Benzene, nitro-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas16.38 ± 0.16kcal/molCcbLebedeva, Katin, et al., 1971Reanalyzed by Pedley, Naylor, et al., 1986, Original value = 15.72 ± 0.10 kcal/mol

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil484. ± 2.KAVGN/AAverage of 24 out of 25 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus278.9 ± 0.2KAVGN/AAverage of 16 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap13.0kcal/molCGCChickos, Hosseini, et al., 1995Based on data from 313. to 353. K.; AC
Δvap13.148 ± 0.0043kcal/molCKusano and Wadso, 1971ALS
Δvap13.1kcal/molN/AKusano and Wadsö, 1971AC
Δvap13.4 ± 0.41kcal/molMELebedeva, Katin, et al., 1971, 2Based on data from 291. to 305. K.; AC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
13.1287.AStephenson and Malanowski, 1987Based on data from 279. to 296. K. See also Dykyj, 1972 and Lynch and Wilke, 1960.; AC
13.0303.N/AZaraiskii, 1985Based on data from 288. to 318. K.; AC
13.4 ± 0.10291.VLebedeva, Katin, et al., 1971ALS
12.5293.MESklyarenko, Markin, et al., 1958Based on data from 283. to 303. K.; AC
11.6422.N/AOliver and Grisard, 1952Based on data from 407. to 483. K. See also Boublik, Fried, et al., 1984.; AC
11.7425.N/AToral and Moles, 1933Based on data from 369. to 481. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
407.3 to 483.784.209821727.592-73.438Brown, 1952Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
2.897278.8Domalski and Hearing, 1996AC
2.5848278.9Pacor, 1967DH
2.8970278.8Parks, Todd, et al., 1936DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
9.27278.9Pacor, 1967DH
10.39278.8Parks, Todd, et al., 1936DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Chlorine anion + Benzene, nitro- = (Chlorine anion • Benzene, nitro-)

By formula: Cl- + C6H5NO2 = (Cl- • C6H5NO2)

Quantity Value Units Method Reference Comment
Δr16.3 ± 1.0kcal/molTDAsChowdhury and Kebarle, 1986gas phase; B,M
Δr16.5kcal/molPHPMSPaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/APaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
Δr19.4cal/mol*KPHPMSChowdhury and Kebarle, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr10.5 ± 1.6kcal/molTDAsChowdhury and Kebarle, 1986gas phase; B
Δr7.10kcal/molTDEqFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
10.5300.PHPMSPaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
7.7300.PHPMSFrench, Ikuta, et al., 1982gas phase; M

C6H4NO2- + Hydrogen cation = Benzene, nitro-

By formula: C6H4NO2- + H+ = C6H5NO2

Quantity Value Units Method Reference Comment
Δr377.0 ± 3.1kcal/molG+TSCheng and Grabowski, 1989gas phase; between EtOH, iPrOH; B
Δr354.2 ± 3.1kcal/molG+TSMeot-ner and Kafafi, 1988gas phase; acidity stronger than all levels of computation by 25 kcal/mol; B
Quantity Value Units Method Reference Comment
Δr369.3 ± 3.0kcal/molIMRBCheng and Grabowski, 1989gas phase; between EtOH, iPrOH; B
Δr346.5 ± 3.0kcal/molIMRBMeot-ner and Kafafi, 1988gas phase; acidity stronger than all levels of computation by 25 kcal/mol; B

Bromine anion + Benzene, nitro- = (Bromine anion • Benzene, nitro-)

By formula: Br- + C6H5NO2 = (Br- • C6H5NO2)

Quantity Value Units Method Reference Comment
Δr15.0 ± 1.8kcal/molTDAsPaul and Kebarle, 1991gas phase; ΔGaff at 423 K; B,M
Quantity Value Units Method Reference Comment
Δr20.2cal/mol*KN/APaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr6.5 ± 1.0kcal/molTDAsPaul and Kebarle, 1991gas phase; ΔGaff at 423 K; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
6.5423.PHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M

C6H7N+ + Benzene, nitro- = (C6H7N+ • Benzene, nitro-)

By formula: C6H7N+ + C6H5NO2 = (C6H7N+ • C6H5NO2)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr17.7kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr21.2cal/mol*KPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
10.7324.PHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M

Nitrogen oxide anion + Benzene, nitro- = (Nitrogen oxide anion • Benzene, nitro-)

By formula: NO2- + C6H5NO2 = (NO2- • C6H5NO2)

Quantity Value Units Method Reference Comment
Δr14.2 ± 2.0kcal/molTDAsGrimsrud, Chowdhury, et al., 1986gas phase; B,M
Quantity Value Units Method Reference Comment
Δr17.5cal/mol*KPHPMSGrimsrud, Chowdhury, et al., 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr8.9 ± 2.0kcal/molTDAsGrimsrud, Chowdhury, et al., 1986gas phase; B

C11H10+ + Benzene, nitro- = (C11H10+ • Benzene, nitro-)

By formula: C11H10+ + C6H5NO2 = (C11H10+ • C6H5NO2)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr13.1kcal/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr26.3cal/mol*KPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M

Nitric oxide anion + Benzene, nitro- = (Nitric oxide anion • Benzene, nitro-)

