Turner, J.J., Mendeleev Commun., 1991, 145.. [all data]

Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J., Organometallics, 1989, 8, 2471. [all data]

Venkataraman, Bandukwalla, et al., 1989
Venkataraman, B.K.; Bandukwalla, G.; Zhang, Z.; Vernon, M., J. Chem. Phys., 1989, 90, 5510. [all data]

Monteil, Raffin, et al., 1988
Monteil, Y.; Raffin, P.; Bouix, J., Thermochim. Acta, 1988, 125, 327. [all data]

Khan, Steele, et al., 1995
Khan, F.A.; Steele, D.L.; Armentrout, P.B., Ligand effects in organometallic thermochemistry: The sequential bond energies of Ni(CO)x+ and Ni(N2)x+ (x = 1-4) and Ni(NO)x+ (x = 1-3) [Data derived from reported bond energies taking value of 8.273±0.046 eV for IE[Ni(CO)4]], J. Phys. Chem., 1995, 99, 7819. [all data]

Turner, Simpson, et al., 1983
Turner, J.J.; Simpson, M.B.; Poliakoff, M.; Maier II, W.B., J. Am. Chem. Soc., 1983, 105, 3898. [all data]

Nakajima, Taguwa, et al., 1994
Nakajima, A.; Taguwa, T.; Kaya, K., Photoelectron Spectroscopy of Iron Carbonyl Cluster Anions (Fen(CO)m(-), n=1-4), Chem. Phys. Lett., 1994, 221, 5-6, 436, https://doi.org/10.1016/0009-2614(94)00301-7 . [all data]

Hung and Grabowski, 1992
Hung, R.R.; Grabowski, J.J., Enthalpy measurements in organic solvents by photoacoustic calorimetry: a solution to the reaction volume problem, J. Am. Chem. Soc., 1992, 114, 351-353. [all data]

Herman and Goodman, 1989
Herman, M.S.; Goodman, J.L., Determination of the enthalpy and reaction volume changes of organic photoreactions using photoacoustic calorimetry, J. Am. Chem. Soc., 1989, 111, 1849-1854. [all data]

Grabowski, Simon, et al., 1984
Grabowski, J.J.; Simon, J.D.; Peters, K.S., Heat of formation of diphenylcyclopropenone by photoacoustic calorimetry, J. Am. Chem. Soc., 1984, 106, 4615-4616. [all data]

Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T., Gas Phase Stabilities of the Cluster Ions H+(CO)2(CO)n, H+(N2)2(N2)n and H+(O2)2(O2)n with n = 1 - 14, Chem. Phys., 1989, 137, 1-3, 345, https://doi.org/10.1016/0301-0104(89)87119-8 . [all data]

McQuaid, Morris, et al., 1988
McQuaid, M.J.; Morris, K.; Gole, J.L., J. Am. Chem. Soc., 1988, 110, 5280. [all data]

Stevens, Feigerle, et al., 1982
Stevens, A.E.; Feigerle, C.S.; Lineberger, W.C., Laser Photoelectron Spectrometry of Ni(CO)n-, n=1-3, J. Am. Chem. Soc., 1982, 104, 19, 5026, https://doi.org/10.1021/ja00383a004 . [all data]

Nolan, López de la Vega, et al., 1986
Nolan, S.P.; López de la Vega, R.; Hoff, C.D., J. Am. Chem. Soc., 1986, 108, 7852. [all data]

Calderazzo, 1977
Calderazzo, F., Angew. Chem. Int. Ed. Engl., 1977, 16, 299. [all data]

Bronshstein, Gankin, et al., 1966
Bronshstein, Yu.E.; Gankin, V.Yu.; Krinkin, D.P.; Rudkovskii, D.M., Russ. J. Phys. Chem., 1966, 40, 802. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]

Walter, Sievers, et al., 1998
Walter, D.; Sievers, M.R.; Armentrout, P.B., Alkali Ion Carbonyls: Sequential Bond Energies of Li+(CO)x (x=1-3), Na+(CO)x (x=1, 2), and K+(CO), Int. J. Mass Spectrom., 1998, 175, 1-2, 93, https://doi.org/10.1016/S0168-1176(98)00109-8 . [all data]

Castleman, Peterson, et al., 1983
Castleman, A.W.; Peterson, K.I.; Upschulte, B.L.; Schelling, F.J., Energetics and Structure of Na+ Cluster Ions, Int. J. Mass Spectrom. Ion Phys., 1983, 47, 203, https://doi.org/10.1016/0020-7381(83)87171-X . [all data]

Hiraoka and Mori, 1991
Hiraoka, K.; Mori, T., On the formation of the Isomeric Cluster Ions (CO)n+, J. Chem. Phys., 1991, 94, 4, 2697, https://doi.org/10.1063/1.459844 . [all data]

Moloy and Marks, 1984
Moloy, K.G.; Marks, T.J., J. Am. Chem. Soc., 1984, 106, 7051. [all data]

Barnes, Pilcher, et al., 1974, 2
Barnes, D.S.; Pilcher, G.; Pittam, D.A.; Skinner, H.A.; Todd, D.; Virmani, Y., J. Less-Common Met., 1974, 36, 177. [all data]

Connor, Skinner, et al., 1972
Connor, J.A.; Skinner, H.A.; Virmani, Y., Microcalorimetric studies. Thermal decomposition and iodination of metal carbonyls, J. Chem. Soc., Faraday Trans. 1, 1972, 68, 0, 1754, https://doi.org/10.1039/f19726801754 . [all data]

Wong and Brintzinger, 1975
Wong, K.L.T.; Brintzinger, H.H., J. Am. Chem. Soc., 1975, 97, 5143. [all data]

Al-Takhin, Connor, et al., 1984, 2
Al-Takhin, G.; Connor, J.A.; Skinner, H.A.; Zaharani-Moettar, M.T., J. Organomet. Chem., 1984, 260, 189. [all data]

Pittam, Pilcher, et al., 1975
Pittam, D.A.; Pilcher, G.; Barnes, D.S.; Skinner, H.A.; Todd, D., J. Less-Common Met., 1975, 42, 217. [all data]

Bor and Dietler, 1980
Bor, G.; Dietler, U.K., J. Organometal. Chem., 1980, 191, 295. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Refaey and Franklin, 1976
Refaey, K.M.A.; Franklin, J.L., Endoergic ion-molecule-collision processes of negative ions. III. Collisions of I- on O2, CO and CO2, Int. J. Mass Spectrom. Ion Phys., 1976, 20, 19. [all data]

