Ethane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-84. ± 0.4kJ/molReviewManion, 2002adopted recommendation of Gurvich, Veyts, et al., 1991; DRB
Δfgas-83.8 ± 0.3kJ/molCcbPittam and Pilcher, 1972ALS
Δfgas-84.67 ± 0.49kJ/molCcbProsen and Rossini, 1945Hf derived from Heat of Hydrogenation; ALS
Quantity Value Units Method Reference Comment
Δcgas-1560.7 ± 0.3kJ/molCcbPittam and Pilcher, 1972Corresponding Δfgas = -83.85 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-1559.9 ± 0.46kJ/molCcbProsen and Rossini, 1945Hf derived from Heat of Hydrogenation; Corresponding Δfgas = -84.64 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-1559.8 ± 0.46kJ/molCcbRossini, 1934Corresponding Δfgas = -84.68 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
35.70100.Gurvich, Veyts, et al., 1989p=1 bar. Recommended entropies and heat capacities are in good agreement with those obtained from other statistical thermodynamic calculations [ Pitzer K.S., 1944, Chao J., 1973, Pamidimukkala K.M., 1982].; GT
42.30200.
52.49298.15
52.71300.
65.46400.
77.94500.
89.19600.
99.14700.
107.94800.
115.71900.
122.551000.
128.551100.
133.801200.
138.391300.
142.401400.
145.901500.
148.981600.
151.671700.
154.041800.
156.141900.
158.002000.
159.652100.
161.122200.
162.432300.
163.612400.
164.672500.
165.632600.
166.492700.
167.282800.
168.002900.
168.653000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
41.66 ± 0.31189.20Halford J.O., 1957Please also see Eucken A., 1933, Kistiakowsky G.B., 1939, Dailey B.P., 1943.; GT
43.25 ± 0.32209.30
45.08 ± 0.34229.65
47.27 ± 0.35249.90
47.17 ± 0.35250.15
49.68 ± 0.37272.00
49.51 ± 0.04272.07
50.66 ± 0.42279.00
52.14 ± 0.39292.00
53.27 ± 0.07302.70
57.40 ± 0.04335.82
58.91347.65
60.38359.75
61.04 ± 0.10364.78
62.10 ± 0.47373.60
63.89387.55
72.43451.95
80.08520.55
86.27561.65
90.46603.25

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
MS - José A. Martinho Simões
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Cobalt ion (1+) + Ethane = (Cobalt ion (1+) • Ethane)

By formula: Co+ + C2H6 = (Co+ • C2H6)

Quantity Value Units Method Reference Comment
Δr93.3J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+)CH4, ΔrS(500 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
100. (+5.0,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
117. (+6.7,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+)CH4, ΔrS(500 K); M

(Cobalt ion (1+) • Methane) + Ethane = (Cobalt ion (1+) • Ethane • Methane)

By formula: (Co+ • CH4) + C2H6 = (Co+ • C2H6 • CH4)

Quantity Value Units Method Reference Comment
Δr108.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2CH4, ΔrS(480 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
119. (+5.4,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2CH4, ΔrS(480 K); M

3Water (g) + Aluminum, triethyl- (l) = AlH3O3 (amorphous) + 3Ethane (g)

By formula: 3H2O (g) + C6H15Al (l) = AlH3O3 (amorphous) + 3C2H6 (g)

Quantity Value Units Method Reference Comment
Δr-647.3 ± 6.3kJ/molRSCFowell, 1961Please also see Cox and Pilcher, 1970. Liquid triethylaluminum contains a very small molar fraction of monomer at 298 K, ca. 0.1% Smith, 1967, so that the "real" liquid should be described as [Al(Et)3]2.; MS

C2H5- + Hydrogen cation = Ethane

By formula: C2H5- + H+ = C2H6

Quantity Value Units Method Reference Comment
Δr1758. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase; B
Δr1761. ± 8.4kJ/molBranDePuy, Bierbaum, et al., 1984gas phase; B
Quantity Value Units Method Reference Comment
Δr1723. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase; B

