Methylamine, N,N-dimethyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Δfgas-23.7 ± 0.75kJ/molEqkIssoire and Long, 1960Heat of formation derived by Cox and Pilcher, 1970; ALS
Δfgas-30.7kJ/molN/ALemoult, 1907Value computed using ΔfHliquid° value of -52.7 kj/mol from Lemoult, 1907 and ΔvapH° value of 22.0 kj/mol from Issoire and Long, 1960.; DRB

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-45.73 ± 0.71kJ/molEqkIssoire and Long, 1960Heat of formation derived by Cox and Pilcher, 1970; ALS
Δfliquid-52.7kJ/molCcbLemoult, 1907ALS
Quantity Value Units Method Reference Comment
Δcliquid-2484.kJ/molCcbMuller, 1910At 288 K; ALS
Δcliquid-2430.kJ/molCcbLemoult, 1907ALS
Quantity Value Units Method Reference Comment
liquid197.82J/mol*KN/AAston, Sagenkahn, et al., 1944DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
132.55280.Aston, Sagenkahn, et al., 1944T = 12 to 280 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil275. ± 5.KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus155.95KN/ARoberts, Emeleus, et al., 1939Uncertainty assigned by TRC = 0.2 K; TRC
Tfus149.4KN/ASimon and Huter, 1935Uncertainty assigned by TRC = 0.5 K; TRC
Tfus155.95KN/ASimon and Huter, 1935, 2Uncertainty assigned by TRC = 2. K; TRC
Tfus155.85KN/AWiberg and Sutterlin, 1935Uncertainty assigned by TRC = 0.5 K; TRC
Tfus149.15KN/ATimmermans and Mattaar, 1921Uncertainty assigned by TRC = 1. K; TRC
Quantity Value Units Method Reference Comment
Ttriple156.08KN/AAston, Sagenkahn, et al., 1944, 2Uncertainty assigned by TRC = 0.05 K; based on T0 = 273.16 K; TRC
Quantity Value Units Method Reference Comment
Tc433.2KN/AMajer and Svoboda, 1985 
Tc432.79KN/AKay and Young, 1974Uncertainty assigned by TRC = 0.15 K; TRC
Tc433.3KN/ADay and Felsing, 1950Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Pc40.87barN/AKay and Young, 1974Uncertainty assigned by TRC = 0.03 bar; TRC
Pc40.7712barN/ADay and Felsing, 1950Uncertainty assigned by TRC = 0.1066 bar; TRC
Quantity Value Units Method Reference Comment
Vc30.l/molN/ADay and Felsing, 1950Uncertainty assigned by TRC = 0.07 l/mol; TRC
Quantity Value Units Method Reference Comment
Δvap22.18kJ/molN/AMajer and Svoboda, 1985 
Δvap22.0 ± 0.08kJ/molVIssoire and Long, 1960Heat of formation derived by Cox and Pilcher, 1970; ALS
Δvap22.0kJ/molN/AIssoire and Long, 1960DRB

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
22.937276.03N/AAston, Sagenkahn, et al., 1944P = 101.325 kPa; DH
22.94276.N/AMajer and Svoboda, 1985 
24.6261.AStephenson and Malanowski, 1987Based on data from 193. to 276. K. See also Aston, Sagenkahn, et al., 1944.; AC
23.0368.N/ADay and Felsing, 1950, 2Based on data from 333. to 403. K.; AC
24.1288.N/ASwift and Hochanadel, 1945Based on data from 273. to 313. K.; AC
22.94 ± 0.03276.03VAston, Sagenkahn, et al., 1944, 3ALS
24.5250.CAston, Sagenkahn, et al., 1944AC
24.35276.2VThompson and Linnett, 1936ALS

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
250. to 276.36.560.2824433.2Majer and Svoboda, 1985 

Entropy of vaporization

ΔvapS (J/mol*K) Temperature (K) Reference Comment
83.10276.03Aston, Sagenkahn, et al., 1944P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
192.84 to 276.604.01613970.297-34.06Aston, Sagenkahn, et al., 1944Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
6.544156.08Aston, Sagenkahn, et al., 1944DH
6.54156.1Acree, 1991AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
41.93156.08Aston, Sagenkahn, et al., 1944DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Lithium ion (1+) + Methylamine, N,N-dimethyl- = (Lithium ion (1+) • Methylamine, N,N-dimethyl-)