Erman, Karawajczyk, et al., 1993
Erman, P.; Karawajczyk, A.; Rachlew-Kallne, E.; Stromholm, C.; Larsson, J.; Persson, A.; Zerne, R., Direct determination of the ionization potential of CO by resonantly enhanced multiphoton ionization mass spectrometry, Chem. Phys. Lett., 1993, 215, 173. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Fock, Gurtler, et al., 1980
Fock, J.-H.; Gurtler, P.; Koch, E.E., Molecular Rydberg transitions in carbon monoxide: term value/ionization energy correlation of BF, CO and N2., Chem. Phys., 1980, 47, 87. [all data]

Hille and Mark, 1978
Hille, E.; Mark, T.D., Cross section for single and double ionization of carbon monoxide by electron impact from threshold up to 180 eV, J. Chem. Phys., 1978, 69, 4600. [all data]

Rabalais, Debies, et al., 1974
Rabalais, J.W.; Debies, T.P.; Berkosky, J.L.; Huang, J.-T.J.; Ellison, F.O., Calculated photoionization cross sections relative experimental photoionization intensities for a selection of small molecules, J. Chem. Phys., 1974, 61, 516. [all data]

Natalis, 1973
Natalis, P., Contribution a la spectroscopie photoelectronique. Effets de l'autoionisation dans less spectres photoelectroniques de molecules diatomiques et triatomiques, Acad. R. Belg. Mem. Cl. Sci. Collect. 8, 1973, 41, 1. [all data]

Ogawa and Ogawa, 1972
Ogawa, M.; Ogawa, S., Absorption spectrum of CO in the Hopfield helium continuum region, 600-1020 A, J. Mol. Spectrosc., 1972, 41, 393. [all data]

Hotop and Niehaus, 1970
Hotop, H.; Niehaus, A., Reactions of excited atoms and molecules with atoms and molecules. V.Comparison of Penning electron and photoelectron spectra of H2, N2 and CO, Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 415. [all data]

Collin and Natalis, 1969
Collin, J.E.; Natalis, P., Ionic states and photon impact-enhanced vibrational excitation in diatomic molecules by photoelectron spectroscopy. Photoelectron spectra of N2, CO and O2, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 231. [all data]

Turner and May, 1966
Turner, D.W.; May, D.P., Franck-Condon factors in ionization: experimental measurement using molecular photoelectron spectroscopy, J. Chem. Phys., 1966, 45, 471. [all data]

Krupenie, 1966
Krupenie, P.H., The band spectrum of carbon monoxide, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. NSRDS-NBS, 1966, 5. [all data]

Cook, Metzger, et al., 1965
Cook, G.R.; Metzger, P.H.; Ogawa, M., Photoionization and absorption coefficients of CO in the 600 to 1000 A region, Can. J. Phys., 1965, 43, 1706. [all data]

Potts and Williams, 1974
Potts, A.W.; Williams, T.A., The observation of "forbidden" transitions in He II photoelectron spectra, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 3. [all data]

Katrib, Debies, et al., 1973
Katrib, A.; Debies, T.P.; Colton, R.J.; Lee, T.H.; Rabalais, J.W., The use of differential photoionization cross sections as a function of excitation energy in assigning photoelectron spectra, Chem. Phys. Lett., 1973, 22, 196. [all data]

Thomas, 1970
Thomas, T.D., X-ray photoelectron spectroscopy of carbon monoxide, J. Chem. Phys., 1970, 53, 1744. [all data]

Oertel, Schenk, et al., 1980
Oertel, H.; Schenk, H.; Baumgartel, H., Ion pair formation from photon irradiation of O2, NO and CO in 17-30 eV, Chem. Phys., 1980, 46, 251. [all data]

Smyth, Schiavone, et al., 1974
Smyth, K.C.; Schiavone, J.A.; Freund, R.S., Dissociative excitation of CO by electron impact: Translational spectroscopy of long-lived high-Rydberg fragment atoms, J. Chem. Phys., 1974, 60, 1358. [all data]

Locht and Momigny, 1971
Locht, R.; Momigny, J., Mass spectrometric study of ion-pair processes in diatomic molecules: H2, CO, NO and O2, Int. J. Mass Spectrom. Ion Phys., 1971, 7, 121. [all data]

Hierl and Franklin, 1967
Hierl, P.M.; Franklin, J.L., Appearance potentials and kinetic energies of ions from N2, CO, and NO, J. Chem. Phys., 1967, 47, 3154. [all data]

Fineman and Petrocelli, 1961
Fineman, M.A.; Petrocelli, A.W., Molecular studies with a Lozier electron impact apparatus, Planetary Space Sci., 1961, 3, 187. [all data]

Weissler, Samson, et al., 1959
Weissler, G.L.; Samson, J.A.R.; Ogawa, M.; Cook, G.R., Photoionization analysis by mass spectroscopy, J. Opt. Soc. Am., 1959, 49, 338. [all data]

Meyer, Chen, et al., 1995
Meyer, F.; Chen, Y.M.; Armentrout, P.B., Sequential Bond Energies of Cu(CO)x+ and Ag(CO)x+ (x = 1-4), J. Am. Chem. Soc., 1995, 117, 14, 4071, https://doi.org/10.1021/ja00119a023 . [all data]

Norwood, Guo, et al., 1989
Norwood, K.; Guo, J.H.; Luo, G.; Ng, C.Y., A Study of Intramolecular Charge Transfer in Mixed Ar/Co Dimer and Trimer Ions Using the Photoion - Photoelectron Coincidence Method, Chem. Phys., 1989, 129, 1, 109, https://doi.org/10.1016/0301-0104(89)80023-0 . [all data]

Hiraoka, Nasu, et al., 1996
Hiraoka, K.; Nasu, M.; Fujimaki, S.; Ignacio, E.W.; Yamabe, S., Gas-Phase Stability and Structure of the Cluster Ions CF3+(CO)n, CF3+(N2)n, CF3+((CF4)n, and CF4H+(CF4)n, J. Phys. Chem., 1996, 100, 13, 5245, https://doi.org/10.1021/jp9530010 . [all data]

Villalta and Leopold, 1993
Villalta, P.W.; Leopold, D.G., A Study of FeCO- and the 3-Sigma(-) and 5-Sigma(-) States of FeCO by Negative Ion Photoelectron Spectroscopy, J. Chem. Phys., 1993, 98, 10, 7730, https://doi.org/10.1063/1.464580 . [all data]

Murray, Miller, et al., 1986
Murray, K.K.; Miller, T.M.; Leopold, D.G.; Lineberger, W.C., Laser photoelectron spectroscopy of the Formylf anion, J. Chem. Phys., 1986, 84, 2520. [all data]