(Cobalt ion (1+) • Ethane) + Methane = (Cobalt ion (1+) • Methane • Ethane)

By formula: (Co+ • C2H6) + CH4 = (Co+ • CH4 • C2H6)

Quantity Value Units Method Reference Comment
Δr110.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
102. (+4.6,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

Hydrogen bromide (g) + ethyllithium (cr) = Ethane (g) + Lithium bromide (cr)

By formula: HBr (g) + C2H5Li (cr) = C2H6 (g) + BrLi (cr)

Quantity Value Units Method Reference Comment
Δr-345.7 ± 2.0kJ/molRSCHolm, 1974Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS

C5O5W (g) + Ethane (g) = C7H6O5W (g)

By formula: C5O5W (g) + C2H6 (g) = C7H6O5W (g)

Quantity Value Units Method Reference Comment
Δr-31.0 ± 8.4kJ/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K; MS
Δr-41. ± 13.kJ/molEqGIshikawa, Brown, et al., 1988Temperature range: 298-363 K; MS

Iron ion (1+) + Ethane = (Iron ion (1+) • Ethane)

By formula: Fe+ + C2H6 = (Fe+ • C2H6)

Quantity Value Units Method Reference Comment
Δr70. ± 10.kJ/molMKERCarpenter, van Koppen, et al., 1995gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
64.0 (+5.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Ethane, 1,2-dichloro- + 2Hydrogen = Ethane + 2Hydrogen chloride

By formula: C2H4Cl2 + 2H2 = C2H6 + 2HCl

Quantity Value Units Method Reference Comment
Δr-143.0 ± 0.96kJ/molChydLacher, Amador, et al., 1967gas phase; Reanalyzed by Cox and Pilcher, 1970, 2, Original value = -147.77 ± 0.50 kJ/mol; At 250 C; ALS

2Hydrogen + Ethane, 1,1-dichloro- = Ethane + 2Hydrogen chloride

By formula: 2H2 + C2H4Cl2 = C2H6 + 2HCl

Quantity Value Units Method Reference Comment
Δr-140.8 ± 1.0kJ/molChydLacher, Amador, et al., 1967gas phase; Reanalyzed by Cox and Pilcher, 1970, 2, Original value = -145.0 ± 0.50 kJ/mol; At 250C; ALS

2Hydrogen + Acetylene = Ethane

By formula: 2H2 + C2H2 = C2H6

Quantity Value Units Method Reference Comment
Δr-312.0 ± 0.63kJ/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, 2, Original value = -314.1 ± 2.8 kJ/mol; At 355 K; ALS

Diethylzinc (l) + (Sulfuric Acid • 100Water) (solution) = 2Ethane (g) + (zinc sulphate • 100Water) (solution)

By formula: C4H10Zn (l) + (H2O4S • 100H2O) (solution) = 2C2H6 (g) + (O4SZn • 100H2O) (solution)

Quantity Value Units Method Reference Comment
Δr-354.4 ± 4.2kJ/molRSCCarson, Hartley, et al., 1949Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970.; MS

Hydrogen + Ethylene = Ethane

By formula: H2 + C2H4 = C2H6

Quantity Value Units Method Reference Comment
Δr-136. ± 2.kJ/molChydKistiakowsky and Nickle, 1951gas phase; ALS
Δr-136.3 ± 0.3kJ/molChydKistiakowsky, Romeyn, et al., 1935gas phase; ALS

2Hydrogen chloride (g) + Aluminum, chlorodiethyl- (l) = AlCl3 (cr) + 2Ethane (g)

By formula: 2HCl (g) + C4H10AlCl (l) = AlCl3 (cr) + 2C2H6 (g)

Quantity Value Units Method Reference Comment
Δr-265.0 ± 3.3kJ/molRSCShaulov and Shmyreva, 1968The reaction enthalpy was derived from data in Shaulov and Shmyreva, 1968.; MS