By formula: NO- + C6H5NO2 = (NO- • C6H5NO2)

Quantity Value Units Method Reference Comment
Δr39.3kcal/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

F6S- + Benzene, nitro- = (F6S- • Benzene, nitro-)

By formula: F6S- + C6H5NO2 = (F6S- • C6H5NO2)

Quantity Value Units Method Reference Comment
Δr14.9 ± 1.0kcal/molTDAsChowdhury and Kebarle, 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr6.7 ± 1.6kcal/molTDAsChowdhury and Kebarle, 1986gas phase; B

F6S- + Benzene, nitro- = (F6S- • Benzene, nitro-)

By formula: F6S- + C6H5NO2 = (F6S- • C6H5NO2)

Quantity Value Units Method Reference Comment
Δr14.9kcal/molPHPMSChowdhury and Kebarle, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr27.5cal/mol*KPHPMSChowdhury and Kebarle, 1986gas phase; M

Perfluoro(methylcyclohexane) anion + Benzene, nitro- = (Perfluoro(methylcyclohexane) anion • Benzene, nitro-)

By formula: C7F14- + C6H5NO2 = (C7F14- • C6H5NO2)

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
6.7300.PHPMSChowdhury and Kebarle, 1986gas phase; M

Perfluoro(methylcyclohexane) anion + Benzene, nitro- = C13H5F14NO2-

By formula: C7F14- + C6H5NO2 = C13H5F14NO2-

Quantity Value Units Method Reference Comment
Δr6.7 ± 1.0kcal/molIMREChowdhury and Kebarle, 1986gas phase; B

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
LL - Sharon G. Lias and Joel F. Liebman

Quantity Value Units Method Reference Comment
IE (evaluated)9.94 ± 0.08eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)191.3kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity183.9kcal/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
1.000 ± 0.010LPESDesfrancois, Periquet, et al., 1999B
1.01 ± 0.10TDEqChowdhury, Heinis, et al., 1986ΔGea(423 K) = -22.8 kcal/mol; ΔSea = -1.0 eu.; B
1.00 ± 0.060TDAsChen, Wiley, et al., 1994B
1.00 ± 0.020ECDChen, Chen, et al., 1992B
1.019 ± 0.048IMREFukuda and McIver, 1985ΔGea(355 K) = -23.1 kcal/mol; ΔSea =-1.0, est. from data in Chowdhury, Heinis, et al., 1986; B
<1.180 ± 0.050PDMock and Grimsrud, 1989B
<1.09997IMRBHenglein and Muccini, 1959EA: < SO2; B
>0.70 ± 0.20EndoLifshitz, Tiernan, et al., 1973B
>0.39999ESCompton, Christophorou, et al., 1966B

Ionization energy determinations

IE (eV) Method Reference Comment
~9.67PEKlasinc, Kovac, et al., 1983LBLHLM
9.8PEKatsumata, Shiromaru, et al., 1982LBLHLM
10.16 ± 0.08EIAllam, Migahed, et al., 1982LBLHLM
9.92PEKimura, Katsumata, et al., 1981LLK
10.16 ± 0.08EIAllam, Migahed, et al., 1981LLK
9.87 ± 0.05PIMatyuk, Potapov, et al., 1979LLK
9.93PEBehan, Johnstone, et al., 1976LLK
9.6EIMcLafferty, Bente, et al., 1973LLK
9.99PEKhalil, Meeks, et al., 1973LLK
9.99 ± 0.01PERabalais, 1972LLK
9.85 ± 0.03PIKotov and Potapov, 1972LLK
9.94 ± 0.025PEJohnstone and Mellon, 1972LLK
9.90EIJohnstone, Mellon, et al., 1971LLK
9.86 ± 0.05PEJohnstone, Mellon, et al., 1970RDSH
9.90 ± 0.03EIJohnstone, Mellon, et al., 1970RDSH
10.16 ± 0.04EIBuchs, 1970RDSH
9.7 ± 0.1EIBrown, 1970RDSH
9.92PIWatanabe, Nakayama, et al., 1962RDSH
9.86PEKlasinc, Kovac, et al., 1983Vertical value; LBLHLM
9.9PEKatsumata, Shiromaru, et al., 1982Vertical value; LBLHLM
9.92PEPalmer, Moyes, et al., 1979Vertical value; LLK
9.93PEKobayashi, 1978Vertical value; LLK
10.8PERao, 1975Vertical value; LLK
9.93PEKobayashi and Nagakura, 1974Vertical value; LLK
10.1 ± 0.1SIGol'denfel'd, Korostyshevskii, et al., 1973Vertical value; LLK
9.88 ± 0.015PEKobayashi and Nagakura, 1972Vertical value; LLK
10.26PEBaker, May, et al., 1968Vertical value; RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H3+12.63 ± 0.15C2H2+CO+NOPIPECONishimura, Das, et al., 1986LBLHLM
C4H3+15.66 ± 0.15C2H2+NO2PIPECONishimura, Das, et al., 1986LBLHLM
C4H3+11.40 ± 0.05NO+C2H2OPIPECOPanczel and Baer, 1984T = 298K; LBLHLM
C4H3+11.54 ± 0.05NO+C2H2OPIPECOPanczel and Baer, 1984T = 0K; LBLHLM
C4H3+16.31 ± 0.08?EIAllam, Migahed, et al., 1982LBLHLM
C5H5+11.08 ± 0.16CO+NOPIPECONishimura, Das, et al., 1986LBLHLM
C5H5+11.30 ± 0.05CO+NOPIPECOPanczel and Baer, 1984T = 298K; LBLHLM
C5H5+11.44 ± 0.05CO+NOPIPECOPanczel and Baer, 1984T = 0K; LBLHLM
C6H5+11.51 ± 0.35NO2CADKatritzky, Watson, et al., 1990LL
C6H5+11.08 ± 0.16NO2PIPECONishimura, Das, et al., 1986LBLHLM
C6H5+11.14 ± 0.05NO2PIPECOPanczel and Baer, 1984T = 298K; LBLHLM
C6H5+11.28 ± 0.05NO2PIPECOPanczel and Baer, 1984T = 0K; LBLHLM
C6H5+12.14 ± 0.08NO2EIAllam, Migahed, et al., 1982LBLHLM
C6H5+9.46 ± 0.05NO2PIMatyuk, Potapov, et al., 1979LLK
C6H5+11.9 ± 0.1NO2EIBrown, 1970RDSH
C6H5+12.16?EIHowe and Williams, 1969RDSH
C6H5O+10.68 ± 0.35NOCADKatritzky, Watson, et al., 1990LL
C6H5O+10.89 ± 0.04NOPIPECONishimura, Das, et al., 1986LBLHLM
C6H5O+10.98 ± 0.05NOPIPECOPanczel and Baer, 1984T = 298K; LBLHLM
C6H5O+11.12 ± 0.05NOPIPECOPanczel and Baer, 1984T = 0K; LBLHLM
C6H5O+10.95 ± 0.05NOPIMatyuk, Potapov, et al., 1979LLK
C6H5O+10.4 ± 0.1NOEIBrown, 1970RDSH
NO+10.89 ± 0.04C6H5OPIPECONishimura, Das, et al., 1986LBLHLM
NO+11.18 ± 0.05C6H5OPIPECOPanczel and Baer, 1984T = 0K; LBLHLM
NO+11.04 ± 0.05C6H5OPIPECOPanczel and Baer, 1984T = 298K; LBLHLM

