m-Nitroaniline
- Formula: C6H6N2O2
- Molecular weight: 138.1240
- IUPAC Standard InChIKey: XJCVRTZCHMZPBD-UHFFFAOYSA-N
- CAS Registry Number: 99-09-2
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Benzenamine, 3-nitro-; Aniline, m-nitro-; m-Aminonitrobenzene; m-Nitroaminobenzene; m-Nitrophenylamine; Amarthol Fast Orange R Base; Azobase MNA; C.I. Azoic Diazo Component 7; C.I. 37030; Daito Orange Base R; Devol Orange R; Diazo Fast Orange R; Fast Orange Base R; Fast Orange M Base; Fast Orange MM Base; Fast Orange R Base; Fast Orange R Salt; Hiltonil Fast Orange R Base; MNA; Naphtoelan Orange R Base; Nitranilin; Orange Base Irga I; 1-Amino-3-nitrobenzene; 3-Nitroaniline; 3-Nitrobenzenamine; 3-Nitrobenzeneamine; 3-Nitrophenylamine; m-Nitraniline; 3-Aminonitrobenzene; NSC 9574
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 62.5 ± 1.8 | kJ/mol | Ccr | Nishiyama, Sakiyama, et al., 1983 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C6H5N2O2- + =
By formula: C6H5N2O2- + H+ = C6H6N2O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1474. ± 8.8 | kJ/mol | G+TS | Taft and Topsom, 1987 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1443. ± 8.4 | kJ/mol | IMRE | Taft and Topsom, 1987 | gas phase |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C6H6N2O2+ (ion structure unspecified)
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.95 ± 0.10 | IMRE | Chowdhury, Kishi, et al., 1989 | ΔGea(423 K) = -21.0 kcal/mol, ΔS = -2 eu est; B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.31 ± 0.02 | PI | Potapov, Kardash, et al., 1972 | LLK |
8.80 | EI | Crable and Kearns, 1962 | RDSH |
8.60 | PE | Khalil, Meeks, et al., 1973 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C6H6N+ | 11.2 ± 0.1 | NO2 | EI | Brown, 1970 | RDSH |
C6H6NO+ | 9.1 ± 0.1 | NO | EI | Brown, 1970 | RDSH |
De-protonation reactions
C6H5N2O2- + =
By formula: C6H5N2O2- + H+ = C6H6N2O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1474. ± 8.8 | kJ/mol | G+TS | Taft and Topsom, 1987 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1443. ± 8.4 | kJ/mol | IMRE | Taft and Topsom, 1987 | gas phase; B |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | SE-30 | 180. | 1446. | Oszczapowicz, Osek, et al., 1985 | N2, Chromosorb A AW; Column length: 3. m |
Packed | SE-30 | 180. | 1446. | Oszczapowicz, Osek, et al., 1984 | N2, Chromosorb W AW; Column length: 3. m |
Lee's RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-5 | 254.2 | Donnelly, Abdel-Hamid, et al., 1993 | 30. m/0.32 mm/0.25 μm, He, 40. C @ 3. min, 8. K/min, 285. C @ 29.5 min |
Lee's RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Polydimethyl siloxanes | 254.17 | Eckel and Kind, 2003 | Program: not specified |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Nishiyama, Sakiyama, et al., 1983
Nishiyama, K.; Sakiyama, M.; Seki, S.,
Enthalpies of combustion of organic compounds. V. 3- and 4-nitroanilines,
Bull. Chem. Soc. Jpn., 1983, 56, 3171-3172. [all data]
Taft and Topsom, 1987
Taft, R.W.; Topsom, R.D.,
The Nature and Analysis of Substituent Effects,
Prog. Phys. Org. Chem., 1987, 16, 1. [all data]
Chowdhury, Kishi, et al., 1989
Chowdhury, S.; Kishi, H.; Dillow, G.W.; Kebarle, P.,
Electron Affinities of Substituted Nitrobenzenes,
Can. J. Chem., 1989, 67, 4, 603, https://doi.org/10.1139/v89-091
. [all data]
Potapov, Kardash, et al., 1972
Potapov, V.K.; Kardash, I.E.; Sorokin, V.V.; Sokolov, S.A.; Evlasheva, T.I.,
Photoionization of heteroaromatic compounds,
Khim. Vys. Energ., 1972, 6, 392. [all data]
Crable and Kearns, 1962
Crable, G.F.; Kearns, G.L.,
Effect of substituent groups on the ionization potentials of benzenes,
J. Phys. Chem., 1962, 66, 436. [all data]
Khalil, Meeks, et al., 1973
Khalil, O.S.; Meeks, J.L.; McGlynn, S.P.,
Electronic spectroscopy of highly polar aromatics. VII. Photoelectron spectra of nitroanilines,
J. Am. Chem. Soc., 1973, 95, 5876. [all data]
Brown, 1970
Brown, P.,
Kinetic studies in mass spectrometry. IX. Competing [M-NO2] and [M-NO] reactions in substituted nitrobenzenes. Approximate activation energies from ionization and appearance potentials,
Org. Mass Spectrom., 1970, 4, 533. [all data]
Oszczapowicz, Osek, et al., 1985
Oszczapowicz, J.; Osek, J.; Ciszkowski, K.; Krawczyk, W.; Ostrowski, M.,
Retention Indices of Dimethylbenzamidines and Benzylideneamines on a Non-Polar Column,
J. Chromatogr., 1985, 330, 79-85, https://doi.org/10.1016/S0021-9673(01)81964-6
. [all data]
Oszczapowicz, Osek, et al., 1984
Oszczapowicz, J.; Osek, J.; Dolecka, E.,
Retention indices of dimethylformamidines, dimethylacetamidines and tetramethylguanidines on a non-polar column,
J. Chromatogr., 1984, 315, 95-100, https://doi.org/10.1016/S0021-9673(01)90727-7
. [all data]
Donnelly, Abdel-Hamid, et al., 1993
Donnelly, J.R.; Abdel-Hamid, M.S.; Jeter, J.L.; Gurka, D.F.,
Application of gas chromatographic retention properties to the identification of environmental contaminants,
J. Chromatogr., 1993, 642, 1-2, 409-415, https://doi.org/10.1016/0021-9673(93)80106-I
. [all data]
Eckel and Kind, 2003
Eckel, W.P.; Kind, T.,
Use of boiling point-Lee retention index correlation for rapid review of gas chromatography-mass spectrometry data,
Anal. Chim. Acta., 2003, 494, 1-2, 235-243, https://doi.org/10.1016/j.aca.2003.08.003
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Gas Chromatography, References
- Symbols used in this document:
AE Appearance energy EA Electron affinity ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.