C2H4+ + Ethane = (C2H4+ • Ethane)

By formula: C2H4+ + C2H6 = (C2H4+ • C2H6)

Quantity Value Units Method Reference Comment
Δr64.0kJ/molPHPMSHiraoka and Kebarle, 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr88.J/mol*KPHPMSHiraoka and Kebarle, 1980gas phase; M

2Hydrogen + Ethene, chloro- = Ethane + Hydrogen chloride

By formula: 2H2 + C2H3Cl = C2H6 + HCl

Quantity Value Units Method Reference Comment
Δr-214.2 ± 0.8kJ/molChydLacher, Emery, et al., 1956gas phase; At 298 K, see Lacher, Kianpour, et al., 1956; ALS

Hydrogen bromide (g) + C2H5BrMg (solution) = Ethane (solution) + Br2Mg (solution)

By formula: HBr (g) + C2H5BrMg (solution) = C2H6 (solution) + Br2Mg (solution)

Quantity Value Units Method Reference Comment
Δr-299.2 ± 2.2kJ/molRSCHolm, 1981solvent: Diethyl ether; MS

(Cobalt ion (1+) • 2Ethane) + Ethane = (Cobalt ion (1+) • 3Ethane)

By formula: (Co+ • 2C2H6) + C2H6 = (Co+ • 3C2H6)

Quantity Value Units Method Reference Comment
Δr50.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH<; M

Aluminum ion (1+) + Ethane = (Aluminum ion (1+) • Ethane)

By formula: Al+ + C2H6 = (Al+ • C2H6)

Quantity Value Units Method Reference Comment
Δr38. ± 8.4kJ/molCIDC,EqGStockigt, Schwarz, et al., 1996Anchored to theory; RCD

2Hydrogen + Vinyl bromide = Hydrogen bromide + Ethane

By formula: 2H2 + C2H3Br = HBr + C2H6

Quantity Value Units Method Reference Comment
Δr-199.2 ± 1.9kJ/molChydLacher, Kianpour, et al., 1957gas phase; ALS

Hydrogen + 2Ethane, iodo- = 2Ethane + Iodine

By formula: H2 + 2C2H5I = 2C2H6 + I2

Quantity Value Units Method Reference Comment
Δr-88.7 ± 3.3kJ/molChydAshcroft, Carson, et al., 1965liquid phase; ALS

Hydrogen + Ethyl bromide = Hydrogen bromide + Ethane

By formula: H2 + C2H5Br = HBr + C2H6

Quantity Value Units Method Reference Comment
Δr-59.0 ± 1.1kJ/molChydFowell, Lacher, et al., 1965gas phase; ALS

Hydrogen + 2Ethyl bromide = 2Ethane + Bromine

By formula: H2 + 2C2H5Br = 2C2H6 + Br2

Quantity Value Units Method Reference Comment
Δr23. ± 13.kJ/molChydAshcroft, Carson, et al., 1965liquid phase; ALS

Hydrogen + Ethyl Chloride = Ethane + Hydrogen chloride

By formula: H2 + C2H5Cl = C2H6 + HCl

Quantity Value Units Method Reference Comment
Δr-69.3 ± 0.4kJ/molChydLacher, Emery, et al., 1956gas phase; ALS

Nickel ion (1+) + Ethane = (Nickel ion (1+) • Ethane)

By formula: Ni+ + C2H6 = (Ni+ • C2H6)

Quantity Value Units Method Reference Comment
Δr120. ± 10.kJ/molMKERCarpenter, van Koppen, et al., 1995gas phase; M