De-protonation reactions

C6H4NO2- + Hydrogen cation = Benzene, nitro-

By formula: C6H4NO2- + H+ = C6H5NO2

Quantity Value Units Method Reference Comment
Δr377.0 ± 3.1kcal/molG+TSCheng and Grabowski, 1989gas phase; between EtOH, iPrOH; B
Δr354.2 ± 3.1kcal/molG+TSMeot-ner and Kafafi, 1988gas phase; acidity stronger than all levels of computation by 25 kcal/mol; B
Quantity Value Units Method Reference Comment
Δr369.3 ± 3.0kcal/molIMRBCheng and Grabowski, 1989gas phase; between EtOH, iPrOH; B
Δr346.5 ± 3.0kcal/molIMRBMeot-ner and Kafafi, 1988gas phase; acidity stronger than all levels of computation by 25 kcal/mol; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Tanya L. Myers, Russell G. Tonkyn, Ashley M. Oeck, Tyler O. Danby, John S. Loring, Matthew S. Taubman, Stephen W. Sharpe, Jerome C. Birnbaum, and Timothy J. Johnson

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-5496
NIST MS number 227768

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedC78, Branched paraffin130.1049.4Dallos, Sisak, et al., 2000He; Column length: 3.3 m
PackedOV-101100.1058.3Righezza, Hassani, et al., 1996N2, Chromosorb G HP; Column length: 5. m
PackedOV-101110.1066.7Righezza, Hassani, et al., 1996N2, Chromosorb G HP; Column length: 5. m
PackedOV-10180.1049.2Righezza, Hassani, et al., 1996N2, Chromosorb G HP; Column length: 5. m
PackedOV-10190.1057.4Righezza, Hassani, et al., 1996N2, Chromosorb G HP; Column length: 5. m
PackedOV-101120.1068.5Hassani and Meklati, 1992N2, Chromosorb G HP; Column length: 5. m
PackedC78, Branched paraffin130.1048.2Reddy, Dutoit, et al., 1992Chromosorb G HP; Column length: 3.3 m
PackedApolane130.1054.Dutoit, 1991Column length: 3.7 m
PackedSE-30180.1103.Oszczapowicz, Osek, et al., 1985N2, Chromosorb A AW; Column length: 3. m
PackedSE-30180.1103.Oszczapowicz, Osek, et al., 1984N2, Chromosorb W AW; Column length: 3. m
PackedSE-30150.1085.Tiess, 1984Ar, Gas Chrom Q (80-100 mesh); Column length: 3. m
PackedSqualane100.1075.Evans and Newton, 1976N2, Chromosorb G; Column length: 2. m
PackedSqualane100.1075.Evans and Newton, 1976N2, Chromosorb G; Column length: 2. m
PackedSqualane100.1076.Evans and Newton, 1976N2, Chromosorb G; Column length: 2. m
PackedSE-30204.1114.Mitchell and Vernon, 1972 
PackedApiezon L100.1071.Brown, Chapman, et al., 1968N2, DCMS-treated Chromosorb W; Column length: 2.3 m
PackedApiezon L130.1088.Wehrli and Kováts, 1959Celite; Column length: 2.25 m