By formula: Li+ + C3H9N = (Li+ • C3H9N)

Quantity Value Units Method Reference Comment
Δr176.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Δr170.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr140.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M

C3H10N+ + Methylamine, N,N-dimethyl- = (C3H10N+ • Methylamine, N,N-dimethyl-)

By formula: C3H10N+ + C3H9N = (C3H10N+ • C3H9N)

Quantity Value Units Method Reference Comment
Δr92.0kJ/molPHPMSEl-Shall, Daly, et al., 1992gas phase; M
Δr92.0kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr94.6kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M
Δr94.1kJ/molPHPMSYamdagni and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr114.J/mol*KPHPMSEl-Shall, Daly, et al., 1992gas phase; M
Δr114.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr134.J/mol*KPHPMSYamdagni and Kebarle, 1973gas phase; M

C3H9Sn+ + Methylamine, N,N-dimethyl- = (C3H9Sn+ • Methylamine, N,N-dimethyl-)

By formula: C3H9Sn+ + C3H9N = (C3H9Sn+ • C3H9N)

Quantity Value Units Method Reference Comment
Δr191.kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
120.525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

(C3H10N+ • Water • Methylamine, N,N-dimethyl-) + Water = (C3H10N+ • 2Water • Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • H2O • C3H9N) + H2O = (C3H10N+ • 2H2O • C3H9N)

Quantity Value Units Method Reference Comment
Δr34.kJ/molPHPMSEl-Shall, Daly, et al., 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AEl-Shall, Daly, et al., 1992gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
10.225.PHPMSEl-Shall, Daly, et al., 1992gas phase; Entropy change calculated or estimated; M

Potassium ion (1+) + Methylamine, N,N-dimethyl- = (Potassium ion (1+) • Methylamine, N,N-dimethyl-)

By formula: K+ + C3H9N = (K+ • C3H9N)

Quantity Value Units Method Reference Comment
Δr83.7kJ/molHPMSDavidson and Kebarle, 1976gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M
Quantity Value Units Method Reference Comment
Δr97.9J/mol*KHPMSDavidson and Kebarle, 1976gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M
Quantity Value Units Method Reference Comment
Δr54.4kJ/molHPMSDavidson and Kebarle, 1976gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M

C3H8N- + Hydrogen cation = Methylamine, N,N-dimethyl-

By formula: C3H8N- + H+ = C3H9N

Quantity Value Units Method Reference Comment
Δr>1699.6 ± 2.5kJ/molG+TSMacKay and Bohme, 1978gas phase; Computations put dHacid ca. 412 kcal/mol; B
Quantity Value Units Method Reference Comment
Δr>1665.2kJ/molIMRBMacKay and Bohme, 1978gas phase; Computations put dHacid ca. 412 kcal/mol; B

(C3H10N+ • Methylamine, N,N-dimethyl-) + Methyl Alcohol = (C3H10N+ • Methyl Alcohol • Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • C3H9N) + CH4O = (C3H10N+ • CH4O • C3H9N)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr44.4kJ/molPHPMSEl-Shall, Daly, et al., 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSEl-Shall, Daly, et al., 1992gas phase; M

(C3H10N+ • 2Methylamine, N,N-dimethyl-) + Water = (C3H10N+ • Water • 2Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • 2C3H9N) + H2O = (C3H10N+ • H2O • 2C3H9N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr37.kJ/molPHPMSEl-Shall, Daly, et al., 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSEl-Shall, Daly, et al., 1992gas phase; M

(C3H10N+ • Methyl Alcohol • Methylamine, N,N-dimethyl-) + Methyl Alcohol = (C3H10N+ • 2Methyl Alcohol • Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • CH4O • C3H9N) + CH4O = (C3H10N+ • 2CH4O • C3H9N)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr40.kJ/molPHPMSEl-Shall, Daly, et al., 1992gas phase; M

(C3H10N+ • Methylamine, N,N-dimethyl- • Water) + Methylamine, N,N-dimethyl- = (C3H10N+ • 2Methylamine, N,N-dimethyl- • Water)