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C2H6+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)11.52 ± 0.04eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)596.3kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity569.9kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
11. ± 1.PIAu, Cooper, et al., 1993LL
11.52ESTLuo and Pacey, 1992LL
11.57EIPlessis and Marmet, 1987LBLHLM
11.56 ± 0.02EIPlessis and Marmet, 1987, 2LBLHLM
11.4 ± 0.4EIChatham, Hils, et al., 1984LBLHLM
11.5 ± 0.1EISuzuki and Maeda, 1977LLK
11.56 ± 0.02PEBieri, Burger, et al., 1977LLK
11.76 ± 0.05EIFlesch and Svec, 1973LLK
11.45 ± 0.05TEStockbauer and Inghram, 1971LLK
11.51PEDewar and Worley, 1969RDSH
11.66 ± 0.05EIWilliams and Hamill, 1968RDSH
11.55CICermak, 1968RDSH
11.56PEBaker, Baker, et al., 1968RDSH
11.521 ± 0.007PINicholson, 1965RDSH
11.99PEKimura, Katsumata, et al., 1981Vertical value; LLK
12.0PEBieri and Asbrink, 1980Vertical value; LLK
12.1 ± 0.1PEBieri, Burger, et al., 1977Vertical value; LLK
12.00PEDoucet, Sauvageau, et al., 1975Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+43. ± 1.?PIAu, Cooper, et al., 1993LL
C+20.3 ± 0.2CH4+H2EIPlessis and Marmet, 1987, 2LBLHLM
C+29.6 ± 0.2?EISuzuki and Maeda, 1977, 2LLK
CH+31. ± 1.?PIAu, Cooper, et al., 1993LL
CH+20.10 ± 0.08CH3+H2EIPlessis and Marmet, 1987, 2LBLHLM
CH+26.7 ± 0.5?EISuzuki and Maeda, 1977, 2LLK
CH2+25. ± 1.?PIAu, Cooper, et al., 1993LL
CH2+14.69 ± 0.05CH4EIPlessis and Marmet, 1987, 2LBLHLM
CH2+17. ± 2.?EIChatham, Hils, et al., 1984LBLHLM
CH2+17.3 ± 0.15?EISuzuki and Maeda, 1977, 2LLK
CH3+14. ± 1.CH3PIAu, Cooper, et al., 1993LL
CH3+13.65 ± 0.04CH3EIPlessis and Marmet, 1987, 2LBLHLM
CH3+13.56 ± 0.04CH3-EIPlessis and Marmet, 1987, 2LBLHLM
CH3+14. ± 2.CH3EIChatham, Hils, et al., 1984LBLHLM
CH3+14.1 ± 0.1?EISuzuki and Maeda, 1977, 2LLK
CH3+13.46 ± 0.05CH3EIWilliams and Hamill, 1968RDSH
CH4+20.4 ± 0.3?EISuzuki and Maeda, 1977, 2LLK
C2+40. ± 1.?PIAu, Cooper, et al., 1993LL
C2+22.9 ± 0.33H2EIPlessis and Marmet, 1987, 2LBLHLM
C2+31.5 ± 0.2?EISuzuki and Maeda, 1977, 2LLK
C2H+27. ± 1.?PIAu, Cooper, et al., 1993LL
C2H+22.4 ± 0.32H2+HEIPlessis and Marmet, 1987, 2LBLHLM
C2H+25.6 ± 0.2?EISuzuki and Maeda, 1977, 2LLK
C2H2+14. ± 1.2H2PIAu, Cooper, et al., 1993LL
C2H2+14.51 ± 0.042H2EIPlessis and Marmet, 1987, 2LBLHLM
C2H2+15. ± 1.?EIChatham, Hils, et al., 1984LBLHLM
C2H2+14.7 ± 0.1?EISuzuki and Maeda, 1977, 2LLK
C2H2+15.35 ± 0.502H2EID'Or, Collin, et al., 1966RDSH
C2H3+14. ± 1.H2+HPIAu, Cooper, et al., 1993LL
C2H3+13.76 ± 0.08H2+H-EIPlessis and Marmet, 1987, 2LBLHLM
C2H3+14.50 ± 0.04H2+HEIPlessis and Marmet, 1987, 2LBLHLM
C2H3+14.5 ± 0.4H2+HEIChatham, Hils, et al., 1984LBLHLM
C2H3+14.6 ± 0.1H2+HEISuzuki and Maeda, 1977, 2LLK
C2H3+15.22 ± 0.10H2+HEID'Or, Collin, et al., 1966RDSH
C2H4+11. ± 1.H2PIAu, Cooper, et al., 1993LL
C2H4+11.81 ± 0.05H2EIPlessis and Marmet, 1987, 2LBLHLM
C2H4+12.1 ± 0.4H2EIChatham, Hils, et al., 1984LBLHLM
C2H4+12.1 ± 0.1H2PIPECOBombach, Dannacher, et al., 1984T = 0K; LBLHLM
C2H4+12.1 ± 0.1H2EISuzuki and Maeda, 1977, 2LLK
C2H4+12.08 ± 0.03H2PIChupka and Berkowitz, 1967RDSH
C2H4+12.24 ± 0.10H2EID'Or, Collin, et al., 1966RDSH
C2H5+12. ± 1.HPIAu, Cooper, et al., 1993LL
C2H5+12.45 ± 0.008HEIPlessis and Marmet, 1987, 2LBLHLM
C2H5+12.1 ± 0.4HEIChatham, Hils, et al., 1984LBLHLM
C2H5+12.4 ± 0.1HPIPECOBombach, Dannacher, et al., 1984T = 0K; LBLHLM
C2H5+12.40HPITraeger and McLoughlin, 1981LLK
C2H5+12.0 ± 0.1HEISuzuki and Maeda, 1977, 2LLK
C2H5+12.66 ± 0.05HEIWilliams and Hamill, 1968RDSH
C2H5+12.00 ± 0.05H-PIChupka and Berkowitz, 1967RDSH
C2H5+12.65 ± 0.08HPIChupka and Berkowitz, 1967RDSH
H+21. ± 1.?PIAu, Cooper, et al., 1993LL
H+23.5 ± 0.5?EISuzuki and Maeda, 1977, 2LLK
H2+30. ± 1.?PIAu, Cooper, et al., 1993LL
H2+35.0 ± 0.5?EISuzuki and Maeda, 1977, 2LLK
H2+31. ± 1.C2H4+?EINewton, Sciamanna, et al., 1970RDSH
H3+33. ± 1.?PIAu, Cooper, et al., 1993LL
H3+32. ± 1.?EIFuchs, 1972LLK

