Dodecane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-290.9 ± 1.4kJ/molCcbProsen and Rossini, 1945ALS
Δfgas-288.1 ± 3.3kJ/molCcbProsen and Rossini, 1945, 2Heat of formation derived by Cox and Pilcher, 1970; ALS
Quantity Value Units Method Reference Comment
gas622.50J/mol*KN/AStull D.R., 1969This value is based on the low-temperature results [ Finke H.L., 1954] for S(liquid).; GT

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

1-Dodecene + Hydrogen = Dodecane

By formula: C12H24 + H2 = C12H26

Quantity Value Units Method Reference Comment
Δr-125.4 ± 1.5kJ/molChydRogers and Skanupong, 1974liquid phase; solvent: Hexane
Δr125.7 ± 2.1kJ/molChydBretschneider and Rogers, 1970liquid phase; solvent: glacial acetic acid

Dodecane = Heptane, 2,2,4,6,6-pentamethyl-

By formula: C12H26 = C12H26

Quantity Value Units Method Reference Comment
Δr-12.7kJ/molCcbMelaugh, Mansson, et al., 1976liquid phase; Unpublished results of Zwolinski and Desai
Δr-12.2 ± 1.4kJ/molCcbMelaugh, Mansson, et al., 1976liquid phase

4Hydrogen + 3,9-Dodecadiyne = Dodecane

By formula: 4H2 + C12H18 = C12H26

Quantity Value Units Method Reference Comment
Δr-549. ± 2.kJ/molChydFlitcroft, Skinner, et al., 1957liquid phase

5,7-Dodecadiyne + 4Hydrogen = Dodecane

By formula: C12H18 + 4H2 = C12H26

Quantity Value Units Method Reference Comment
Δr-532. ± 3.kJ/molChydFlitcroft, Skinner, et al., 1957liquid phase

Dodecane + Sulfuric Acid = C12H26O3S + Water

By formula: C12H26 + H2O4S = C12H26O3S + H2O

Quantity Value Units Method Reference Comment
Δr290. ± 17.kJ/molCmRoth and Rist-Schumacher, 1944liquid phase

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C6H12+10.40?EILewis and Hamill, 1970 

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Prosen and Rossini, 1945, 2
Prosen, E.J.; Rossini, F.D., Heats of formation and combustion of 1,3-butadiene and styrene, J. Res. NBS, 1945, 34, 59-63. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Stull D.R., 1969
Stull D.R., Jr., The Chemical Thermodynamics of Organic Compounds. Wiley, New York, 1969. [all data]

Finke H.L., 1954
Finke H.L., Low-temperature thermal data for the nine normal paraffin hydrocarbons from octane to hexadecane, J. Am. Chem. Soc., 1954, 76, 333-341. [all data]

Rogers and Skanupong, 1974
Rogers, D.W.; Skanupong, S., Heats of hydrogenation of sixteen terminal monoolefins. The alternating effect, J. Phys. Chem., 1974, 78, 2569-2572. [all data]

Bretschneider and Rogers, 1970
Bretschneider, E.; Rogers, D.W., A new microcalorimeter: heats of hydrogenation of four monoolefins, Mikrochim. Acta, 1970, 482-490. [all data]

Melaugh, Mansson, et al., 1976
Melaugh, R.A.; Mansson, M.; Rossini, F.D., The energy of isomerization of n-dodecane into 2,2,4,6,6-pentamethylheptane, J. Chem. Thermodyn., 1976, 8, 623-626. [all data]

Flitcroft, Skinner, et al., 1957
Flitcroft, T.; Skinner, H.A.; Whiting, M.C., Heats of hydrogenation Part 1.-Dodeca-3:9 and -5:7 Diynes, Trans. Faraday Soc., 1957, 53, 784-790. [all data]

Roth and Rist-Schumacher, 1944
Roth, W.A.; Rist-Schumacher, E., Beitrag zur thermochemie der sulfonsauren und saurechlorid, Z. Electrochem., 1944, 50, 7-9. [all data]

Lewis and Hamill, 1970
Lewis, D.; Hamill, W.H., Excited states of neutral molecular fragments from appearance potentials by electron impact in a mass spectrometer, J. Chem. Phys., 1970, 52, 6348. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References