Grushow and Ervin, 1997
Grushow, A.; Ervin, K.M., Ligand and Metal Binding Energies in Platinum Carbonyl Cluster Anions: Collision Induced Dissociation of PtM- and Ptm(CO)n-, J. Chem. Phys., 1997, 106, 23, 9580, https://doi.org/10.1063/1.474116 . [all data]

Shi, Spasov, et al., 2001
Shi, Y.; Spasov, V.A.; Ervin, K.M., Photodesorption of carbonyl from Pt-3(CO)(n)(-) (n=1-6), Int. J. Mass Spectrom., 2001, 204, 1-3, 197-208, https://doi.org/10.1016/S1387-3806(00)00364-X . [all data]

Sunderlin, Wang, et al., 1993
Sunderlin, L.S.; Wang, D.N.; Squires, R.R., Bond Strengths in 1st-Row-Metal Carbonyl Anions, J. Am. Chem. Soc., 1993, 115, 25, 12060, https://doi.org/10.1021/ja00078a051 . [all data]

Sunderlin and Squires, 1999
Sunderlin, L.S.; Squires, R.R., Bond strengths in cyclopentadienyl metal carbonyl anions, Int. J. Mass Spectrom., 1999, 183, 149-161, https://doi.org/10.1016/S1387-3806(98)14230-6 . [all data]

Khan, Clemmer, et al., 1993
Khan, F.A.; Clemmer, D.E.; Schultz, R.H.; Armentrout, P.B., Sequential Bond Energies of Cr(CO)x+, x=1-6, J. Phys. Chem., 1993, 97, 30, 7978, https://doi.org/10.1021/j100132a029 . [all data]

Tecklenberg, Bricker, et al., 1988
Tecklenberg, R.E.; Bricker, D.L.; Russel, D.H., Laser - Ion Beam Photodissociation Studies of Ionic Cluster Fragments of Iron Carbonyls: Fe(x)(CO)y+ (x = 1 - 3; y = 0 - 6), Organometallics, 1988, 7, 12, 2506, https://doi.org/10.1021/om00102a013 . [all data]

Praxmarer, Jordan, et al., 1993
Praxmarer, C. Hansel; Jordan, A.; Kraus, H.; Lindinger, W., Reactions of Kr2+ with Various Neutrals, Int.J. Mass Spectrom. Ion. Proc., 1993, 129, 121, https://doi.org/10.1016/0168-1176(93)87036-R . [all data]

Wadt, 1978
Wadt, W.R., The Electronic States of Ar2+, Kr2+, Xe2+. I. Potential Curves with and without Spin-Orbit Coupling, J. Chem. Phys., 1978, 68, 2, 402, https://doi.org/10.1063/1.435773 . [all data]

Radzig and Smirnov, 1985
Radzig, R.; Smirnov, B.M., Reference Data on Atoms in Molecules and Ions, Springer, Berlin, 1985. [all data]

Andersen, Muntean, et al., 2000
Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P.B., Collision-Induced Dissociation and Theoretical Studies of Mg+ Complexes with CO, CO2, NH3, CH4, CH3OH, and C6H6, J. Phys. Chem. A, 2000, 104, 4, 692, https://doi.org/10.1021/jp993031t . [all data]

Dearden, Hayashibara, et al., 1989
Dearden, D.V.; Hayashibara, K.; Beauchamp, J.L.; Kirschner, N.J.; Van Koppen, P.A.M.; Bowers, M.T., Fundamental Studies of the Energetics and Dynamics of Ligand Dissociation and Exchange Processes at Transition - Metal Centers in the Gas Phase: Mn(COx)+, x = 1 - 6, J. Am. Chem. Soc., 1989, 111, 7, 2401, https://doi.org/10.1021/ja00189a005 . [all data]

Adams and Bohme, 1970
Adams, N.G.; Bohme, D., Flowing Afterglow Studies of Formation and Reactions of Cluster Ions of O2+, O2-, and O-, J. Chem. Phys., 1970, 52, 6, 3133, https://doi.org/10.1063/1.1673449 . [all data]

Zhang and Armentrout, 2001
Zhang, X.-G.; Armentrout, P.B., Sequential Bond Energies of Pt(CO)x, (x=1-4) Determined by Collision-Induced Dissociation, Organometallics, 2001, 20, 20, 4266, https://doi.org/10.1021/om010390d . [all data]

Meyer and Armentrout, 1996
Meyer, F.; Armentrout, P.B., Sequential Bond Energies of Ti(CO)x+, x=1-7, Molec. Phys., 1996, 88, 187. [all data]

Sievers and Armentrout, 1995
Sievers, M.R.; Armentrout, P.B., Collision-Induced Dissociation Studies of V(CO)x+, x = 1-7: Sequential Bond Energies and the Heat of Formation of V(CO)6, J. Phys. Chem., 1995, 99, 20, 8135, https://doi.org/10.1021/j100020a041 . [all data]

Nakamura, Morioka, et al., 1971
Nakamura; Morioka; Hayaishi; Ishiguro; Sasanuma, 3rd International Conference on Vacuum Ultraviolet Radiation Physics - Paper 1pA1-6, Tokyo, 1971, 0. [all data]

Lee, Carlson, et al., 1973
Lee, L.C.; Carlson, R.W.; Judge, D.L.; Ogawa, M., The absorption cross sections of N2, O2, CO, NO, CO2, N2O, CH4, C2H4, C2H6 and C4H10 from 180 to 700 Å, J. Quant. Spectrosc. Radiat. Transfer, 1973, 13, 1023. [all data]

Watson, Stewart, et al., 1975
Watson, W.S.; Stewart, D.T.; Gardner, A.B.; Lynch, M.J., The photoabsorption coefficients of CO and CO2 in the region 350 to 650Å, Planet. Space Sci., 1975, 23, 384. [all data]

Wight, van der Wiel, et al., 1976
Wight, G.R.; van der Wiel, M.J.; Brion, C.E., Dipole excitation, ionization and fragmentation of N2 and CO in the 10-60 eV region, J. Phys. B:, 1976, 9, 675. [all data]

Asbrink, Fridh, et al., 1974
Asbrink, L.; Fridh, C.; Lindholm, E.; Codling, K., Photoelectron spectrum and Rydberg transitions of CO, Phys. Scr., 1974, 10, 183. [all data]

Codling and Potts, 1974
Codling, K.; Potts, A.W., Corrigendum: The absorption spectrum of carbon monoxide near 550 Å [Ref.: J. Phys. B:, 1974, Vol. 1, 163-169], J. Phys. B:, 1974, 7, 314. [all data]