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-51100.00Hobbs and Conde, 199230. m/0.25 mm/0.25 μm, 5. K/min; Tstart: 40. C; Tend: 300. C
CapillaryDB-51100.00Hobbs and Conde, 199230. m/0.25 mm/0.25 μm, 5. K/min; Tstart: 40. C; Tend: 300. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5MS1088.8Andriamaharavo, 201430. m/0.25 mm/0.25 μm, He; Program: 60C (1 min) => 5 C/min => 210C => 10 C/min => 280C (15 min)

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedSE-3090.1076.Zenkevich and Ivleva, 2011Nitrogen, Inerton N (80-100 mesh); Column length: 1.5 m
PackedSE-3090.1081.Zenkevich and Ivleva, 2011Nitrogen, Inerton N (80-100 mesh); Column length: 1.5 m
CapillaryPolydimethyl siloxane105.1059.Tello, Lebron-Aguilar, et al., 2009 
CapillaryPolydimethyl siloxane75.1046.Tello, Lebron-Aguilar, et al., 2009 
CapillaryPolydimethyl siloxane90.1052.Tello, Lebron-Aguilar, et al., 2009 
CapillaryMethyl Silicone100.1056.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone120.1066.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone140.1076.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone80.1047.Lebrón-Aguilar, Quintanilla-López, et al., 2007 

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-1011059.Zenkevich and Tsibulskaya, 1989Helium, 75. C @ 0. min, 6. K/min, 220. C @ 0. min; Column length: 54. m; Column diameter: 0.26 mm
CapillaryOV-1011062.Zenkevich and Tsibulskaya, 1989Helium, 75. C @ 0. min, 6. K/min, 220. C @ 0. min; Column length: 54. m; Column diameter: 0.26 mm
CapillarySE-541084.Harland, Cumming, et al., 1986He, 50. C @ 2. min, 8. K/min, 250. C @ 12. min; Column length: 25. m; Column diameter: 0.32 mm

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedSE-301062.Zenkevich and Ivleva, 2011Nitrogen, Inerton N (80-100 mesh); Column length: 1.5 m; Program: not specified
CapillaryOV-1011068.Ebrahimi and Hadjmohammadi, 2006Program: not specified
CapillaryMethyl Silicone1062.Zenkevich and Tsibulskaya, 1997Program: not specified
CapillarySPB-11046.Vezzani, Moretti, et al., 1994Column length: 30. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1011057.Zenkevich and Malamakhov, 1987He; Column length: 50. m; Column diameter: 0.24 mm; Program: not specified
CapillaryOV-11046.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.1046.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySuperox 0.6; Carbowax 20M1683.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.1683.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified

Lee's RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5MS180.05Chen, Keeran, et al., 200230. m/0.25 mm/0.5 μm, 40. C @ 1. min, 10. K/min; Tend: 310. C

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Lebedeva, Katin, et al., 1971
Lebedeva, N.D.; Katin, Y.A.; Akhmedova, G.Y., Standard enthalpy of formation of nitrobenzene, Russ. J. Phys. Chem. (Engl. Transl.), 1971, 45, 1192-1193. [all data]

Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P., Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]

Chickos, Hosseini, et al., 1995
Chickos, James S.; Hosseini, Sarah; Hesse, Donald G., Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times, Thermochimica Acta, 1995, 249, 41-62, https://doi.org/10.1016/0040-6031(95)90670-3 . [all data]

Kusano and Wadso, 1971
Kusano, K.; Wadso, I., Enthalpy of vaporization of some organic substances at 25.0°C and test of calorimeter, Bull. Chem. Soc. Jpn., 1971, 44, 1705-17. [all data]

Kusano and Wadsö, 1971
Kusano, Kazuhito; Wadsö, Ingemar, Enthalpy of Vaporization of Some Organic Substances at 25.0°C and Test of Calorimeter, Bull. Chem. Soc. Jpn., 1971, 44, 6, 1705-1707, https://doi.org/10.1246/bcsj.44.1705 . [all data]

Lebedeva, Katin, et al., 1971, 2
Lebedeva, N.D.; Katin, Y.A.; Akhmedova, G.Y., Russ. J. Phys. Chem., 1971, 45, 8, 1192. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Dykyj, 1972
Dykyj, J., Petrochemia, 1972, 12, 1, 13. [all data]

Lynch and Wilke, 1960
Lynch, E.J.; Wilke, C.R., Vapor Pressure of Nitrobenzene at Low Temperatures., J. Chem. Eng. Data, 1960, 5, 3, 300-300, https://doi.org/10.1021/je60007a018 . [all data]

Zaraiskii, 1985
Zaraiskii, A.P., Zh. Fiz. Khim., 1985, 59, 2087. [all data]

Sklyarenko, Markin, et al., 1958
Sklyarenko, S.I.; Markin, B.I.; Belyaeva, L.B., Zh. Fiz. Khim., 1958, 32, 1916. [all data]

