Benzene, 1,2,4,5-tetramethyl-
- Formula: C10H14
- Molecular weight: 134.2182
- IUPAC Standard InChIKey: SQNZJJAZBFDUTD-UHFFFAOYSA-N
- CAS Registry Number: 95-93-2
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Durene; Durol; 1,2,4,5-Tetramethylbenzene; p-Xylene, 2,5-dimethyl-
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -47.1 ± 1.9 | kJ/mol | Ccb | Colomina, Jimenez, et al., 1989 | see Boned, Colomina, et al., 1964; ALS |
ΔfH°gas | -46.9 ± 1.8 | kJ/mol | Ccb | Draeger, 1985 | Unpublished measurments of W.D.Good; ALS |
ΔfH°gas | -45.3 | kJ/mol | N/A | Good, 1975 | Value computed using ΔfHsolid° value of -119.9±1.3 kj/mol from Good, 1975 and ΔsubH° value of 74.6 kj/mol from Colomina, Jimenez, et al., 1989.; DRB |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
139.2 | 200. | Draeger, 1985 | There is an appreciable difference between values of S(T) and Cp(T) for tetra-, penta-, and hexamethylbenzene from earlier statistical thermodynamics calculation [ Hastings S.H., 1957] and those obtained by [ Draeger, 1985] (up to 5, 9, and 16 J/mol*K, respectively). Results [ Draeger, 1985] are more reliable and they agree with experimental data for hexamethylbenzene.; GT |
171.6 | 273.15 | ||
183.1 ± 0.4 | 298.15 | ||
184.0 | 300. | ||
230.7 | 400. | ||
273.9 | 500. | ||
311.4 | 600. | ||
343.2 | 700. | ||
370.4 | 800. | ||
393.7 | 900. | ||
413.7 | 1000. | ||
430.8 | 1100. | ||
445.6 | 1200. | ||
458.3 | 1300. | ||
469.3 | 1400. | ||
478.8 | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -98.7 ± 3.0 | kJ/mol | Ccb | Prosen, Johnson, et al., 1946 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -5837.3 ± 3.0 | kJ/mol | Ccb | Prosen, Johnson, et al., 1946 | Corresponding ΔfHºliquid = -98.58 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -5809.1 ± 5.9 | kJ/mol | Ccb | Banse and Parks, 1933 | Reanalyzed by Cox and Pilcher, 1970, Original value = -5805.05 kJ/mol; Corresponding ΔfHºliquid = -126.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 245.6 | J/mol*K | N/A | Huffman, Parks, et al., 1931 | Extrapolation below 90 K, 76.69 J/mol*K.; DH |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°solid | -121.7 ± 1.9 | kJ/mol | Ccb | Colomina, Jimenez, et al., 1989 | see Boned, Colomina, et al., 1964; ALS |
ΔfH°solid | -119.9 ± 1.3 | kJ/mol | Ccb | Good, 1975 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -5814.2 ± 1.4 | kJ/mol | Ccb | Colomina, Jimenez, et al., 1989 | see Boned, Colomina, et al., 1964; Corresponding ΔfHºsolid = -121.7 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -5816.1 ± 1.2 | kJ/mol | Ccb | Good, 1975 | Corresponding ΔfHºsolid = -119.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
275.7 | 353. | Kurbatov, 1947 | T = 80 to 193°C, mean Cp, three temperatures.; DH |
220.1 | 298.1 | Eibert, 1944 | T = 25 to 200°C, equations only in t°C. Cp(c) = 0.3662 + 0.001033t cal/g*K (25 to 45°C); Cp(liq) = 0.424 + 0.000589t cal/g*K (79 to 200°C).; DH |
215.1 | 297.1 | Huffman, Parks, et al., 1931 | T = 92 to 297.1 K. Value is unsmoothed experimental datum.; DH |
Constant pressure heat capacity of solid
Cp,solid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
204.02 | 298.15 | Colomina, Jimenez, et al., 1989 | DH |
215.6 | 303.15 | Ferry and Thomas, 1933 | T = 303 to 393 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 470. ± 4. | K | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 352.6 ± 0.9 | K | AVG | N/A | Average of 16 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 676. | K | N/A | Tsonopoulos and Ambrose, 1995 | |
Tc | 675.65 | K | N/A | Guye and Mallet, 1902 | Uncertainty assigned by TRC = 2. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 29. | bar | N/A | Tsonopoulos and Ambrose, 1995 | |