De-protonation reactions

C2H5- + Hydrogen cation = Ethane

By formula: C2H5- + H+ = C2H6

Quantity Value Units Method Reference Comment
Δr1758. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase; B
Δr1761. ± 8.4kJ/molBranDePuy, Bierbaum, et al., 1984gas phase; B
Quantity Value Units Method Reference Comment
Δr1723. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase; B

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Manion, 2002
Manion, J.A., Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons, J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703 . [all data]

Gurvich, Veyts, et al., 1991
Thermodynamic Properties of Individual Substances, 4th edition, Volume 2, Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.;, ed(s)., Hemisphere, New York, 1991. [all data]

Pittam and Pilcher, 1972
Pittam, D.A.; Pilcher, G., Measurements of heats of combustion by flame calorimetry. Part 8.-Methane, ethane, propane, n-butane and 2-methylpropane, J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229. [all data]

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Rossini, 1934
Rossini, F.D., Calorimetric determination of the heats of combustion of ethane, propane, normal butane, and normal pentane, J. Res. NBS, 1934, 12, 735-750. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

Pitzer K.S., 1944
Pitzer K.S., Thermodynamics of gaseous paraffins. Specific heat and related properties, Ind. Eng. Chem., 1944, 36, 829-831. [all data]

Chao J., 1973
Chao J., Ideal gas thermodynamic properties of ethane and propane, J. Phys. Chem. Ref. Data, 1973, 2, 427-438. [all data]