By formula: (C3H10N+ • C3H9N • H2O) + C3H9N = (C3H10N+ • 2C3H9N • H2O)

Quantity Value Units Method Reference Comment
Δr46.0kJ/molPHPMSEl-Shall, Daly, et al., 1992gas phase; M

(C3H10N+ • 2Methylamine, N,N-dimethyl-) + Methylamine, N,N-dimethyl- = (C3H10N+ • 3Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • 2C3H9N) + C3H9N = (C3H10N+ • 3C3H9N)

Quantity Value Units Method Reference Comment
Δr27.kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M

(C3H10N+ • 3Methylamine, N,N-dimethyl-) + Methylamine, N,N-dimethyl- = (C3H10N+ • 4Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • 3C3H9N) + C3H9N = (C3H10N+ • 4C3H9N)

Quantity Value Units Method Reference Comment
Δr35.kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M

(C3H10N+ • 4Methylamine, N,N-dimethyl-) + Methylamine, N,N-dimethyl- = (C3H10N+ • 5Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • 4C3H9N) + C3H9N = (C3H10N+ • 5C3H9N)

Quantity Value Units Method Reference Comment
Δr37.kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M

(C3H10N+ • 5Methylamine, N,N-dimethyl-) + Methylamine, N,N-dimethyl- = (C3H10N+ • 6Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • 5C3H9N) + C3H9N = (C3H10N+ • 6C3H9N)

Quantity Value Units Method Reference Comment
Δr31.kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M

Sodium ion (1+) + Methylamine, N,N-dimethyl- = (Sodium ion (1+) • Methylamine, N,N-dimethyl-)

By formula: Na+ + C3H9N = (Na+ • C3H9N)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
79.5298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

(C3H10N+ • Methylamine, N,N-dimethyl-) + Methylamine, N,N-dimethyl- = (C3H10N+ • 2Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • C3H9N) + C3H9N = (C3H10N+ • 2C3H9N)

Quantity Value Units Method Reference Comment
Δr29.kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M

2Ethylamine = Methylamine + Methylamine, N,N-dimethyl-

By formula: 2C2H7N = CH5N + C3H9N

Quantity Value Units Method Reference Comment
Δr-13.2kJ/molEqkIssoire and Long, 1960gas phase; ALS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)7.85 ± 0.05eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)948.9kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity918.1kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
7.8PEAue and Bowers, 1979LLK
8.40EIBaldwin, Loudon, et al., 1977LLK
7.8 ± 0.1PEAue, Webb, et al., 1976LLK
7.88PEVovna and Vilesov, 1974LLK
7.83 ± 0.05PEAkopyan and Loginov, 1974LLK
7.83 ± 0.02PEMaier and Turner, 1973LLK
7.95 ± 0.10PIAdamchuk, Dmitriev, et al., 1972LLK
7.80PECornford, Frost, et al., 1971LLK
7.82 ± 0.02PIWatanabe and Mottl, 1957RDSH
8.54PEElbel, Dieck, et al., 1982Vertical value; LBLHLM
8.47PEKobayashi, 1978Vertical value; LLK
8.45PEDaamen and Oskam, 1978Vertical value; LLK
8.44PEKimura and Osafune, 1975Vertical value; LLK
8.560PEAue, Webb, et al., 1975Vertical value; LLK
8.54PEElbel, Bergmann, et al., 1974Vertical value; LLK
8.5PESchafer and Schweig, 1972Vertical value; LLK
8.45 ± 0.01PELloyd and Lynaugh, 1972Vertical value; LLK
8.5 ± 0.1PECradock, Ebsworth, et al., 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH3+14.9(CH3)2NEISenSharma and Franklin, 1973LLK
CH3+14.0 ± 0.1?EIGowenlock, Jones, et al., 1961RDSH
C2H6N+11.25CH3EILoudon and Webb, 1977LLK
C2H6N+10.68 ± 0.09CH3EISolka and Russell, 1974LLK
C2H6N+12.3 ± 0.1CH3EIFisher and Henderson, 1967RDSH
C2H6N+12.3 ± 0.1CH3EIGowenlock, Jones, et al., 1961RDSH
C3H8N+9.38HEILossing, Lam, et al., 1981LLK
C3H8N+10.55?EILoudon and Webb, 1977LLK
C3H8N+9.8 ± 0.1HEITaft, Martin, et al., 1965RDSH