Ogawa and Ogawa, 1974
Ogawa, S.; Ogawa, M., Absorption spectrum of CO in the Hopfield helium continuum region. Rydberg bands converging to the X2Σ+ state of CO+ in the region 960-1080 Å, J. Mol. Spectrosc., 1974, 49, 454. [all data]

Tanaka, 1942
Tanaka, Y., CO absorption spectra in the extreme ultra-violet, Sci. Pap. Inst. Phys. Chem. Res. Jpn., 1942, 39, 447. [all data]

Henning, 1932
Henning, H.J., Die absorptionsspektren von kohlendioxyd, kohlenmonoxyd und wasserdampf im gebiet von 600-900 ÅE, Ann. Phys. (Leipzig), 1932, 13, 599. [all data]

Lindholm, 1969
Lindholm, E., Rydberg series in small molecules. II. Rydberg series in CO, Ark. Fys., 1969, 40, 103. [all data]

Tilford and Simmons, 1974
Tilford, S.G.; Simmons, J.D., Reexamination of the vacuum ultraviolet emission spectrum of CO in the 950-1200 A region, J. Mol. Spectrosc., 1974, 53, 436. [all data]

Hopfield and Birge, 1927
Hopfield, J.J.; Birge, R.T., Ultra-violet absorption and emission spectra of carbon monoxide, Phys. Rev., 1927, 29, 922. [all data]

Tschulanovsky, 1939
Tschulanovsky, V.M., Two new electron levels of the molecule of CO, J. Phys. (USSR), 1939, 1, 341. [all data]

Kepa, Knot-Wisniewska, et al., 1975
Kepa, R.; Knot-Wisniewska, M.; Rytel, M., The E1Π-A1Π system of 12C16O molecule - the rotational analysis, Acta Phys. Pol. A, 1975, 48, 819. [all data]

Schmid and Gero, 1935
Schmid, R.; Gero, L., Uber die B1Σ→A1Π- und C1Σ→A1Π-banden des kohlenoxyds, Z. Phys., 1935, 93, 656. [all data]

Tilford and Vanderslice, 1968
Tilford, S.G.; Vanderslice, J.T., High resolution vacuum ultraviolet absorption spectra of the B1Σ+-X1Σ+, C1Σ+-X1Σ+, and j3Σ+-X1Σ+ transitions in carbon monoxide, J. Mol. Spectrosc., 1968, 26, 419. [all data]

Aarts and de Heer, 1970
Aarts, J.F.M.; de Heer, F.J., Emission of radiation in the vacuum ultraviolet by impact of electrons on carbon monoxide, J. Chem. Phys., 1970, 52, 5354. [all data]

Kaplan, 1930
Kaplan, J., A new system of bands in carbon monoxide, Phys. Rev., 1930, 35, 1298. [all data]

Dieke and Mauchly, 1933
Dieke, G.H.; Mauchly, J.W., The structure of the third positive group of CO bands, Phys. Rev., 1933, 43, 12. [all data]

Gero, 1936
Gero, L., Rotationsanalyse der (1,0)b3Σ → a3Π CO-bande, Z. Phys., 1936, 101, 311. [all data]

Beer, 1937
Beer, B.S., Rotationsanalyse der 0→4-, 0→5-, 1→4- und 1→5- banden des III. pos. CO-systems, Z. Phys., 1937, 107, 73. [all data]

Schmid and Gero, 1937
Schmid, R.; Gero, L., Structure of a new system of CO bands, Nature (London), 1937, 140, 508. [all data]

Simmons and Tilford, 1971
Simmons, J.D.; Tilford, S.G., New absorption bands and isotopic studies of known transitions in CO, J. Res. Nat. Bur. Stand. Sect. A, 1971, 75, 455. [all data]

Tilford and Simmons, 1972
Tilford, S.G.; Simmons, J.D., Atlas of the observed absorption spectrum of carbon monoxide between 1060 and 1900 Å, J. Phys. Chem. Ref. Data, 1972, 1, 147. [all data]

Barrow, 1961
Barrow, R.F., Triplet bands of carbon monoxide: the system e3Σ - a3Π, Nature (London), 1961, 189, 480. [all data]

Gero and Szabo, 1939
Gero, L.; Szabo, F., Uber die struktur der triplettbanden (d3Π→a3Π) des kohlenoxyds, Ann. Phys. (Leipzig), 1939, 35, 597. [all data]

Carroll, 1962
Carroll, P.K., Structure of the triplet bands of CO, J. Chem. Phys., 1962, 36, 2861. [all data]

Slanger and Black, 1970
Slanger, T.G.; Black, G., The perturbation spectrum of CO, Chem. Phys. Lett., 1970, 4, 558. [all data]

Herzberg, Hugo, et al., 1970
Herzberg, G.; Hugo, T.J.; Tilford, S.G.; Simmons, J.D., Rotational analysis of the forbidden d3Δi ← X1Σ+ absorption bands of carbon monoxide, Can. J. Phys., 1970, 48, 3004. [all data]

Asundi, 1929
Asundi, R.K., The third positive carbon and associated bands, Proc. R. Soc. London A, 1929, 124, 277. [all data]

Gero and Lorinezi, 1939
Gero, L.; Lorinezi, K., Rotationsanalyse der a'3Σ+ → a3Π-CO-Banden, Z. Phys., 1939, 113, 449. [all data]

Field, Tilford, et al., 1972
Field, R.W.; Tilford, S.G.; Howard, R.A.; Simmons, J.D., Fine structure and perturbation analysis of the a3Π state of CO, J. Mol. Spectrosc., 1972, 44, 347. [all data]

Bouanich, Levy, et al., 1967
Bouanich, J.-P.; Levy, A.; Haeusler, C., Spectre de vibration-rotation de l'oxyde de carbone CO. Etude de la bande v0→3, C.R. Acad. Sci. Paris, Ser. B, 1967, 264, 944. [all data]

Bouanich, Levy, et al., 1968
Bouanich, J.-P.; Levy, A.; Haeusler, C., Constantes moleculaires de l'oxyde de carbone, J. Phys. (Paris), 1968, 29, 641. [all data]

Bouanich and Brodbeck, 1974
Bouanich, J.-P.; Brodbeck, C., Etalonnage et deplacement des raies de vibration-rotation des bandes 0 → 2 et 0 → 3 de l'oxyde de carbone, Rev. Phys. Appl., 1974, 9, 475. [all data]