Oliver and Grisard, 1952
Oliver, George D.; Grisard, J.W., Thermal Data, Vapor Pressure and Entropy of Bromine Trifluoride 1, J. Am. Chem. Soc., 1952, 74, 11, 2705-2707, https://doi.org/10.1021/ja01131a003 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Toral and Moles, 1933
Toral, M.T.; Moles, E., An. R. Soc. Esp. Fis. Quim., 1933, 31, 735. [all data]

Brown, 1952
Brown, I., Liquid-Vapour Equilibria. III. The Systems Benzene-n-Heptane, n-Hexane-Chlorobenzene, and cycloHexane-Nitrobenzene, Aust. J. Sci. Res. Ser. A:, 1952, 5, 530-540. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Pacor, 1967
Pacor, P., Applicability of the DuPont 900 DTA apparatus in quantitative differential thermal analysis, Anal. Chim. Acta, 1967, 37, 200-208. [all data]

Parks, Todd, et al., 1936
Parks, G.S.; Todd, S.S.; Moore, W.A., Thermal data on organic compounds. XVI. Some heat capacity, entropy and free energy data for typical benzene derivatives and heterocyclic compounds, J. Am. Chem. Soc., 1936, 58, 398-401. [all data]

Chowdhury and Kebarle, 1986
Chowdhury, S.; Kebarle, P., Role of Binding Energies in A-.B and A.B- Complexes in the Kinetics of Gas Phase Electron Transfer Reactions:A- + B = A + B- Involving Perfluoro Compounds: SF6, C6F11CF3, J. Chem. Phys., 1986, 85, 9, 4989, https://doi.org/10.1063/1.451687 . [all data]

Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P., Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-, J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014 . [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Cheng and Grabowski, 1989
Cheng, X.; Grabowski, J.J., Gas-phase Acidity of Nitrobenzene from Flowing Afterglow Bracketing Studies, Rapid Commun. Mass Spectrom., 1989, 3, 2, 34-36, https://doi.org/10.1002/rcm.1290030207 . [all data]

Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A., Carbon Acidities of Aromatic Compounds, J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003 . [all data]

Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S., Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems, J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026 . [all data]

Grimsrud, Chowdhury, et al., 1986
Grimsrud, E.P.; Chowdhury, S.; Kebarle, P., Gas Phase Reactions of NO2- with Nitrobenzenes and Quinones. Electron Transfer, Clusters, and Formation of Phenoxide and Quinoxide Negative Ions. Use of NO2 as a NICI Reagent Gas., Int. J. Mass Spectrom. Ion Proc., 1986, 68, 1-2, 57, https://doi.org/10.1016/0168-1176(86)87068-9 . [all data]

El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M., Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors, J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017 . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Desfrancois, Periquet, et al., 1999
Desfrancois, C.; Periquet, V.; Lyapustina, S.A.; Lippa, T.P.; Robinson, D.W.; Bowen, K.H.; Nonaka, H.; Compton, Electron Binding to Valence and Multipole states of Molecules: Nitrobenzene, para- and meta-dinitrobenzenes, J. Chem. Phys., 1999, 111, 10, 4569, https://doi.org/10.1063/1.479218 . [all data]

Chowdhury, Heinis, et al., 1986
Chowdhury, S.; Heinis, T.; Grimsrud, E.P.; Kebarle, P., Entropy Changes and Electron Affinities from Gas-Phase Electron Transfer Equilibria: A- + B = A + B-, J. Phys. Chem., 1986, 90, 12, 2747, https://doi.org/10.1021/j100403a037 . [all data]

Chen, Wiley, et al., 1994
Chen, E.C.M.; Wiley, J.R.; Batten, C.F.; Wentworth, W.E., Determination of the Electron Affinities of Molecules Using Negative Ion Mass Spectrometry, J. Phys. Chem., 1994, 98, 1, 88, https://doi.org/10.1021/j100052a016 . [all data]

Chen, Chen, et al., 1992
Chen, E.C.M.; Chen, E.S.; Milligan, M.S.; Wentworth, W.E.; Wiley, J.R., Experimental Determination of the Electron Affinities of Nitrobenzene, Nitrotoluenes, Pentafluoronitrobenzene, and Isotopic Nitrobenzenes an, J. Phys. Chem., 1992, 96, 5, 2385, https://doi.org/10.1021/j100184a069 . [all data]

Fukuda and McIver, 1985
Fukuda, E.K.; McIver, R.T., Jr., Relative electron affinities of substituted benzophenones, nitrobenzenes, and quinones. [Anchored to EA(SO2) from 74CEL/BEN], J. Am. Chem. Soc., 1985, 107, 2291. [all data]

Mock and Grimsrud, 1989
Mock, R.S.; Grimsrud, E.P., Gas-Phase Electron Photodetachment Spectroscopy of the Molecular Anions of Nitroaromatic Hydrocarbons at Atmospheric Pressure, J. Am. Chem. Soc., 1989, 111, 8, 2861, https://doi.org/10.1021/ja00190a020 . [all data]

Henglein and Muccini, 1959
Henglein, A.; Muccini, G.A., Negative Ion-Molecule Reactions, J. Chem. Phys., 1959, 31, 5, 1426, https://doi.org/10.1063/1.1730618 . [all data]