Pamidimukkala K.M., 1982
Pamidimukkala K.M., Ideal gas thermodynamic properties of CH3, CD3, CD4, C2D2, C2D4, C2D6, C2H6, CH3N2CH3, and CD3N2CD3, J. Phys. Chem. Ref. Data, 1982, 11, 83-99. [all data]

Halford J.O., 1957
Halford J.O., Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity, J. Phys. Chem., 1957, 61, 1536-1539. [all data]

Eucken A., 1933
Eucken A., Molar heats and normal frequencies of ethane and ethylene, Z. Phys. Chem., 1933, B20, 184-194. [all data]

Kistiakowsky G.B., 1939
Kistiakowsky G.B., Gaseous heat capacities. I. The method and the heat capacities of C2H6 and C2D6, J. Chem. Phys., 1939, 7, 281-288. [all data]

Dailey B.P., 1943
Dailey B.P., The heat capacities at higher temperatures of ethane and propane, J. Am. Chem. Soc., 1943, 65, 42-44. [all data]

Kemper, Bushnell, et al., 1993
Kemper, P.R.; Bushnell, J.; Von Koppen, P.; Bowers, M.T., Binding Energies of Co+(H2/CH4/C2H6)1,2,3 Clusters, J. Phys. Chem., 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016 . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Fowell, 1961
Fowell, P.A., Ph. D. Thesis, University of Manchester, 1961. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]

Smith, 1967
Smith, M.B., J. Phys. Chem., 1967, 71, 364. [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

DePuy, Bierbaum, et al., 1984
DePuy, C.H.; Bierbaum, V.M.; Damrauer, R., Relative Gas-Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1984, 106, 4051. [all data]

Holm, 1974
Holm, T., J. Organometal. Chem., 1974, 77, 27. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Liebman, Martinho Simões, et al., 1995
Liebman, J.F.; Martinho Simões, J.A.; Slayden, S.W., In Lithium Chemistry: A Theoretical and Experimental Overview Wiley: New York, Sapse, A.-M.; Schleyer, P. von Ragué, ed(s)., 1995. [all data]

Brown, Ishikawa, et al., 1990
Brown, C.E.; Ishikawa, Y.; Hackett, P.A.; Rayner, D.M., J. Am. Chem. Soc., 1990, 112, 2530. [all data]

Ishikawa, Brown, et al., 1988
Ishikawa, Y.; Brown, C.E.; Hackett, P.A.; Rayner, D.M., Chem. Phys. Lett., 1988, 150, 506. [all data]

Carpenter, van Koppen, et al., 1995
Carpenter, C.J.; van Koppen, P.A.M.; Bowers, M.T., Details of Potential Energy Surfaces Involving C-C Bond Activation: Reactions of Fe+, Co+ and Ni+ with Acetone, J. Am. Chem. Soc., 1995, 117, 44, 10976, https://doi.org/10.1021/ja00149a021 . [all data]

Lacher, Amador, et al., 1967
Lacher, J.R.; Amador, A.; Park, J.D., Reaction heats of organic compounds. Part 5.-Heats of hydrogenation of dichloromethane, 1,1- and 1,2-dichloroethane and 1,2-dichloropropane, Trans. Faraday Soc., 1967, 63, 1608-1611. [all data]

Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Conn, Kistiakowsky, et al., 1939
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VIII. Some further hydrogenations, including those of some acetylenes, J. Am. Chem. Soc., 1939, 61, 1868-1876. [all data]

Carson, Hartley, et al., 1949
Carson, A.S.; Hartley, K.; Skinner, H.A., Thermochemistry of metal alkyls. Part II.?The bond dissociation energies of some Zn?C and Cd?C bonds, and of Et?I., Trans. Faraday Soc., 1949, 45, 1159, https://doi.org/10.1039/tf9494501159 . [all data]