Mantz and Maillard, 1974
Mantz, A.W.; Maillard, J.-P., Emission spectra with a high resolution Fourier transform spectrometer: CO spectra and their astrophysical importance, J. Mol. Spectrosc., 1974, 53, 466. [all data]

Rank, Skorinko, et al., 1960
Rank, D.H.; Skorinko, G.; Eastman, D.P.; Wiggins, T.A., Highly precise wavelengths in the infrared, J. Mol. Spectrosc., 1960, 4, 518. [all data]

Rao, Humphreys, et al., 1966
Rao, K.N.; Humphreys, C.J.; Rank, D.H., Wavelength standards in the infrared, Academic Press, New York, 1966, 0. [all data]

Loewenstein, 1960
Loewenstein, E.V., Interferometric spectra of ammonia and carbon monoxide in the far infrared, J. Opt. Soc. Am., 1960, 50, 1163. [all data]

Rosenblum, Nethercot, et al., 1958
Rosenblum, B.; Nethercot, A.H., Jr.; Townes, C.H., Isotopic mass ratios, magnetic moments and the sign of the electric dipole moment in carbon monoxide, Phys. Rev., 1958, 109, 400. [all data]

Helminger, De Lucia, et al., 1970
Helminger, P.; De Lucia, F.C.; Gordy, W., Extension of microwave absorption spectroscopy to 0.37-mm wavelength, Phys. Rev. Lett., 1970, 25, 1397. [all data]

Lovas and Krupenie, 1974
Lovas, F.J.; Krupenie, P.H., Microwave spectra of molecules of astrophysical interest. VII. Carbon monoxide, carbon monosulfide, and silicon monoxide, J. Phys. Chem. Ref. Data, 1974, 3, 245. [all data]

Muenter, 1975
Muenter, J.S., Electric dipole moment of carbon monoxide, J. Mol. Spectrosc., 1975, 55, 490. [all data]

Ozier, Yi, et al., 1967
Ozier, I.; Yi, P.; Khosla, A.; Ramsey, N.F., Sign and magnitude of the rotational moment of 12C16O, J. Chem. Phys., 1967, 46, 1530. [all data]

Ozier, Crapo, et al., 1968
Ozier, I.; Crapo, L.M.; Ramsey, N.F., Spin rotation constant and rotational magnetic moment of 13C16O, J. Chem. Phys., 1968, 49, 2314. [all data]

van der Wiel, El-Sherbini, et al., 1970
van der Wiel, M.J.; El-Sherbini, Th.M.; Brion, C.E., K shell excitation of nitrogen and carbon monoxide by electron impact, Chem. Phys. Lett., 1970, 7, 161. [all data]

Lee, Carlson, et al., 1975
Lee, L.C.; Carlson, R.W.; Judge, D.L.; Ogawa, M., Vacuum ultraviolet fluorescence from photodissociation fragments of CO and CO2, J. Chem. Phys., 1975, 63, 3987. [all data]

Locht and Durer, 1975
Locht, R.; Durer, J.M., New predissociations of CO and CO+ induced by low energy electron impact, Chem. Phys. Lett., 1975, 34, 508. [all data]

Krupenie and Benesch, 1968
Krupenie, P.H.; Benesch, W., Electronic transition moment integrals for first ionization of CO and the A-X transition in Co+. Some limitations on the use of the r-centroid approximation, J. Res. Nat. Bur. Stand. Sect. A, 1968, 72, 495. [all data]

Nicholls, 1968
Nicholls, R.W., Franck-Condon factors for ionizing transitions of O2, CO, NO and H2 and for the NO+(A1-Σx1Σ) band system, J. Phys. B:, 1968, 1, 1192. [all data]

Comes and Speier, 1971
Comes, F.J.; Speier, F., Luminescence of diatomic molecular ions. I. Franck-Condon-factors and collisional deactivation, Z. Naturforsch. A, 1971, 26, 1998. [all data]

Gardner and Samson, 1974
Gardner, J.L.; Samson, J.A.R., Experimental vibrational intensity distributions for continuum photoionization to the X2Σ+, A2Π, and B2Σ+ states of CO+ and N2+, J. Chem. Phys., 1974, 60, 3711. [all data]

Judge and Lee, 1972
Judge, D.L.; Lee, L.C., Electronic transition moments for the A → X, B → X, and B → A transitions in CO+ and the A ← B and B ← X moments for the CO → CO+ systems; absolute cross sections for the absorption processes, J. Chem. Phys., 1972, 57, 455. [all data]

Samson and Gardner, 1976
Samson, J.A.R.; Gardner, J.L., Partial photoionization cross-sections and branching ratios of CO from 750 to 304 Å, J. Electron Spectrosc. Relat. Phenom., 1976, 8, 35. [all data]

Carbonneau and Marmet, 1973
Carbonneau, R.; Marmet, P., Negative and neutral autoionizing states detected in the electroionization curve in CO, Can. J. Phys., 1973, 51, 2202. [all data]

Takamine, Tanaka, et al., 1943
Takamine, T.; Tanaka, Y.; Iwata, M., On the first ionization potential of CO, Sci. Papers Inst. Phys. Chem. Res. Jpn., 1943, 40, 371. [all data]

Jevons, 1932
Jevons, W., Report on band-spectra of diatomic molecules, Pub. The Physical Society, The University Press, London, 1932, 0. [all data]

Simmons and Tilford, 1974
Simmons, J.D.; Tilford, S.G., Evidence for an accidental predissociation of CO, J. Mol. Spectrosc., 1974, 49, 167. [all data]

Lassettre and Skerbele, 1971
Lassettre, E.N.; Skerbele, A., Absolute generalized oscillator strengths for four electronic transitions in carbon monoxide, J. Chem. Phys., 1971, 54, 1597. [all data]

Fisher and Dalby, 1976
Fisher, N.J.; Dalby, F.W., On the dipole moments of excited singlet states of carbon monoxide, Can. J. Phys., 1976, 54, 258. [all data]

Hesser, 1968
Hesser, J.E., Absolute Transition Probabilities in Ultraviolet Molecular Spectra, J. Chem. Phys., 1968, 48, 6, 2518, https://doi.org/10.1063/1.1669477 . [all data]

Dotchin and Chupp, 1973
Dotchin, L.W.; Chupp, E.L., Radiative lifetimes and pressure dependence of the relaxation rates of some vibronic levels in N2+, N2, CO+, and CO, J. Chem. Phys., 1973, 59, 3960. [all data]

Kepa, 1969
Kepa, R., Note on the Herzberg system of the isotopic CO molecules, Acta Phys. Pol., 1969, 36, 1109. [all data]