Lifshitz, Tiernan, et al., 1973
Lifshitz, C.; Tiernan, T.O.; Hughes, B.M., Electron affinities from endothermic negative-ion charge transfer reactions. IV. SF6, selected fluorocarbons, and other polyatomic molecules, J. Chem. Phys., 1973, 59, 3182. [all data]

Compton, Christophorou, et al., 1966
Compton, R.N.; Christophorou, L.G.; Hurst, G.S.; Reinhardt, P.W., Nondissociative Electron Capture in Complex Molecules and Negative Ion Lifetimes, J. Chem. Phys., 1966, 45, 12, 4634, https://doi.org/10.1063/1.1727547 . [all data]

Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H., Photoelectron spectra of acenes. Electronic structure and substituent effects, Pure Appl. Chem., 1983, 55, 289. [all data]

Katsumata, Shiromaru, et al., 1982
Katsumata, S.; Shiromaru, H.; Mitani, K.; Iwata, S.; Kimura, K., Photoelectron angular distribution and assignments of photoelectron spectra of nitrogen dioxide, nitromethane and nitrobenzene, Chem. Phys., 1982, 69, 423. [all data]

Allam, Migahed, et al., 1982
Allam, S.H.; Migahed, M.D.; El-Khodary, A., Electron impact ionization and dissociation of deuterated and non-deuterated methanol, methyl cyanide, nitromethane and nitrobenzene, Egypt. J. Phys., 1982, 13, 167. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Allam, Migahed, et al., 1981
Allam, S.H.; Migahed, M.D.; El Khodary, A., Electron impact study of nitrobenzene and nitromethane, Int. J. Mass Spectrom. Ion Phys., 1981, 39, 117. [all data]

Matyuk, Potapov, et al., 1979
Matyuk, V.M.; Potapov, V.K.; Prokhoda, A.L., Photoexcitation and photoionisation of nitro- derivatives of benzene and toluene, Russ. J. Phys. Chem., 1979, 53, 538. [all data]

Behan, Johnstone, et al., 1976
Behan, J.M.; Johnstone, R.A.W.; Bentley, T.W., An evaluation of empirical methods for calculating the ionization potentials of substituted benzenes, Org. Mass Spectrom., 1976, 11, 207. [all data]

McLafferty, Bente, et al., 1973
McLafferty, F.W.; Bente, P.F., III; Kornfeld, R.; Tsai, S.-C.; Howe, I., Collisional activation spectra of organic ions, J. Am. Chem. Soc., 1973, 95, 2120. [all data]

Khalil, Meeks, et al., 1973
Khalil, O.S.; Meeks, J.L.; McGlynn, S.P., Electronic spectroscopy of highly polar aromatics. VII. Photoelectron spectra of nitroanilines, J. Am. Chem. Soc., 1973, 95, 5876. [all data]

Rabalais, 1972
Rabalais, J.W., Photoelectron spectroscopic investigation of the electronic structure of nitromethane and nitrobenzene, J. Chem. Phys., 1972, 57, 960. [all data]

Kotov and Potapov, 1972
Kotov, B.V.; Potapov, V.K., Ionization potentials of strong organic electron acceptors, Khim. Vys. Energ., 1972, 6, 375. [all data]

Johnstone and Mellon, 1972
Johnstone, R.A.W.; Mellon, F.A., Electron-impact ionization and appearance potentials, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1209. [all data]

Johnstone, Mellon, et al., 1971
Johnstone, R.A.W.; Mellon, F.A.; Ward, S.D., On-line computer methods used in conjunction with the measurement of ionization appearance potentials, Adv. Mass Spectrom., 1971, 5, 334. [all data]

Johnstone, Mellon, et al., 1970
Johnstone, R.A.W.; Mellon, F.A.; Ward, S.D., Online acquisition of ionization efficiency data, Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 241. [all data]

Buchs, 1970
Buchs, A., Etude par spectrometrie de masse de l'ionisation de benzonitriles, de phenylacetonitriles et de N,N-dimethylanilines substitues, Helv. Chim. Acta, 1970, 53, 2026. [all data]

Brown, 1970
Brown, P., Kinetic studies in mass spectrometry. IX. Competing [M-NO2] and [M-NO] reactions in substituted nitrobenzenes. Approximate activation energies from ionization and appearance potentials, Org. Mass Spectrom., 1970, 4, 533. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Palmer, Moyes, et al., 1979
Palmer, M.H.; Moyes, W.; Spiers, M.; Ridyard, J.N.A., The electronic structure of substituted benzenes; ab initio calculations and photoelectron spectra for nitrobenzene, the nitrotoluenes, dinitrobenzenes and fluoronitrobenzenes, J. Mol. Struct., 1979, 55, 243. [all data]

Kobayashi, 1978
Kobayashi, T., A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes, Phys. Lett., 1978, 69, 105. [all data]

Rao, 1975
Rao, C.N.R., Lone-pair ionization bands of chromophores in the photoelectron spectra of organic molecules, Indian J. Chem., 1975, 13, 950. [all data]

Kobayashi and Nagakura, 1974
Kobayashi, T.; Nagakura, S., Photoelectron spectra of substituted benzenes, Bull. Chem. Soc. Jpn., 1974, 47, 2563. [all data]