Pc | 28.979 | bar | N/A | Guye and Mallet, 1902 | Uncertainty assigned by TRC = 1.5199 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 73. ± 3. | kJ/mol | AVG | N/A | Average of 6 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
47.7 ± 0.3 | 375. | DM | Blok, van Genderen, et al., 2001 | Based on data from 363. to 381. K.; AC |
49.4 | 368. | A | Stephenson and Malanowski, 1987 | Based on data from 353. to 500. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
318. to 469.1 | 2.9204 | 908.263 | -160.447 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
71.3 | 333. | A | Balson, Denbigh, et al., 1947 | Based on data from 318. to 348. K.; AC |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
20.88 | 352.4 | Domalski and Hearing, 1996 | AC |
20.880 | 352.4 | Eibert, 1944 | DH |
21.340 | 352.05 | Ferry and Thomas, 1933 | DH |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
59.3 | 352.4 | Eibert, 1944 | DH |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.039 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.040 | L | N/A |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 8.06 ± 0.03 | eV | N/A | N/A | L |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
<0.048 ± 0.017 | ECD | Wojnarovits and Foldiak, 1981 | EA is an upper limit: Chen and Wentworth, 1989. G3MP2B3 calculations indicate an EA of ca. -0.1 eV, anion unbound.; B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.07 | PE | Santiago, Gandour, et al., 1978 | LLK |
8.50 ± 0.05 | EI | Meyer and Harrison, 1964 | RDSH |
8.025 ± 0.005 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
8.03 | PI | Bralsford, Harris, et al., 1960 | RDSH |
8.2 | CTS | Foster, 1959 | RDSH |
8.37 | CTS | Briegleb and Czekalla, 1959 | RDSH |
8.05 ± 0.02 | PI | Vilesov and Terenin, 1957 | RDSH |
8.05 | PE | Howell, Goncalves, et al., 1984 | Vertical value; LBLHLM |
8.13 | PE | Cabelli, Cowley, et al., 1982 | Vertical value; LBLHLM |
8.05 | PE | Bock and Kaim, 1978 | Vertical value; LLK |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Colomina, Jimenez, et al., 1989
Colomina, M.; Jimenez, P.; Roux, M.V.; Turrion, C.,
Thermochemical properties of 1,2,4,5-tetramethylbenzene, pentamethylbenzene, and hexamethylbenzene,
J. Chem. Thermodyn., 1989, 21, 275-281. [all data]
Boned, Colomina, et al., 1964
Boned, M.L.; Colomina, M.; Perez-Ossorio, R.; Turrion, C.,
Investigaciones termoquimicas sobre los polimetilbencenos superiores,
Anal. Fisc. Quim. B, 1964, 60, 459-468. [all data]
Draeger, 1985
Draeger, J.A.,
The methylbenzenes II. Fundamental vibrational shifts, statistical thermodynamic functions, and properties of formation,
J. Chem. Thermodyn., 1985, 17, 263-275. [all data]
Good, 1975
Good, W.D.,
The standard enthalpies of combustion and formation of n-butylbenzene, the dimethylethylbenzenes, and the tetramethylbenzenes in the condensed state,
J. Chem. Thermodyn., 1975, 7, 49-59. [all data]
Hastings S.H., 1957
Hastings S.H.,
Thermodynamic properties of selected methylbenzenes from 0 to 1000 K,
J. Phys. Chem., 1957, 61, 730-735. [all data]
Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D.,
Heats of combustion and formation at 25°C of the alkylbenzenes through C10H14, and of the higher normal monoalkylbenzenes,
J. Res. NBS, 1946, 36, 455-461. [all data]
Banse and Parks, 1933
Banse, H.; Parks, G.S.,
Thermal data on organic compounds. XII. The heats of combustion of nine hydrocarbons,
J. Am. Chem. Soc., 1933, 55, 3223-3227. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Huffman, Parks, et al., 1931
Huffman, H.M.; Parks, G.S.; Barmore, M.,
Thermal data on organic compounds. X. Further studies on the heat capacities, entropies and free energies of hydrocarbons,
J. Am. Chem. Soc., 1931, 53, 3876-3888. [all data]
Kurbatov, 1947
Kurbatov, V.Ya.,
Specific heat of liquids. I. Specific heat of benzenoid hydrocarbons,
