Benzene, 1,3-dinitro-
- Formula: C6H4N2O4
- Molecular weight: 168.1070
- IUPAC Standard InChIKey: WDCYWAQPCXBPJA-UHFFFAOYSA-N
- CAS Registry Number: 99-65-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Benzene, m-dinitro-; m-Dinitrobenzene; 1,3-Dinitrobenzene; 2,4-Dinitrobenzene; Dwunitrobenzen; 1,3-Dinitrobenzol; meta-Dinitrobenzene; NSC 7189
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase ion energetics data
Go To: Top, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.4 | eV | N/A | N/A | L |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
1.66 ± 0.10 | IMRE | Chowdhury, Heinis, et al., 1986 | ΔGea(423 K) = -36.9 kcal/mol; ΔSea (estimated) = -3.2 eu.; B |
0.067996 | N/A | Desfrancois, Periquet, et al., 1999 | dipole bound state; B |
<1.650 ± 0.050 | PD | Mock and Grimsrud, 1989 | B |
1.652 ± 0.048 | IMRE | Fukuda and McIver, 1985 | ΔGea(355 K) = -37.0 kcal/mol; ΔSea =-3.2, est. from data in Chowdhury, Heinis, et al., 1986; B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.43 ± 0.02 | PI | Kotov and Potapov, 1972 | LLK |
10.6 ± 0.1 | EI | Brown, 1970 | RDSH |
10.40 | PE | Palmer, Moyes, et al., 1979 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C6H4NO2+ | 12.3 ± 0.1 | NO2 | EI | Brown, 1970 | RDSH |
Ion clustering data
Go To: Top, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Br- + C6H4N2O4 = (Br- • C6H4N2O4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 84.9 ± 7.5 | kJ/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff at 423 K, ΔSaff taken as that of mCF3-nitrobenzene..Br-; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92. | J/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 45.6 ± 4.2 | kJ/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff at 423 K, ΔSaff taken as that of mCF3-nitrobenzene..Br-; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
45.6 | 423. | PHPMS | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
By formula: NO2- + C6H4N2O4 = (NO2- • C6H4N2O4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 88.7 ± 8.4 | kJ/mol | TDAs | Grimsrud, Chowdhury, et al., 1986 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.6 | J/mol*K | PHPMS | Grimsrud, Chowdhury, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 60.2 ± 8.4 | kJ/mol | TDAs | Grimsrud, Chowdhury, et al., 1986 | gas phase; B |
Mass spectrum (electron ionization)
Go To: Top, Gas phase ion energetics data, Ion clustering data, UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center, 1990. |
NIST MS number | 118570 |
UV/Visible spectrum
Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | Fielding and Le Fevre, 1950 |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 11354 |
Instrument | Beckman DU |
Melting point | 90 |
Boiling point | 291; 167/ 14 mm |
Gas Chromatography
Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | SE-30 | 150. | 1400. | Tiess, 1984 | Ar, Gas Chrom Q (80-100 mesh); Column length: 3. m |
Lee's RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-5MS | 247.64 | Chen, Keeran, et al., 2002 | 30. m/0.25 mm/0.5 μm, 40. C @ 1. min, 10. K/min; Tend: 310. C |
Capillary | DB-5MS | 247.45 | Chen, Keeran, et al., 2002 | 30. m/0.25 mm/0.5 μm, 40. C @ 1. min, 10. K/min; Tend: 310. C |
Capillary | DB-5MS | 248.35 | Chen, Keeran, et al., 2002 | 30. m/0.25 mm/0.5 μm, 40. C @ 1. min, 4. K/min; Tend: 310. C |
References
Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chowdhury, Heinis, et al., 1986
Chowdhury, S.; Heinis, T.; Grimsrud, E.P.; Kebarle, P.,
Entropy Changes and Electron Affinities from Gas-Phase Electron Transfer Equilibria: A- + B = A + B-,
J. Phys. Chem., 1986, 90, 12, 2747, https://doi.org/10.1021/j100403a037
. [all data]
Desfrancois, Periquet, et al., 1999
Desfrancois, C.; Periquet, V.; Lyapustina, S.A.; Lippa, T.P.; Robinson, D.W.; Bowen, K.H.; Nonaka, H.; Compton,
Electron Binding to Valence and Multipole states of Molecules: Nitrobenzene, para- and meta-dinitrobenzenes,
J. Chem. Phys., 1999, 111, 10, 4569, https://doi.org/10.1063/1.479218
. [all data]
Mock and Grimsrud, 1989
Mock, R.S.; Grimsrud, E.P.,
Gas-Phase Electron Photodetachment Spectroscopy of the Molecular Anions of Nitroaromatic Hydrocarbons at Atmospheric Pressure,
J. Am. Chem. Soc., 1989, 111, 8, 2861, https://doi.org/10.1021/ja00190a020
. [all data]
Fukuda and McIver, 1985
Fukuda, E.K.; McIver, R.T., Jr.,
Relative electron affinities of substituted benzophenones, nitrobenzenes, and quinones. [Anchored to EA(SO2) from 74CEL/BEN],
J. Am. Chem. Soc., 1985, 107, 2291. [all data]
Kotov and Potapov, 1972
Kotov, B.V.; Potapov, V.K.,
Ionization potentials of strong organic electron acceptors,
Khim. Vys. Energ., 1972, 6, 375. [all data]
Brown, 1970
Brown, P.,
Kinetic studies in mass spectrometry. IX. Competing [M-NO2] and [M-NO] reactions in substituted nitrobenzenes. Approximate activation energies from ionization and appearance potentials,
Org. Mass Spectrom., 1970, 4, 533. [all data]
Palmer, Moyes, et al., 1979
Palmer, M.H.; Moyes, W.; Spiers, M.; Ridyard, J.N.A.,
The electronic structure of substituted benzenes; ab initio calculations and photoelectron spectra for nitrobenzene, the nitrotoluenes, dinitrobenzenes and fluoronitrobenzenes,
J. Mol. Struct., 1979, 55, 243. [all data]
Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P.,
Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-,
J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014
. [all data]
Grimsrud, Chowdhury, et al., 1986
Grimsrud, E.P.; Chowdhury, S.; Kebarle, P.,
Gas Phase Reactions of NO2- with Nitrobenzenes and Quinones. Electron Transfer, Clusters, and Formation of Phenoxide and Quinoxide Negative Ions. Use of NO2 as a NICI Reagent Gas.,
Int. J. Mass Spectrom. Ion Proc., 1986, 68, 1-2, 57, https://doi.org/10.1016/0168-1176(86)87068-9
. [all data]
Fielding and Le Fevre, 1950
Fielding, P.; Le Fevre, R.J.W.,
J. Chem. Soc., 1950, 2812. [all data]
Tiess, 1984
Tiess, D.,
Gaschromatographische Retentionsindices von 125 leicht- bis mittelflüchtigen organischen Substanzen toxikologisch-analytischer Relevanz auf SE-30,
Wiss. Z. Wilhelm-Pieck-Univ. Rostock Math. Naturwiss. Reihe, 1984, 33, 6-9. [all data]
Chen, Keeran, et al., 2002
Chen, P.H.; Keeran, W.S.; Van Ausdale, W.A.; Schindler, D.R.; Roberts, D.W.,
Application of Lee retention indices to the confirmation of tentatively identified compounds from GC/MS analysis of environmental samples, Technical paper, Analytical Services Division, Environmental ScienceEngineering, Inc, PO Box 1703, Gainesville, FL 32602, 2002, 11. [all data]
Notes
Go To: Top, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References
- Symbols used in this document:
AE Appearance energy EA Electron affinity IE (evaluated) Recommended ionization energy T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.