Gol'denfel'd, Korostyshevskii, et al., 1973
Gol'denfel'd, I.V.; Korostyshevskii, I.Z.; Mischanchuk, B.G.; Pokrovskii, V.A., Determination of ionization potentials of atoms and molecules using a field mass spectrometer equipped with an energy analyzer, Dokl. Akad. Nauk SSSR, 1973, 213, 626. [all data]

Kobayashi and Nagakura, 1972
Kobayashi, T.; Nagakura, S., Photoelectron spectra of nitro-compounds, Chem. Lett., 1972, 903. [all data]

Baker, May, et al., 1968
Baker, A.D.; May, D.P.; Turner, D.W., Molecular photoelectron spectroscopy. Part VII. The vertical ionisation potentials of benzene and some of its monosubstituted and 1,4-disubstituted derivatives, J. Chem. Soc. B, 1968, 22. [all data]

Nishimura, Das, et al., 1986
Nishimura, T.; Das, P.R.; Meisels, G.G., On the dissociation dynamics of energy-selected nitrobenzene ion, J. Chem. Phys., 1986, 84, 6190. [all data]

Panczel and Baer, 1984
Panczel, M.; Baer, T., A photoelectron photoion coincidence (PEPICO) study of fragmentation rates and linetic energy release distributions in nitrobenzene, Int. J. Mass Spectrom. Ion Processes, 1984, 58, 43. [all data]

Katritzky, Watson, et al., 1990
Katritzky, A.R.; Watson, C.H.; Dega-Szafran, Z.; Eyler, J.R., Collisionally activated dissociation of N-alkylpyridinium cations to pyridine and alkyl cations in the gas phase, J. Am. Chem. Soc., 1990, 112, 2471. [all data]

Howe and Williams, 1969
Howe, I.; Williams, D.H., Calculation and qualitative predictions of mass spectra. Mono- and paradisubstituted benzenes, J. Am. Chem. Soc., 1969, 91, 7137. [all data]

Dallos, Sisak, et al., 2000
Dallos, A.; Sisak, A.; Kulcsár, Z.; Kováts, E., Pair-wise interactions by gas chromatography VII. Interaction free enthalpies of solutes with secondary alcohol groups, J. Chromatogr. A, 2000, 904, 2, 211-242, https://doi.org/10.1016/S0021-9673(00)00908-0 . [all data]

Righezza, Hassani, et al., 1996
Righezza, M.; Hassani, A.; Meklati, B.Y.; Chrétien, J.R., Quantitative structure-retention relationships (QSRR) of congeneric aromatics series studied on phenyl OV phases in gas chromatography, J. Chromatogr. A, 1996, 723, 1, 77-91, https://doi.org/10.1016/0021-9673(95)00816-0 . [all data]

Hassani and Meklati, 1992
Hassani, A.; Meklati, B.Y., Gas chromatographic behaviour of monosubstituted benzenes, benzaldehydes and acetophenones on OV polymethylphenyl-silicone stationary phases, Chromatographia, 1992, 33, 5/6, 267-271, https://doi.org/10.1007/BF02276193 . [all data]

Reddy, Dutoit, et al., 1992
Reddy, K.S.; Dutoit, J.-Cl.; Kovats, E. sz., Pair-wise interactions by gas chromatography. I. Interaction free enthalpies of solutes with non-associated primary alcohol groups, J. Chromatogr., 1992, 609, 1-2, 229-259, https://doi.org/10.1016/0021-9673(92)80167-S . [all data]

Dutoit, 1991
Dutoit, J., Gas chromatographic retention behaviour of some solutes on structurally similar polar and non-polar stationary phases, J. Chromatogr., 1991, 555, 1-2, 191-204, https://doi.org/10.1016/S0021-9673(01)87179-X . [all data]

Oszczapowicz, Osek, et al., 1985
Oszczapowicz, J.; Osek, J.; Ciszkowski, K.; Krawczyk, W.; Ostrowski, M., Retention Indices of Dimethylbenzamidines and Benzylideneamines on a Non-Polar Column, J. Chromatogr., 1985, 330, 79-85, https://doi.org/10.1016/S0021-9673(01)81964-6 . [all data]

Oszczapowicz, Osek, et al., 1984
Oszczapowicz, J.; Osek, J.; Dolecka, E., Retention indices of dimethylformamidines, dimethylacetamidines and tetramethylguanidines on a non-polar column, J. Chromatogr., 1984, 315, 95-100, https://doi.org/10.1016/S0021-9673(01)90727-7 . [all data]

Tiess, 1984
Tiess, D., Gaschromatographische Retentionsindices von 125 leicht- bis mittelflüchtigen organischen Substanzen toxikologisch-analytischer Relevanz auf SE-30, Wiss. Z. Wilhelm-Pieck-Univ. Rostock Math. Naturwiss. Reihe, 1984, 33, 6-9. [all data]

Evans and Newton, 1976
Evans, M.B.; Newton, R., Inverse gas chromatography in the study of polymer degradation. Part I. Oxidation of squalene as a model for the oxidative degradation of natural rubber, Chromatographia, 1976, 9, 11, 561-566, https://doi.org/10.1007/BF02275963 . [all data]