De-protonation reactions

C3H8N- + Hydrogen cation = Methylamine, N,N-dimethyl-

By formula: C3H8N- + H+ = C3H9N

Quantity Value Units Method Reference Comment
Δr>1699.6 ± 2.5kJ/molG+TSMacKay and Bohme, 1978gas phase; Computations put dHacid ca. 412 kcal/mol; B
Quantity Value Units Method Reference Comment
Δr>1665.2kJ/molIMRBMacKay and Bohme, 1978gas phase; Computations put dHacid ca. 412 kcal/mol; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

C3H9Sn+ + Methylamine, N,N-dimethyl- = (C3H9Sn+ • Methylamine, N,N-dimethyl-)

By formula: C3H9Sn+ + C3H9N = (C3H9Sn+ • C3H9N)

Quantity Value Units Method Reference Comment
Δr191.kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
120.525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

C3H10N+ + Methylamine, N,N-dimethyl- = (C3H10N+ • Methylamine, N,N-dimethyl-)

By formula: C3H10N+ + C3H9N = (C3H10N+ • C3H9N)

Quantity Value Units Method Reference Comment
Δr92.0kJ/molPHPMSEl-Shall, Daly, et al., 1992gas phase; M
Δr92.0kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr94.6kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M
Δr94.1kJ/molPHPMSYamdagni and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr114.J/mol*KPHPMSEl-Shall, Daly, et al., 1992gas phase; M
Δr114.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr134.J/mol*KPHPMSYamdagni and Kebarle, 1973gas phase; M

(C3H10N+ • Methylamine, N,N-dimethyl-) + Methylamine, N,N-dimethyl- = (C3H10N+ • 2Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • C3H9N) + C3H9N = (C3H10N+ • 2C3H9N)

Quantity Value Units Method Reference Comment
Δr29.kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M

(C3H10N+ • 2Methylamine, N,N-dimethyl-) + Methylamine, N,N-dimethyl- = (C3H10N+ • 3Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • 2C3H9N) + C3H9N = (C3H10N+ • 3C3H9N)

Quantity Value Units Method Reference Comment
Δr27.kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M

(C3H10N+ • 3Methylamine, N,N-dimethyl-) + Methylamine, N,N-dimethyl- = (C3H10N+ • 4Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • 3C3H9N) + C3H9N = (C3H10N+ • 4C3H9N)

Quantity Value Units Method Reference Comment
Δr35.kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M

(C3H10N+ • 4Methylamine, N,N-dimethyl-) + Methylamine, N,N-dimethyl- = (C3H10N+ • 5Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • 4C3H9N) + C3H9N = (C3H10N+ • 5C3H9N)

Quantity Value Units Method Reference Comment
Δr37.kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M

(C3H10N+ • 5Methylamine, N,N-dimethyl-) + Methylamine, N,N-dimethyl- = (C3H10N+ • 6Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • 5C3H9N) + C3H9N = (C3H10N+ • 6C3H9N)

Quantity Value Units Method Reference Comment
Δr31.kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M

(C3H10N+ • Methylamine, N,N-dimethyl- • Water) + Methylamine, N,N-dimethyl- = (C3H10N+ • 2Methylamine, N,N-dimethyl- • Water)

By formula: (C3H10N+ • C3H9N • H2O) + C3H9N = (C3H10N+ • 2C3H9N • H2O)

Quantity Value Units Method Reference Comment
Δr46.0kJ/molPHPMSEl-Shall, Daly, et al., 1992gas phase; M

Potassium ion (1+) + Methylamine, N,N-dimethyl- = (Potassium ion (1+) • Methylamine, N,N-dimethyl-)

By formula: K+ + C3H9N = (K+ • C3H9N)

Quantity Value Units Method Reference Comment
Δr83.7kJ/molHPMSDavidson and Kebarle, 1976gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M
Quantity Value Units Method Reference Comment
Δr97.9J/mol*KHPMSDavidson and Kebarle, 1976gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M
Quantity Value Units Method Reference Comment
Δr54.4kJ/molHPMSDavidson and Kebarle, 1976gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M

