Cyclopentane, methyl-
- Formula: C6H12
- Molecular weight: 84.1595
- IUPAC Standard InChIKey: GDOPTJXRTPNYNR-UHFFFAOYSA-N
- CAS Registry Number: 96-37-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Methylcyclopentane; UN 2298
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -25.33 | kcal/mol | N/A | Good and Smith, 1969 | Value computed using ΔfHliquid° value of -137.7±0.7 kj/mol from Good and Smith, 1969 and ΔvapH° value of 31.7 kj/mol from Prosen, Johnson, et al., 1946.; DRB |
ΔfH°gas | -25.50 ± 0.20 | kcal/mol | Ccb | Prosen, Johnson, et al., 1946 | ALS |
ΔfH°gas | -25.84 | kcal/mol | N/A | Moore, Renquist, et al., 1940 | Value computed using ΔfHliquid° value of -139.8±1.7 kj/mol from Moore, Renquist, et al., 1940 and ΔvapH° value of 31.7 kj/mol from Prosen, Johnson, et al., 1946.; DRB |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
10.35 | 50. | Thermodynamics Research Center, 1997 | p=1 bar. Selected values of S(T) and Cp(T) are in close agreement with those calculated by [ Scott D.W., 1960] at low temperatures. Discrepancies increase up to 1.8 J/mol*K at 1000-1500 K.; GT |
12.67 | 100. | ||
14.97 | 150. | ||
17.87 | 200. | ||
23.81 | 273.15 | ||
26.17 | 298.15 | ||
26.36 | 300. | ||
36.21 | 400. | ||
45.15 | 500. | ||
52.65 | 600. | ||
58.94 | 700. | ||
64.20 | 800. | ||
68.69 | 900. | ||
72.51 | 1000. | ||
75.79 | 1100. | ||
78.61 | 1200. | ||
81.02 | 1300. | ||
83.13 | 1400. | ||
84.94 | 1500. | ||
88.53 | 1750. | ||
91.09 | 2000. | ||
93.00 | 2250. | ||
94.43 | 2500. | ||
95.53 | 2750. | ||
96.39 | 3000. |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
29.694 ± 0.060 | 333.20 | McCullough J.P., 1959 | GT |
32.555 ± 0.065 | 362.55 | ||
36.365 ± 0.072 | 402.35 | ||
39.486 ± 0.079 | 436.25 | ||
42.584 ± 0.086 | 471.05 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: H2 + C6H10 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -24.09 ± 0.15 | kcal/mol | Chyd | Rogers, Crooks, et al., 1987 | liquid phase |
ΔrH° | -24.22 ± 0.12 | kcal/mol | Chyd | Allinger, Dodziuk, et al., 1982 | liquid phase; solvent: Hexane |
ΔrH° | -23.01 ± 0.04 | kcal/mol | Chyd | Turner and Garner, 1958 | liquid phase; solvent: Acetic acid |
ΔrH° | -23.01 ± 0.04 | kcal/mol | Chyd | Turner and Garner, 1957 | liquid phase; solvent: Acetic acid |
ΔrH° | -23.01 ± 0.04 | kcal/mol | Chyd | Turner and Garner, 1957, 2 | liquid phase; solvent: Acetic acid |
By formula: H2 + C6H10 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -27.70 ± 0.23 | kcal/mol | Chyd | Allinger, Dodziuk, et al., 1982 | liquid phase; solvent: Hexane |
ΔrH° | -26.88 ± 0.02 | kcal/mol | Chyd | Turner and Garner, 1958 | liquid phase; solvent: Acetic acid |
ΔrH° | -26.85 ± 0.05 | kcal/mol | Chyd | Turner and Garner, 1957 | liquid phase; solvent: Acetic acid |
ΔrH° | -26.82 ± 0.08 | kcal/mol | Chyd | Turner and Garner, 1957, 2 | liquid phase; solvent: Acetic acid |
By formula: C6H10 + H2 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -27.58 ± 0.18 | kcal/mol | Chyd | Allinger, Dodziuk, et al., 1982 | liquid phase; solvent: Hexane |
By formula: C6H12 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -3.510 | kcal/mol | Eqk | Glasebrook and Lovell, 1939 | liquid phase; Heat of isomerization |
By formula: 2H2 + C6H8 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -63.1 ± 0.2 | kcal/mol | Chyd | Roth, Adamczak, et al., 1991 | liquid phase |
By formula: 3H2 + C6H6 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -78.9 ± 0.1 | kcal/mol | Chyd | Roth, Adamczak, et al., 1991 | liquid phase |
By formula: 2H2 + C6H8 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -52.9 ± 0.2 | kcal/mol | Chyd | Roth, Adamczak, et al., 1991 | liquid phase |
By formula: C6H12 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 4.32 ± 0.28 | kcal/mol | Eqk | Kabo and Andreevskii, 1973 | liquid phase |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C6H12+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.7 ± 0.1 | eV | N/A | N/A | L |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.62 ± 0.05 | EI | Holmes and Lossing, 1991 | LL |
9.85 | EQ | Lias, Ausloos, et al., 1976 | LLK |
10.42 | EI | Lossing and Traeger, 1975 | LLK |
10.34 ± 0.04 | PE | Rang, Paldoia, et al., 1974 | LLK |