Asundi, Dhumwad, et al., 1970
Asundi, R.K.; Dhumwad, R.K.; Patwardhan, A.B., Isotope shift studies of Herzberg bands of CO and comet-tail and Baldet-Johnson bands of CO+, J. Mol. Spectrosc., 1970, 34, 528. [all data]

Swanson, Celotta, et al., 1975
Swanson, N.; Celotta, R.J.; Kuyatt, C.E.; Cooper, J.W., Resonant structure in electron impact excitation of CO near threshold, J. Chem. Phys., 1975, 62, 4880. [all data]

Douglas and Moller, 1955
Douglas, A.E.; Moller, C.K., Predissociations of the C12O and C13O molecules, Can. J. Phys., 1955, 33, 125. [all data]

Imhof, Read, et al., 1972
Imhof, R.E.; Read, F.H.; Beckett, S.T., Determination of the transition moment of the B1Σ+-x1Σ+ transition in CO, J. Phys. B:, 1972, 5, 896. [all data]

Rogers and Anderson, 1970
Rogers, J.; Anderson, R., Radiative lifetime of the B1Σ+ state of CO, J. Opt. Soc. Am., 1970, 60, 278. [all data]

Kepa and Rytel, 1970
Kepa, R.; Rytel, M., On the angstrom bands of 12C16O, Acta Phys. Pol., 1970, 37, 585. [all data]

Janjic, Pesic, et al., 1969
Janjic, F.D.; Pesic, D.S.; Jankovic, D.S., The angstrom band system of the 12C18O molecule, Bull. Soc. Chim. Beograd., 1969, 34, 301. [all data]

Gero, 1935
Gero, L., Storung und pradissoziation im b3Σ-term des CO-bandenspektrums, Z. Phys., 1935, 95, 747. [all data]

Schmid and Gero, 1935, 2
Schmid, R.; Gero, L., Zur struktur der 5 B-banden des CO-spektrums, Z. Phys., 1935, 96, 198. [all data]

Stepanov, 1940
Stepanov, B.I., On the calculation of constants of the level b3Σ in molecule CO, J. Phys. (USSR), 1940, 2, 197. [all data]

Barrow, Gratzer, et al., 1956
Barrow, R.F.; Gratzer, W.B.; Malherbe, J.F., Intensities of bands in the system b3Σ+-a3Π of carbon monoxide, Proc. Phys. Soc. London Sect. A, 1956, 69, 574. [all data]

Rogers and Anderson, 1970, 2
Rogers, J.; Anderson, R., Radiative lifetime of the b3Σ+ state of CO, J. Quant. Spectrosc. Radiat. Transfer, 1970, 10, 515. [all data]

Smith, Imhof, et al., 1973
Smith, A.J.; Imhof, R.E.; Read, F.H., Measured lifetimes of the two vibrational levels of the b3Σ+ state of CO, J. Phys. B:, 1973, 6, 1333. [all data]

Gero, 1938
Gero, L., Rotationsanalyse von a'3Σ+ → a3Π-banden des CO, Z. Phys., 1938, 109, 216. [all data]

Field, 1971
Field, R.W., Thesis, Harvard University, Massachusetts, 1971, 0. [all data]

Simmons, Bass, et al., 1969
Simmons, J.D.; Bass, A.M.; Tilford, S.G., The fourth positive system of carbon monoxide observed in absorption at high resolution in the vacuum ultraviolet region, Astrophys. J., 1969, 155, 345. [all data]

Field, Wicke, et al., 1972
Field, R.W.; Wicke, B.G.; Simmons, J.D.; Tilford, S.G., Analysis of perturbations in the a3Π and A1Π states of CO, J. Mol. Spectrosc., 1972, 44, 383. [all data]

Imhof and Read, 1971
Imhof, R.E.; Read, F.H., Measured lifetimes of the first seven vibrational levels of the A1Π state of CO, Chem. Phys. Lett., 1971, 11, 326. [all data]

Burnham, Isler, et al., 1972
Burnham, R.L.; Isler, R.C.; Wells, W.C., Zero-field level-crossing spectroscopy of the A1Π state of carbon monoxide, Phys. Rev. A: Gen. Phys., 1972, 6, 1327. [all data]

Chervenak and Anderson, 1971
Chervenak, J.G.; Anderson, R.A., Radiative lifetime of the A1Π state of CO, J. Opt. Soc. Am., 1971, 61, 952. [all data]

Mumma, Stone, et al., 1971
Mumma, M.J.; Stone, E.J.; Zipf, E.C., Excitation of the CO fourth positive band system by electron impact on carbon monoxide and carbon dioxide, J. Chem. Phys., 1971, 54, 2627. [all data]

Pilling, Bass, et al., 1971
Pilling, M.J.; Bass, A.M.; Braun, W., A curve of growth determination of the f-values for the fourth positive system of CO and the Lyman-Birge-Hopfield system of N2, J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 1593. [all data]

Vargin, Pasynkova, et al., 1973
Vargin, A.N.; Pasynkova, L.M.; Trekhov, E.S., Measurement of |Re|2 for the 4+ system of CO, J. Appl. Spectrosc. Engl. Transl., 1973, 13, 1340, In original 662. [all data]

Halmann and Laulicht, 1966
Halmann, M.; Laulicht, I., Isotope effects on vibrational transition probabilities. IV. Electronic transitions of isotopic C2, CO, CN, H2, and CH molecules, Astrophys. J. Suppl. Ser., 1966, 12, 307. [all data]

Shimauchi, 1976
Shimauchi, M., Franck-Condon factors and r-centroids for the A1Π-X1Σ systems of CO and NO+, Sci. Light (Tokyo), 1976, 25, 1. [all data]

Shvangiradze, Oganezov, et al., 1960
Shvangiradze, R.R.; Oganezov, K.A.; Chikhladze, B.Ya., Isotopic band shifts in the electronic-vibrational spectra of some diatomic molecules, Opt. Spectrosc. Engl. Transl., 1960, 8, 239. [all data]

Rytel and Siwiec, 1973
Rytel, M.; Siwiec, T., Perturbations in the spectra of CO isotopic molecules. I. Partial analysis of e3Σ- - A1Π perturbations, Acta Phys. Pol., 1973, 44, 67. [all data]

Field and Lefebvre-Brion, 1974
Field, R.W.; Lefebvre-Brion, H., On the effective spin-spin constants of some states of diatomic molecules. Application to the CO molecule, Acta Phys. Acad. Sci. Hung., 1974, 35, 51. [all data]