Lithium ion (1+) + Methylamine, N,N-dimethyl- = (Lithium ion (1+) • Methylamine, N,N-dimethyl-)

By formula: Li+ + C3H9N = (Li+ • C3H9N)

Quantity Value Units Method Reference Comment
Δr176.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Δr170.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr140.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M

Sodium ion (1+) + Methylamine, N,N-dimethyl- = (Sodium ion (1+) • Methylamine, N,N-dimethyl-)

By formula: Na+ + C3H9N = (Na+ • C3H9N)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
79.5298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Issoire and Long, 1960
Issoire, J.; Long, C., Etude de la thermodynamique chimique de la reaction de formation des methylamines, Bull. Soc. Chim. France, 1960, 2004-2012. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Lemoult, 1907
Lemoult, M.P., Recherches theoriques et experimentales sur les chaleurs de combustion et de formation des composes organiques, Ann. Chim. Phys., 1907, 12, 395-432. [all data]

Muller, 1910
Muller, J.-A., Sur les chaleurs de combustion et les poids specifiques des methylamines, Ann. Chim. Phys., 1910, 20, 116-130. [all data]

Aston, Sagenkahn, et al., 1944
Aston, J.G.; Sagenkahn, M.L.; Szasa, G.J.; Moessen, G.W.; Zuhr, H.F., The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of trimethylamine. The entropy from spectroscopic and molecular data, J. Am. Chem. Soc., 1944, 66, 1171-1177. [all data]

Roberts, Emeleus, et al., 1939
Roberts, E.R.; Emeleus, H.J.; Briscoe, H.V.A., Preparation and Prop. of Ethyldideuteramine and Dimethyldeuteramine, J. Chem. Soc., 1939, 1939, 41. [all data]

Simon and Huter, 1935
Simon, A.; Huter, J., Vapor Pressure Curves, Melting Point and Chemical Constants of Dimethyl, Trimethyl- and Isobutylamines, Z. Elektrochem., 1935, 41, 28. [all data]

Simon and Huter, 1935, 2
Simon, A.; Huter, J., Z. Elektrochem., 1935, 41, 294. [all data]

Wiberg and Sutterlin, 1935
Wiberg, E.; Sutterlin, W., The Vapor Pressures and Melting Points of Dimethyl- and Trimethylamine Trimethylamines, Z. Elektrochem., 1935, 41, 151. [all data]

Timmermans and Mattaar, 1921
Timmermans, J.; Mattaar, J.F., Freezing points of orgainic substances VI. New experimental determinations., Bull. Soc. Chim. Belg., 1921, 30, 213. [all data]

Aston, Sagenkahn, et al., 1944, 2
Aston, J.G.; Sagenkahn, M.L.; Szasz, G.J.; Moessen, G.W.; Zuhr, H.F., The Heat Capacity and Entropy, Heats of Fusion and Vaporization and the Vapor Pressure of Trimethylamine. The Entropy From Spectroscopic and Molecular Data, J. Am. Chem. Soc., 1944, 66, 1171. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Kay and Young, 1974
Kay, W.B.; Young, C.L., Int. DATA Ser., Sel. Data Mixtures, Ser. A, 1974, No. 2, 154. [all data]

Day and Felsing, 1950
Day, H.O.; Felsing, W.A., Some Vapor Pressures and the Critical COnstants of Trimethylamine, J. Am. Chem. Soc., 1950, 72, 1698. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Day and Felsing, 1950, 2
Day, H.O.; Felsing, W.A., Some Vapor Pressures and the Critical Constants of Trimethylamine, J. Am. Chem. Soc., 1950, 72, 4, 1698-1699, https://doi.org/10.1021/ja01160a077 . [all data]

Swift and Hochanadel, 1945
Swift, Elijah; Hochanadel, Helen Phillips, The Vapor Pressure of Trimethylamine from 0 to 40°, J. Am. Chem. Soc., 1945, 67, 5, 880-881, https://doi.org/10.1021/ja01221a508 . [all data]

Aston, Sagenkahn, et al., 1944, 3
Aston, J.G.; Sagenkahn, M.L.; Szasz, G.J.; Moessen, G.W.; Zuhr, H.F., The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of trimethylamine. The entropy from spectroscopic and molecular data, J. Am. Chem. Soc., 1944, 66, 1171-11. [all data]