Kistiakowsky and Nickle, 1951
Kistiakowsky, G.B.; Nickle, A.G., Ethane-ethylene and propane-propylene equilibria, Faraday Discuss. Chem. Soc., 1951, 10, 175-187. [all data]

Kistiakowsky, Romeyn, et al., 1935
Kistiakowsky, G.B.; Romeyn, H., Jr.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. I. The apparatus and the heat of hydrogenation of ethylene, J. Am. Chem. Soc., 1935, 57, 65-75. [all data]

Shaulov and Shmyreva, 1968
Shaulov, Yu.Kh.; Shmyreva, G.O., Russ. J. Phys. Chem., 1968, 42, 1008. [all data]

Hiraoka and Kebarle, 1980
Hiraoka, K.; Kebarle, P., Ion Molecule Reactions in Ethane. Thermochemistry and Structures of the Intermediate Complexes: C4H11+ and C4H10+ Formed in the Reactions of C2H5+ and C2H4+ with C2H6, Can. J. Chem., 1980, 58, 21, 2262, https://doi.org/10.1139/v80-364 . [all data]

Lacher, Emery, et al., 1956
Lacher, J.R.; Emery, E.; Bohmfalk, E.; Park, J.D., Reaction heats of organic compounds. IV. A high temperature calorimeter and the hydrogenation of methyl ethyl and vinyl chlorides, J. Phys. Chem., 1956, 60, 492-495. [all data]

Lacher, Kianpour, et al., 1956
Lacher, J.R.; Kianpour, A.; Oetting, F.; Park, J.D., Reaction calorimetry. The hydrogenation of organic fluorides and chlorides, Trans. Faraday Soc., 1956, 52, 1500-1508. [all data]

Holm, 1981
Holm, T., J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]

Stockigt, Schwarz, et al., 1996
Stockigt, D.; Schwarz, J.; Schwarz, H., Theoretical and Experimental Studies on the Bond Dissociation Energies of Al(methane)+, Al(acetylene)+, Al(ethene)+, and Al(ethane)+, J. Phys. Chem., 1996, 100, 21, 8786, https://doi.org/10.1021/jp960060k . [all data]

Lacher, Kianpour, et al., 1957
Lacher, J.R.; Kianpour, A.; Montgomery, P.; Knedler, H.; Park, J.D., Reaction heats of organic halogen compounds. IX. The catalytic hydrogenation of vinyl and perfluorovinyl bromide, J. Phys. Chem., 1957, 61, 1125-1126. [all data]

Ashcroft, Carson, et al., 1965
Ashcroft, S.J.; Carson, A.S.; Carter, W.; Laye, P.G., Thermochemistry of reductions caused by lithium aluminium hydride. Part 3.- The C-halogen bond dissociation energies in ethyl iodine and ethyl bromide, Trans. Faraday Soc., 1965, 61, 225-229. [all data]

Fowell, Lacher, et al., 1965
Fowell, P.; Lacher, J.R.; Park, J.D., Reaction heats of organic compounds. Part 3.-Heats of hydrogenation of methyl bromide and ethyl bromide, Trans. Faraday Soc., 1965, 61, 1324-1327. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Au, Cooper, et al., 1993
Au, J.W.; Cooper, G.; Brion, C.E., The molecular and dissociative photoionization of ethane, propane, and n-butane: Absolute oscillator strengths (10-80 eV) and breakdown pathways, Chem. Phys., 1993, 173, 241. [all data]

Luo and Pacey, 1992
Luo, Y.-R.; Pacey, P.D., Effects of alkyl substitution on ionization energies of alkanes and haloalkanes and on heats of formation of their molecular cations. Part 2. Alkanes and chloro-, bromo- and iodoalkanes, Int. J. Mass Spectrom. Ion Processes, 1992, 112, 63. [all data]

Plessis and Marmet, 1987
Plessis, P.; Marmet, P., Electroionization study of ethane: structures in the ionization and appearance energy curves, Can. J. Chem., 1987, 65, 2004. [all data]