Slanger and Black, 1976
Slanger, T.G.; Black, G., Relative electronic transition moments for the e3Σ--a3Π Herman system of CO, J. Chem. Phys., 1976, 64, 219. [all data]

Slanger and Black, 1972
Slanger, T.G.; Black, G., Relative electronic transition moments for the triplet system (d3Δ → a3Π) of CO, J. Phys. B:, 1972, 5, 1988. [all data]

Kovacs and Toros, 1965
Kovacs, I.; Toros, R., The intensity distribution of the triplet bands of the CO molecule, Acta Phys. Hung., 1965, 18, 101. [all data]

Slanger and Black, 1973
Slanger, T.G.; Black, G., Relaxation processes in excited CO states. I. Spin multiplet relaxation and radiative lifetimes of CO(d3Δ)v=5, J. Chem. Phys., 1973, 58, 194. [all data]

Sink, Lefebvre-Brion, et al., 1975
Sink, M.L.; Lefebvre-Brion, H.; Hall, J.A., Ab initio calculations of the effective spin-spin constants of the 3Σ excited states of the N2 and CO molecules, J. Chem. Phys., 1975, 62, 1802. [all data]

Wicke, Field, et al., 1972
Wicke, B.G.; Field, R.W.; Klemperer, W., Fine structure, dipole moment, and perturbation analysis of a3Π CO, J. Chem. Phys., 1972, 56, 5758. [all data]

Wicke, Klemperer, et al., 1975
Wicke, B.G.; Klemperer, W.; Field, R., Lambda doublings and electric dipole moments of v = 6 and 7 a3Π carbon monoxide, J. Chem. Phys., 1975, 62, 3544. [all data]

Hartfuss and Schmillen, 1968
Hartfuss, H.J.; Schmillen, A., Uber das Abklingen der ersten positiven Gruppe des N2 und der Asundi-Banden des CO, Z. Naturforsch. A, 1968, 23, 722. [all data]

Stern, Gammon, et al., 1970
Stern, R.C.; Gammon, R.H.; Lesk, M.E.; Freund, R.S.; Klemperer, W.A., Fine structure and dipole moment of metastable a3Π carbon monoxide, J. Chem. Phys., 1970, 52, 3467. [all data]

Gammon, Stern, et al., 1971
Gammon, R.H.; Stern, R.C.; Klemperer, W., Molecular-beam electric-resonance spectroscopy of the a3Π (v = 4)-a'3Σ+ (v' = O) perturbation in CO, J. Chem. Phys., 1971, 54, 2151. [all data]

Freund and Klemperer, 1965
Freund, R.S.; Klemperer, W., Radio-frequency spectrum of the a3Π state of carbon monoxide, J. Chem. Phys., 1965, 43, 2422. [all data]

Gammon, Stern, et al., 1971, 2
Gammon, R.H.; Stern, R.C.; Lesk, M.E.; Wicke, B.G.; Klemperer, W., Metastable a 3Π 13CO: molecular-beam electric-resonance measurements of the fine structure, hyperfine structure, and dipole moment, J. Chem. Phys., 1971, 54, 2136. [all data]

Wicke and Klemperer, 1975
Wicke, B.G.; Klemperer, W., On the experimentally determined dipole moment function of CO a3Π, Mol. Phys., 1975, 30, 1021. [all data]

Wicke and Klemperer, 1975, 2
Wicke, B.G.; Klemperer, W., Experimental dipole moment function and calculated radiative lifetimes for vibrational transitions in carbon monoxide a3Π, J. Chem. Phys., 1975, 63, 3756. [all data]

Johnson, 1972
Johnson, C.E., Lifetime of CO(a3Π) following electron impact dissociation of CO2, J. Chem. Phys., 1972, 57, 576. [all data]

Lawrence, 1971
Lawrence, G.M., Quenching and radiation rates of CO (a3Π), Chem. Phys. Lett., 1971, 9, 575. [all data]

Wauchop and Broida, 1972
Wauchop, T.S.; Broida, H.P., Lifetime and quenching of CO(a3Π) produced by recombination of CO2 ions in a helium afterglow, J. Chem. Phys., 1972, 56, 330. [all data]

James, 1971
James, T.C., Transition moments, Franck-Condon factors, and lifetimes of forbidden transitions. Calculation of the intensity of the Cameron system of CO, J. Chem. Phys., 1971, 55, 4118. [all data]

Mantz and Maillard, 1975
Mantz, A.W.; Maillard, J.P., Ground state molecular constants of 12C16O, J. Mol. Spectrosc., 1975, 57, 155. [all data]

Mantz, Watson, et al., 1971
Mantz, A.W.; Watson, J.K.G.; Rao, K.N.; Albritton, D.L.; Schmeltekopf, A.L.; Zare, R.N., Rydberg-Klein-Rees potential for the X1Σ+ state of the CO molecule, J. Mol. Spectrosc., 1971, 39, 180. [all data]

Dickinson, 1972
Dickinson, A.S., A new method for evaluating Rydberg-Klein-Rees intergrals, J. Mol. Spectrosc., 1972, 44, 183. [all data]

Fleming and Rao, 1972
Fleming, H.E.; Rao, K.N., A simple numerical evaluation of the Rydberg-Klein-Rees integrals: application to X1Σ+ state of 12C16O, J. Mol. Spectrosc., 1972, 44, 189. [all data]

Bunker, 1970
Bunker, P.R., The effect of the breakdown of the Born-Oppenheimer approximation on the determination of Be and ωe for a diatomic molecule, J. Mol. Spectrosc., 1970, 35, 306-313. [all data]

Bunker, 1972
Bunker, P.R., On the breakdown of the Born-Oppenheimer approximation for a diatomic molecule, J. Mol. Spectrosc., 1972, 5, 478. [all data]

Watson, 1973
Watson, J.K.G., The isotope dependence of the equilibrium rotational constants in 1Σ states of diatomic molecules, J. Mol. Spectrosc., 1973, 45, 99. [all data]

Schwartz and Thrush, 1969
Schwartz, S.E.; Thrush, B.A., Energies of vibrational levels 22 to 33 of carbon monoxide X1Σg+, J. Mol. Spectrosc., 1969, 32, 343. [all data]

Mantz, Nichols, et al., 1970
Mantz, A.W.; Nichols, E.R.; Alpert, B.D.; Rao, K.N., CO laser spectra studied with a 10-meter vacuum infrared grating spectrograph, J. Mol. Spectrosc., 1970, 35, 325. [all data]

Yardley, 1970
Yardley, J.T., Laser action in highly-excited vibrational levels of CO, J. Mol. Spectrosc., 1970, 35, 314. [all data]