Thompson and Linnett, 1936
Thompson, H.W.; Linnett, J.W., The vapour pressures and association of some metallic and non-metallic alkyls, Trans. Faraday Soc., 1936, 32, 681-685. [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L., Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids, J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

El-Shall, Daly, et al., 1992
El-Shall, M.S.; Daly, G.M.; Gao, J.; Meot-Ner (Mautner), M.; Sieck, L.W., How Sensitive are Cluster Compositions to Energetics? A Joint Beam Expansion/ Thermochemical Study of Water - Methanol - Trimethylamine Clusters, J. Phys. Chem., 1992, 96, 2, 507, https://doi.org/10.1021/j100181a002 . [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Wei, Tzeng, et al., 1991
Wei, S.; Tzeng, W.B.; Castleman, A.W., Structure of protonated solvation complexes - ammonia trimethylamine cluster ions and their metastable decompositions, J. Phys. Chem., 1991, 95, 2, 585, https://doi.org/10.1021/j100155a019 . [all data]

Yamdagni and Kebarle, 1973
Yamdagni, R.; Kebarle, P., Gas - Phase Basicites of Amines. Hydrogen Bonding in Proton - Bound Amine Dimers and Proton - Induced Cyclization of alpha, omega - Diamines, J. Am. Chem. Soc., 1973, 95, 11, 3504, https://doi.org/10.1021/ja00792a010 . [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P., Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M, J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011 . [all data]

Davidson and Kebarle, 1976, 2
Davidson, W.R.; Kebarle, P., Ionic Solvation by Aprotic Solvents. Gas Phase Solvation of the Alkali Ions by Acetonitrile, J. Am. Chem. Soc., 1976, 98, 20, 6125, https://doi.org/10.1021/ja00436a010 . [all data]

MacKay and Bohme, 1978
MacKay, G.I.; Bohme, D.K., Proton-Transfer Reactions in Nitromethane at 297K, Int. J. Mass Spectrom. Ion Phys., 1978, 26, 4, 327, https://doi.org/10.1016/0020-7381(78)80052-7 . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Aue and Bowers, 1979
Aue, D.H.; Bowers, M.T., Chapter 9. Stabilities of positive ions from equilibrium gas phase basicity measurements in Ions Chemistry,, ed. M.T. Bowers, 1979. [all data]

Baldwin, Loudon, et al., 1977
Baldwin, M.A.; Loudon, A.G.; Webb, K.S.; Cardnell, P.C., Charge location and fragmentation under electron impact. V-The ionization potentials of (methylated) phosphoramides, guanidines, formamides, acetamides, ureas and thioureas, Org. Mass Spectrom., 1977, 12, 279. [all data]

Aue, Webb, et al., 1976
Aue, D.H.; Webb, H.M.; Bowers, M.T., Quantitative proton affinities, ionization potentials, and hydrogen affinities of alkylamines, J. Am. Chem. Soc., 1976, 98, 311. [all data]

Vovna and Vilesov, 1974
Vovna, V.I.; Vilesov, F.I., Photoelectron spectra the structure of molecular orbitals of methyl amines, Opt. Spectrosc., 1974, 36, 251. [all data]

Akopyan and Loginov, 1974
Akopyan, M.E.; Loginov, Yu.V., Photoelectron spectra of trimethylamine derivatives, Opt. Spectrosc., 1974, 37, 250, In original 442. [all data]

Maier and Turner, 1973
Maier, J.P.; Turner, D.W., Steric inhibition of resonance studied by molecular photoelectron spectroscopy Part 3. Anilines, Phenols and Related Compounds, J. Chem. Soc. Faraday Trans. 2, 1973, 69, 521. [all data]

Adamchuk, Dmitriev, et al., 1972
Adamchuk, V.K.; Dmitriev, A.B.; Prudnikova, G.V.; Sorokin, L.S., Photoionization of low-volatility molecules in a Geiger counter, Opt. Spectrosc., 1972, 33, 191, In original 358. [all data]