Mitchell and Vernon, 1972
Mitchell, P.T.; Vernon, F., Gas-Liquid Chromatography of Nitrophenols and Methyl Derivatives, J. Chromatogr., 1972, 65, 3, 487-491, https://doi.org/10.1016/S0021-9673(00)84994-8 . [all data]

Brown, Chapman, et al., 1968
Brown, I.; Chapman, I.L.; Nicholson, G.J., Gas chromatography of polar solutes in electron acceptor stationary phases, Aust. J. Chem., 1968, 21, 5, 1125-1141, https://doi.org/10.1071/CH9681125 . [all data]

Wehrli and Kováts, 1959
Wehrli, A.; Kováts, E., Gas-chromatographische Charakterisierung ogranischer Verbindungen. Teil 3: Berechnung der Retentionsindices aliphatischer, alicyclischer und aromatischer Verbindungen, Helv. Chim. Acta, 1959, 7, 7, 2709-2736, https://doi.org/10.1002/hlca.19590420745 . [all data]

Hobbs and Conde, 1992
Hobbs, J.R.; Conde, E.P., Gas chromatographic retention indices of explosives and nitro-compounds in Advances in Analysis and Detection of Explosives: Proceedings of the 4th International Symposium on Analysis of Detection of Explosives, September 7-10, 1992, Jerusalem Israel, J. Yinon, ed(s)., Kluwer Academic Publishers, Netherlands, 1992, 153-164. [all data]

Andriamaharavo, 2014
Andriamaharavo, N.R., Retention Data. NIST Mass Spectrometry Data Center., NIST Mass Spectrometry Data Center, 2014. [all data]

Zenkevich and Ivleva, 2011
Zenkevich, I.G.; Ivleva, E.S., Gas-chromatographic retention indices in dependence on the ratio of analytes to reference compounds, Rus. J. Anal. Chem., 2011, 66, 1, 44-52, https://doi.org/10.1134/S1061934811010175 . [all data]

Tello, Lebron-Aguilar, et al., 2009
Tello, A.M.; Lebron-Aguilar, R.; Quintanilla-Lopez, J.E.; Santiuste, J.M., Isothermal retention indices on poly93-cyanopropylmethyl)siloxane stationary phases, J. Chromatogr. A, 2009, 1216, 10, 1630-1639, https://doi.org/10.1016/j.chroma.2008.10.025 . [all data]

Lebrón-Aguilar, Quintanilla-López, et al., 2007
Lebrón-Aguilar, R.; Quintanilla-López, J.E.; Tello, A.M.; Santiuste, J.M., Isothermal retention indices on poly (3,3,3-trifluoropropylmethylsiloxane) stationary phases, J. Chromatogr. A, 2007, 1160, 1-2, 276-288, https://doi.org/10.1016/j.chroma.2007.05.025 . [all data]

Zenkevich and Tsibulskaya, 1989
Zenkevich, I.G.; Tsibulskaya, I.A., Influence of Relative Amounts of Mixture Components on the Precision of Measurements of Gas Chromatographic Retention Indices, Zh. Anal. Khim. (Rus.), 1989, 44, 1, 90-96. [all data]

Harland, Cumming, et al., 1986
Harland, B.J.; Cumming, R.I.; Gillings, E., The Kovats indexes of some organic micropollutants on an SE54 capillary column, EUR, I Org. Micropollut. Aquat. Environ., 1986, EUR 10388, 123-127. [all data]

Ebrahimi and Hadjmohammadi, 2006
Ebrahimi, P.; Hadjmohammadi, M.R., Simultaneous modeling of the Kovats retention indices on phenyl OV stationary phases with different polarity using MLR and ANN, QSAR Comb. Sci., 2006, 25, 10, 836-845, https://doi.org/10.1002/qsar.200530145 . [all data]

Zenkevich and Tsibulskaya, 1997
Zenkevich, I.G.; Tsibulskaya, I.A., Group identification of organic compounds by gas-chromatographic retention indices and partition coefficients in the hexane-nitromethane system, Zh. Fiz. Khim., 1997, 71, 2, 341-346. [all data]

Vezzani, Moretti, et al., 1994
Vezzani, S.; Moretti, P.; Castello, G., Fast and Accurate Method for the Automatic Prediction of Programmed-Temperature Retention Times, J. Chromatogr. A, 1994, 677, 2, 331-343, https://doi.org/10.1016/0021-9673(94)80161-4 . [all data]

Zenkevich and Malamakhov, 1987
Zenkevich, I.G.; Malamakhov, A.C., Evaluation of Molecular Weights of Organic Compounds based on Retention Parameters at Chromato-Spectral Analysys. Additional Criterion of Molecular Ions' Identification, Vestn. St. Petersb. Univ. Ser. 4: Fiz. Khim, 1987, 2, 101-106. [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Chen, Keeran, et al., 2002
Chen, P.H.; Keeran, W.S.; Van Ausdale, W.A.; Schindler, D.R.; Roberts, D.W., Application of Lee retention indices to the confirmation of tentatively identified compounds from GC/MS analysis of environmental samples, Technical paper, Analytical Services Division, Environmental ScienceEngineering, Inc, PO Box 1703, Gainesville, FL 32602, 2002, 11. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References