Plessis and Marmet, 1987, 2
Plessis, P.; Marmet, P., Electroionization study of ethane: Ionization and appearance energies, ion-pair formations and negative ions, Can. J. Chem., 1987, 65, 1424. [all data]

Chatham, Hils, et al., 1984
Chatham, H.; Hils, D.; Robertson, R.; Gallagher, A., Total and partial electron collisional ionization cross sections for CH4, C2H6, SiH4, and Si2H6, J. Chem. Phys., 1984, 81, 1770. [all data]

Suzuki and Maeda, 1977
Suzuki, I.H.; Maeda, K., Ionization efficiency curves of ethane by electron impact, Int. J. Mass Spectrom. Ion Phys., 1977, 24, 147. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Flesch and Svec, 1973
Flesch, G.D.; Svec, H.J., Fragmentation reactions in the mass spectrometer for C2-C5 alkanes, J. Chem. Soc. Faraday Trans. 2, 1973, 69, 1187. [all data]

Stockbauer and Inghram, 1971
Stockbauer, R.; Inghram, M.G., Experimental relative Franck-Condon factors for the ionization of methane, ethane, and propane, J. Chem. Phys., 1971, 54, 2242. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H., Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer, J. Chem. Phys., 1968, 49, 4467. [all data]

Cermak, 1968
Cermak, V., Penning ionization electron spectroscopy, Advan. Mass Spectrom., 1968, 4, 697. [all data]

Baker, Baker, et al., 1968
Baker, A.D.; Baker, C.; Brundle, C.R.; Turner, D.W., The electronic structures of methane, ethane, ethylene and formaldehyde studied by high-resolution molecular photoelectron spectroscopy, Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 285. [all data]

Nicholson, 1965
Nicholson, A.J.C., Photoionization-efficiency curves. II. False and genuine structure, J. Chem. Phys., 1965, 43, 1171. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]

Doucet, Sauvageau, et al., 1975
Doucet, J.; Sauvageau, P.; Sandorfy, C., Photoelectron far-ultraviolet absorption spectra of chlorofluoro derivatives of ethane, J. Chem. Phys., 1975, 62, 355. [all data]

Suzuki and Maeda, 1977, 2
Suzuki, I.H.; Maeda, K., Behavior of hydrogen atoms in the fragmentation of CH3CD3, Can. J. Chem., 1977, 55, 3124. [all data]

D'Or, Collin, et al., 1966
D'Or, L.; Collin, J.E.; Longree, J., Ionisation et dissociation de l'ethane sous l'impact electronique. Spectres de masse et phenomenes d'echange dans C2H6, C2H5D, CH3CD3 et C2D6, Bull. Classe Sci. Acad. Roy. Belg., 1966, 52, 518. [all data]

Bombach, Dannacher, et al., 1984
Bombach, R.; Dannacher, J.; Stadelmann, J.-P., The rate/energy functions for the competitive fragmentation processes of ethylene and ethane cations, Int. J. Mass Spectrom. Ion Processes, 1984, 58, 217. [all data]

Chupka and Berkowitz, 1967
Chupka, W.A.; Berkowitz, J., Photoionization of ethane, propane, and n-butane with mass analysis, J. Chem. Phys., 1967, 47, 2921. [all data]

Traeger and McLoughlin, 1981
Traeger, J.C.; McLoughlin, R.G., Absolute heats of formation for gas phase cations, J. Am. Chem. Soc., 1981, 103, 3647. [all data]

Newton, Sciamanna, et al., 1970
Newton, A.S.; Sciamanna, A.F.; Thomas, G.E., The occurrence of the H3+ ion in the mass spectra of organic compounds, Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 465. [all data]

Fuchs, 1972
Fuchs, R., Die kinetische energie ionisierter molekulfragmente VII. H3 ALS fragmention bei der elektronenstrossionisierung von kohlenwasserstoffen, Int. J. Mass Spectrom. Ion Processes, 1972, 8, 193. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References