Zhur. Obshch. Khim., 1947, 17, 1999-2003. [all data]
Eibert, 1944
Eibert, J.,
Thesis Washington University (St. Louis), 1944. [all data]
Ferry and Thomas, 1933
Ferry, J.D.; Thomas, S.B.,
Some heat capacity data for durene, pentamethylbenzene, stilbene, and dibenzyl,
J. Phys. Chem., 1933, 37, 253-255. [all data]
Tsonopoulos and Ambrose, 1995
Tsonopoulos, C.; Ambrose, D.,
Vapor-Liquid Critical Properties of Elements and Compounds. 3. Aromatic Hydrocarbons,
J. Chem. Eng. Data, 1995, 40, 547-558. [all data]
Guye and Mallet, 1902
Guye, P.A.; Mallet, E.,
Measurement of Critical Constants,
Arch. Sci. Phys. Nat., 1902, 13, 274-296. [all data]
Blok, van Genderen, et al., 2001
Blok, Jacobus G.; van Genderen, Aad C.G.; van der Linde, Peter R.; Oonk, Harry A.J.,
Vapour pressures of crystalline 1,2,4,5-tetrachlorobenzene, and crystalline and liquid 1,3,5-trichlorobenzene and 1,2,4,5-tetramethylbenzene,
The Journal of Chemical Thermodynamics, 2001, 33, 9, 1097-1106, https://doi.org/10.1006/jcht.2000.0819
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Balson, Denbigh, et al., 1947
Balson, E.W.; Denbigh, K.G.; Adam, N.K.,
Studies in vapour pressure measurement. Part I.?The vapour pressure of ???-dichlorethyl sulphide (mustard gas),
Trans. Faraday Soc., 1947, 43, 42, https://doi.org/10.1039/tf9474300042
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Wojnarovits and Foldiak, 1981
Wojnarovits, L.; Foldiak, G.,
Electron capture detection of aromatic hydrocarbons,
J. Chromatogr. Sci., 1981, 206, 511. [all data]
Chen and Wentworth, 1989
Chen, E.C.M.; Wentworth, W.E.,
Experimental Determination of Electron Affinities of Organic Molecules,
Mol. Cryst. Liq. Cryst., 1989, 171, 271. [all data]
Santiago, Gandour, et al., 1978
Santiago, C.; Gandour, R.W.; Houk, K.N.; Nutakul, W.; Cravey, W.E.; Thummel, R.P.,
Photoelectron and ultraviolet spectra of small-ring fused aromatic molecules as probes of aromatic ring distortions,
J. Am. Chem. Soc., 1978, 100, 3730. [all data]
Meyer and Harrison, 1964
Meyer, F.; Harrison, A.G.,
Ionization potentials of methyl-substituted benzenes and cyclopentadienes,
Can. J. Chem., 1964, 42, 2256. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Bralsford, Harris, et al., 1960
Bralsford, R.; Harris, P.V.; Price, W.C.,
The effect of fluorine on the electronic spectra and ionization potentials of molecules,
Proc. Roy. Soc. (London), 1960, A258, 459. [all data]
Foster, 1959
Foster, R.,
Ionization potentials of electron donors,
Nature (London), 1959, 183, 1253. [all data]
Briegleb and Czekalla, 1959
Briegleb, G.; Czekalla, J.,
Die Bestimmung von lonisierungsenergien aus den Spektren von Elektronenubergangskomplexen,
Z.Elektrochem., 1959, 63, 6. [all data]
Vilesov and Terenin, 1957
Vilesov, F.I.; Terenin, A.N.,
The photoionization of the vapors of certain organic compounds,
Dokl. Akad. Nauk SSSR, 1957, 115, 744, In original 539. [all data]
Howell, Goncalves, et al., 1984
Howell, J.O.; Goncalves, J.M.; Amatore, C.; Klasinc, L.; Wightman, R.M.; Kochi, J.K.,
Electron transfer from aromatic hydrocarbons and their π-complexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials,
J. Am. Chem. Soc., 1984, 106, 3968. [all data]
Cabelli, Cowley, et al., 1982
Cabelli, D.E.; Cowley, A.H.; Lagowski, J.J.,
The bonding in some bis(arene)chromium compounds as indicated by U. V. photoelectron zpectroscopy,
Inorg. Chim. Acta, 1982, 57, 195. [all data]
Bock and Kaim, 1978
Bock, H.; Kaim, W.,
Einelektronen-Oxidationen (H3C)3SiCH2-substituierter Benzole in der Gasphase und in Losung,
Chem. Ber., 1978, 111, 3552. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid Cp,solid Constant pressure heat capacity of solid EA Electron affinity IE (evaluated) Recommended ionization energy Pc Critical pressure S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.