10.45 | EI | Pottie, Harrison, et al., 1961 | RDSH |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C5H9+ | 10.42 | CH3 | EI | Lossing and Traeger, 1975, 2 | LLK |
C5H9+ | 10.73 | CH3 | EI | Lossing and Traeger, 1975 | LLK |
C5H9+ | 10.95 | CH3 | EI | Pottie, Harrison, et al., 1961 | RDSH |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Good and Smith, 1969
Good, W.D.; Smith, N.K.,
Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane,
J. Chem. Eng. Data, 1969, 14, 102-106. [all data]
Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D.,
Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH2 group for several homologous series of hydrocarbons,
J. Res. NBS, 1946, 37, 51-56. [all data]
Moore, Renquist, et al., 1940
Moore, G.E.; Renquist, M.L.; Parks, G.S.,
Thermal data on organic compounds. XX. Modern combustion data for two methylnonanes, methyl ethyl ketone, thiophene and six cycloparaffins,
J. Am. Chem. Soc., 1940, 62, 1505-1507. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Scott D.W., 1960
Scott D.W.,
Chemical thermodynamic properties of methylcyclopentane and 1-cis-3-dimethylcyclopentane,
J. Phys. Chem., 1960, 64, 906-908. [all data]
McCullough J.P., 1959
McCullough J.P.,
Thermodynamics of cyclopentane, methylcyclopentane and 1,cis-3-dimethylcyclopentane: verification of the concept of pseudorotation,
J. Am. Chem. Soc., 1959, 81, 5880-5883. [all data]
Rogers, Crooks, et al., 1987
Rogers, D.W.; Crooks, E.; Dejroongruang, K.,
Enthalpies of hydrogenation of the hexenes,
J. Chem. Thermodyn., 1987, 19, 1209-1215. [all data]
Allinger, Dodziuk, et al., 1982
Allinger, N.L.; Dodziuk, H.; Rogers, D.W.; Naik, S.N.,
Heats of hydrogenation and formation of some 5-membered ring compounds by molecular mechanics calculations and direct measurements,
Tetrahedron, 1982, 38, 1593-1597. [all data]
Turner and Garner, 1958
Turner, R.B.; Garner, R.H.,
Heats of hydrogenation. V. Relative stabilities in certain exocyclic-endocyclic olefin pairs,
J. Am. Chem. Soc., 1958, 80, 1424-1430. [all data]
Turner and Garner, 1957
Turner, R.B.; Garner, R.H.,
Heats of hydrogenation. V. Relative stabilities in certain exocyclic-endocyclic olefin pairs,
J. Am. Chem. Soc., 1957, 80, 1424-1430. [all data]
Turner and Garner, 1957, 2
Turner, R.B.; Garner, R.H.,
The stability relationship of 1-methyl-cyclopentene and methylenecyclopentane,
J. Am. Chem. Soc., 1957, 79, 253. [all data]
Glasebrook and Lovell, 1939
Glasebrook, A.L.; Lovell, W.G.,
The isomerization of cyclohexane and methylcyclopentane,
J. Am. Chem. Soc., 1939, 61, 1717-1720. [all data]
Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R.,
Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld,
Chem. Ber., 1991, 124, 2499-2521. [all data]
Kabo and Andreevskii, 1973
Kabo, G.Ya.; Andreevskii, D.N.,
Thermodynamic characteristics of the cyclohexane = methylcyclopentane isomerization,
Zh. Fiz. Khim., 1973, 47, 272-273. [all data]
Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P.,
Ionization energies of homologous organic compounds and correlation with molecular size,
Org. Mass Spectrom., 1991, 26, 537. [all data]
Lias, Ausloos, et al., 1976
Lias, S.G.; Ausloos, P.; Horvath, Z.,
Charge transfer reactions in alkane and cycloalkane systems. Estimated ionization potentials,
Int. J. Chem. Kinet., 1976, 8, 725. [all data]
Lossing and Traeger, 1975
Lossing, F.P.; Traeger, J.C.,
Stabilization in cyclopentadienyl, cyclopentenyl, and cyclopentyl cations,
J. Am. Chem. Soc., 1975, 97, 1579. [all data]
Rang, Paldoia, et al., 1974
Rang, S.; Paldoia, P.; Talvari, A.,
Ionization potentials of unsaturated hydrocarbons. 2. Mono-substituted cyclopentenes and cyclohexenes,
Eesti. NSV Tead. Akad. Toim., 1974, 354. [all data]
Pottie, Harrison, et al., 1961
Pottie, R.F.; Harrison, A.G.; Lossing, F.P.,
Free radicals by mass spectrometry. XXIV. Ionization potentials of cycloalkyl free radicals and cycloalkanes,
J. Am. Chem. Soc., 1961, 83, 3204. [all data]
Lossing and Traeger, 1975, 2
Lossing, F.P.; Traeger, J.C.,
Free radicals by mass spectrometry XLVI. Heats of formation of C5H7 and C5H9 radicals and cations.,
J. Am. Chem. Soc., 1975, 19, 9. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas IE (evaluated) Recommended ionization energy ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.