Cornford, Frost, et al., 1971
Cornford, A.B.; Frost, D.C.; Herring, F.G.; McDowell, C.A., Electronic levels of methyl amines by photoelectron spectroscopy and an i.n.d.o. calculation, Can. J. Chem., 1971, 49, 1135. [all data]

Watanabe and Mottl, 1957
Watanabe, K.; Mottl, J.R., Ionization potentials of ammonia and some amines, J. Chem. Phys., 1957, 26, 1773. [all data]

Elbel, Dieck, et al., 1982
Elbel, S.; Dieck, H.T.; Demuth, R., Photoelectron sSpectra of group V compounds. IX. The relative perfluoroalkyl substituent effect, J. Fluorine Chem., 1982, 19, 349. [all data]

Kobayashi, 1978
Kobayashi, T., A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes, Phys. Lett., 1978, 69, 105. [all data]

Daamen and Oskam, 1978
Daamen, H.; Oskam, A., Bonding properties of some monosubstituted chromium and tungsten hexacarbonyls M(CO)5L (L=amine, substituted pyridine, azine), Inorg. Chim. Acta, 1978, 26, 81. [all data]

Kimura and Osafune, 1975
Kimura, K.; Osafune, K., Sum rule consideration on valence orbital ionization energies in methyl amines, Mol. Phys., 1975, 29, 1073. [all data]

Aue, Webb, et al., 1975
Aue, D.H.; Webb, H.M.; Bowers, M.T., Proton affinities, ionization potentials, and hydrogen affinities of nitrogen and oxygen bases. Hybridization effects, J. Am. Chem. Soc., 1975, 97, 4137. [all data]

Elbel, Bergmann, et al., 1974
Elbel, S.; Bergmann, H.; EnBlin, W., Photoelectron spectra of the trimethyl compounds of the Group V elements, J. Chem. Soc. Faraday Trans. 2., 1974, 70, 555. [all data]

Schafer and Schweig, 1972
Schafer, W.; Schweig, A., Zur Konjugation in aromatischen Aminen und Phosphanen, Angew. Chem., 1972, 84, 898. [all data]

Lloyd and Lynaugh, 1972
Lloyd, D.R.; Lynaugh, N., Photoelectron studies of boron compounds. Part 3. Complexes of borane with Lewis bases, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 947. [all data]

Cradock, Ebsworth, et al., 1972
Cradock, S.; Ebsworth, E.A.V.; Savage, W.J.; Whiteford, R.A., Photoelectron spectra of some methyl, silyl and germyl amines, phosphines and arsines, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 934. [all data]

SenSharma and Franklin, 1973
SenSharma, D.K.; Franklin, J.L., Heat of formation of free radicals by mass spectrometry, J. Am. Chem. Soc., 1973, 95, 6562. [all data]

Gowenlock, Jones, et al., 1961
Gowenlock, B.G.; Jones, P.P.; Majer, J.R., Bond dissociation energies in some molecules containing alkyl substituted CH3, NH2, and OH, J. Chem. Soc. Faraday Trans., 1961, 57, 23. [all data]

Loudon and Webb, 1977
Loudon, A.G.; Webb, K.S., The nature of the [C2H6N]+ and [CH4N]+ ions formed by electron impact on methylated formamides, acetamides, ureas, thioureas and hexamethylphosphoramide, Org. Mass Spectrom., 1977, 12, 283. [all data]

Solka and Russell, 1974
Solka, B.H.; Russell, M.E., Energetics of formation of some structural isomers of gaseous C2H5O+ C2H6N+ ions, J. Phys. Chem., 1974, 78, 1268. [all data]

Fisher and Henderson, 1967
Fisher, I.P.; Henderson, E., Mass spectrometry of free radicals, J. Chem. Soc. Faraday Trans., 1967, 63, 1342. [all data]

Lossing, Lam, et al., 1981
Lossing, F.P.; Lam, Y.-T.; Maccoll, A., Gas phase heats of formation of alkyl immonium ions, Can. J. Chem., 1981, 59, 2228. [all data]

Taft, Martin, et al., 1965
Taft, R.W.; Martin, R.H.; Lampe, F.W., Stabilization energies of substituted methyl cations. The effect of strong demand on the resonance order, J. Am. Chem. Soc., 1965, 87, 2490. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References