Kildal, Eng, et al., 1974
Kildal, H.; Eng, R.S.; Ross, A.H.M., Heterodyne measurements of 12C16O laser frequencies and improved Dunham coefficients, J. Mol. Spectrosc., 1974, 53, 479. [all data]

Millikan, 1963
Millikan, R.C., Vibrational fluorescence of carbon monoxide, J. Chem. Phys., 1963, 38, 2855. [all data]

McCaa and Williams, 1964
McCaa, D.J.; Williams, D., Infrared fluorescence of carbon monoxide, J. Opt. Soc. Am., 1964, 54, 326. [all data]

Dowling, 1969
Dowling, J.M., Line widths in the pure rotational spectrum of carbon monoxide, J. Quant. Spectrosc. Radiat. Transfer, 1969, 9, 1613. [all data]

Sanderson, Scott, et al., 1971
Sanderson, R.B.; Scott, H.E.; White, J.T., Strengths and widths of the pure rotational lines of CO, J. Mol. Spectrosc., 1971, 38, 252. [all data]

Buontempo, Cunsolo, et al., 1973
Buontempo, U.; Cunsolo, S.; Jacucci, G., Electric quadrupole moment of CO and molecular torque in liquid Ar and N2 from ir spectra, J. Chem. Phys., 1973, 59, 3750. [all data]

Billingsley and Krauss, 1974
Billingsley, F.P., II; Krauss, M., Quadrupole moment of CO, N2, and NO+, J. Chem. Phys., 1974, 60, 2767. [all data]

Toth, Hunt, et al., 1969
Toth, R.A.; Hunt, R.H.; Plyler, E.K., Line intensities in the 3-0 of the CO and dipole moment matrix elements for the CO molecule, J. Mol. Spectrosc., 1969, 32, 85. [all data]

Siegbahn, Nordling, et al., 1969
Siegbahn, K.; Nordling, C.; Johansson, G.; Hedman, J.; Heden, P.F.; Hamrin, k.; Gelius, U.; Bergmark, T.; Werme, L.O.; Manne, R.; Baer, ESCA Applied to Free Molecules, North-Holland Publishing Company, Amsterdam, 1969, 0. [all data]

Smith and Thomas, 1976
Smith, S.R.; Thomas, T.D., Core ionization potentials in carbon monoxide, J. Electron Spectrosc. Relat. Phenom., 1976, 8, 45. [all data]

Wells, Borst, et al., 1973
Wells, W.C.; Borst, W.L.; Zipf, E.C., Excitation of higher-lying metastable states in carbon monoxide by electron impact: cross-section and lifetime measurements, Phys. Rev. A: Gen. Phys., 1973, 8, 2463. [all data]

Johns, McKellar, et al., 1974
Johns, J.W.C.; McKellar, A.R.W.; Weitz, D., Wavelength measurements of 13C16O laser transitions, J. Mol. Spectrosc., 1974, 51, 539. [all data]

Chen, Rao, et al., 1976
Chen, D.-W.; Rao, K.N.; McDowell, R.S., Fundamental and overtone bands of isotopic species of carbon monoxide, J. Mol. Spectrosc., 1976, 61, 71. [all data]

Young and Eachus, 1966
Young, L.A.; Eachus, W.J., Dipole moment function and vibration-rotation matrix elements for CO, J. Chem. Phys., 1966, 44, 4195. [all data]

Moskalenko and Mirumyants, 1971
Moskalenko, N.I.; Mirumyants, S.O., Measurement of the integral intensities of infrared absorption bands of H2O, CO2, N2O, CO, CH4, and NO vapor in the temperature range 220-400°K, Sov. Phys. J. Engl. Transl., 1971, 6, 721, In original 7. [all data]

Roux, Effantin, et al., 1972
Roux, F.; Effantin, C.; D'Incan, J., Forces d'oscillateur absolues de rotation dans les transitions 2-0, 3-1, 4-2, 5-3, du spectre de vibration-rotation de la molecule CO, deduites de mesures d'intensites en emission, J. Quant. Spectrosc. Radiat. Transfer, 1972, 12, 97-106. [all data]

Billingsley and Krauss, 1974, 2
Billingsley, F.P., II; Krauss, M., Multiconfiguration self-consistent-field calculation of the dipole moment function of CO(X1Σ+), J. Chem. Phys., 1974, 60, 4130. [all data]

Bouanich and Brodbeck, 1974, 2
Bouanich, J.-P.; Brodbeck, C., Moments de transition vibrationnelle des molecules diatomiques. Intensite des raies rovibrationnelles des bandes 0 → 2 et 0 → 3 et fonction dipolaire de CO, J. Quant. Spectrosc. Radiat. Transfer, 1974, 14, 1199. [all data]

Varanasi and Sarangi, 1975
Varanasi, P.; Sarangi, S., Measurements of intensities and nitrogen-broadened linewidths in the CO fundamental at low temperatures, J. Quant. Spectrosc. Radiat. Transfer, 1975, 15, 473. [all data]

Tipping, 1976
Tipping, R.H., Vibration-rotation intensities for "hot" bands, J. Mol. Spectrosc., 1976, 61, 272-281. [all data]

Weisbach and Chackerian, 1973
Weisbach, M.F.; Chackerian, C., Jr., Linewidths and transition probabilities for the carbon monoxide laser lines, J. Chem. Phys., 1973, 59, 4272. [all data]

Hunt, Toth, et al., 1968
Hunt, R.H.; Toth, R.A.; Plyler, E.K., High-resolution determination of the widths of self-broadened lines of carbon monoxide, J. Chem. Phys., 1968, 49, 3909. [all data]

Hoover and Williams, 1969
Hoover, G.M.; Williams, D., Infrared absorptance of carbon monoxide at low temperatures, J. Opt. Soc. Am., 1969, 59, 28. [all data]

Bouanich, Larvor, et al., 1969
Bouanich, P.; Larvor, M.; Haeusler, C., Etude des raies de vibration-rotation de la bande v0→3 de l'oxyde de carbone CO comprime, C.R. Acad. Sci. Paris, Ser. B, 1969, 269, 1238. [all data]

Varanasi, 1975
Varanasi, P., Measurement of line widths of CO of planetary interest at low temperatures, J. Quant. Spectrosc. Radiat. Transfer, 1975, 15, 191. [all data]

Moskalenko, 1975
Moskalenko, N.I., Measurement of intensities and halfwidths of spectral absorption lines of the fundamental 0-1 band of CO, Opt. Spectrosc. Engl. Transl., 1975, 38, 382, In original 676. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, References