Cyclopentanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C5H9O- + Hydrogen cation = Cyclopentanol

By formula: C5H9O- + H+ = C5H10O

Quantity Value Units Method Reference Comment
Δr383.0 ± 4.6kcal/molD-EAAlconcel and Continetti, 2002gas phase; derived acidity seems ca. 10 kcal/mol too weak, and EA likewise; B
Quantity Value Units Method Reference Comment
Δr366.9 ± 1.1kcal/molN/AGarver, Yang, et al., 2011gas phase; B
Δr374.9 ± 4.7kcal/molH-TSAlconcel and Continetti, 2002gas phase; derived acidity seems ca. 10 kcal/mol too weak, and EA likewise; B

Cyclopentanone + Hydrogen = Cyclopentanol

By formula: C5H8O + H2 = C5H10O

Quantity Value Units Method Reference Comment
Δr-14.40 ± 0.16kcal/molCmWiberg, Crocker, et al., 1991liquid phase; ALS
Δr-12.25 ± 0.15kcal/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -12.50 ± 0.06 kcal/mol; At 355 K; ALS

Acetic acid, trifluoro-, anhydride + Cyclopentanol = Trifluoroacetic acid, cyclopentyl ester + Trifluoroacetic acid

By formula: C4F6O3 + C5H10O = C7H9F3O2 + C2HF3O2

Quantity Value Units Method Reference Comment
Δr-22.219 ± 0.056kcal/molCacWiberg, Wasserman, et al., 1985liquid phase; solvent: Trifluoroactic acid; Trifluoroacetolysis; ALS

Cyclopentanol = Cyclopentanone + Hydrogen

By formula: C5H10O = C5H8O + H2

Quantity Value Units Method Reference Comment
Δr13.1 ± 1.1kcal/molEqkFedoseenko, Yursha, et al., 1984gas phase; ALS
Δr12.26kcal/molEqkCubberley and Mueller, 1946gas phase; ALS

Cyclohexanone + Cyclopentanol = Cyclohexanol + Cyclopentanone

By formula: C6H10O + C5H10O = C6H12O + C5H8O

Quantity Value Units Method Reference Comment
Δr-2.77 ± 0.41kcal/molEqkFedoseenko, Yursha, et al., 1984gas phase; ALS

Gas phase ion energetics data

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C5H10O+ (ion structure unspecified)

Proton affinity at 298K

Proton affinity (kcal/mol) Reference Comment
191. ± 1.Cao and Holmes, 2001MM

Ionization energy determinations

IE (eV) Method Reference Comment
9.72PITraeger, 1985LBLHLM
9.58 ± 0.06EIHolmes, Yuan, et al., 1977LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H5O+9.72C2H5PITraeger, 1985LBLHLM
C3H6O+9.98C2H4EIHolmes and Lossing, 1980LLK
C5H8+9.66 ± 0.06H2OEIHolmes, Yuan, et al., 1977LLK
C5H8+9.49H2OEILewis and Hamill, 1970RDSH
H2O+13.23C5H8EILewis and Hamill, 1970RDSH

De-protonation reactions

C5H9O- + Hydrogen cation = Cyclopentanol

By formula: C5H9O- + H+ = C5H10O

Quantity Value Units Method Reference Comment
Δr383.0 ± 4.6kcal/molD-EAAlconcel and Continetti, 2002gas phase; derived acidity seems ca. 10 kcal/mol too weak, and EA likewise; B
Quantity Value Units Method Reference Comment
Δr366.9 ± 1.1kcal/molN/AGarver, Yang, et al., 2011gas phase; B
Δr374.9 ± 4.7kcal/molH-TSAlconcel and Continetti, 2002gas phase; derived acidity seems ca. 10 kcal/mol too weak, and EA likewise; B

References

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Alconcel and Continetti, 2002
Alconcel, L.S.; Continetti, R.E., Dissociation dynamics and stability of cyclopentoxy and cyclopentoxide, Chem. Phys. Lett., 2002, 366, 5-6, 642-649, https://doi.org/10.1016/S0009-2614(02)01633-0 . [all data]

Garver, Yang, et al., 2011
Garver, J.M.; Yang, Z.B.; Kato, S.; Wren, S.W.; Vogelhuber, K.M.; Lineberger, W.C.; Bierbaum, V.M., Gas Phase Reactions of 1,3,5-Triazine: Proton Transfer, Hydride Transfer, and Anionic sigma-Adduct Formation, J. Am. Soc. Mass Spectrom., 2011, 22, 7, 1260-1272, https://doi.org/10.1007/s13361-011-0133-9 . [all data]

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Conn, Kistiakowsky, et al., 1939
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VIII. Some further hydrogenations, including those of some acetylenes, J. Am. Chem. Soc., 1939, 61, 1868-1876. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Wiberg, Wasserman, et al., 1985
Wiberg, K.B.; Wasserman, D.J.; Martin, E.J.; Murcko, M.A., Enthalpies of hydration of alkenes. 3. Cycloalkenes, J. Am. Chem. Soc., 1985, 107, 6019-6022. [all data]

Fedoseenko, Yursha, et al., 1984
Fedoseenko, V.I.; Yursha, I.A.; Kabo, G.Ya., Equilibrium of cyclopentanol dehydrogenation and hydrogen disproportionation in the cyclopentanol-cyclohexanone system, Dokl. Akad. Nauk BSSR, 1984, 28, 1109-1112. [all data]

Cubberley and Mueller, 1946
Cubberley, A.H.; Mueller, M.B., Equilibrium studies on the dehydrogenation of primary and secondary alcohols. I. 2-Butanol, 2-octanol, cyclopentanol and benzyl alcohol, J. Am. Chem. Soc., 1946, 68, 1149-1151. [all data]

Cao and Holmes, 2001
Cao, J.; Holmes, J.L., Determination of the proton affinities of secondary alcohols from the dissocation of proton-bound molecular trios, European J. Mass Spectrom., 2001, 7, 243-247. [all data]

Traeger, 1985
Traeger, J.C., Heat of formation for the propanoyl cation by photoionization mass spectrometry, Org. Mass Spectrom., 1985, 20, 223. [all data]

Holmes, Yuan, et al., 1977
Holmes, J.L.; Yuan, D.; Rye, R.T.B., Metastable ion studies VII-Loss of water from the molecular ion of cyclopentanol, Org. Mass Spectrom., 1977, 12, 254. [all data]

Holmes and Lossing, 1980
Holmes, J.L.; Lossing, F.P., Gas-phase heats of formation of keto and enol ions of carbonyl compounds., J. Am. Chem. Soc., 1980, 102, 1591. [all data]

Lewis and Hamill, 1970
Lewis, D.; Hamill, W.H., Excited states of neutral molecular fragments from appearance potentials by electron impact in a mass spectrometer, J. Chem. Phys., 1970, 52, 6348. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References