Benzene, hexamethyl-
- Formula: C12H18
- Molecular weight: 162.2713
- IUPAC Standard InChIKey: YUWFEBAXEOLKSG-UHFFFAOYSA-N
- CAS Registry Number: 87-85-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Hexamethylbenzene; Mellitene; 1,2,3,4,5,6-Hexamethylbenzene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -77.4 ± 2.5 | kJ/mol | Ccb | Colomina, Jimenez, et al., 1989 | see Boned, Colomina, et al., 1964; ALS |
ΔfH°gas | -78.3 | kJ/mol | N/A | Parks, West, et al., 1946 | Value computed using ΔfHsolid° value of -163.3±3.1 kj/mol from Parks, West, et al., 1946 and ΔsubH° value of 85.0 kj/mol from Parks, West, et al., 1946.; DRB |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
184.4 | 200. | Draeger, 1985 | Recommended values are in close agreement with experimental data on S(T). Discrepancies with earlier statistically calculated values [ Hastings S.H., 1957] amount to 16 and 13 J/mol*K in S(T) and Cp(T), respectively.; GT |
227.3 | 273.15 | ||
241.5 ± 0.4 | 298.15 | ||
242.6 | 300. | ||
298.3 | 400. | ||
349.3 | 500. | ||
393.8 | 600. | ||
432.1 | 700. | ||
465.0 | 800. | ||
493.4 | 900. | ||
517.9 | 1000. | ||
539.0 | 1100. | ||
557.3 | 1200. | ||
573.1 | 1300. | ||
586.7 | 1400. | ||
598.6 | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -142.0 | kJ/mol | Ccb | Oth, 1968 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -7134.6 ± 7.1 | kJ/mol | Ccb | Banse and Parks, 1933 | Reanalyzed by Cox and Pilcher, 1970, Original value = -7129.03 kJ/mol; Corresponding ΔfHºliquid = -160.0 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°solid | -162.4 ± 2.5 | kJ/mol | Ccb | Colomina, Jimenez, et al., 1989 | see Boned, Colomina, et al., 1964; ALS |
ΔfH°solid | -163.3 ± 3.1 | kJ/mol | Ccb | Parks, West, et al., 1946 | Reanalyzed by Cox and Pilcher, 1970, Original value = -164.0 ± 0.08 kJ/mol; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -7132.2 ± 1.9 | kJ/mol | Ccb | Colomina, Jimenez, et al., 1989 | see Boned, Colomina, et al., 1964; Corresponding ΔfHºsolid = -162.4 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -7113.2 ± 5.2 | kJ/mol | Ccb | Holdiness, 1984 | Hf NR; Corresponding ΔfHºsolid = -181. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -7131.3 ± 3.0 | kJ/mol | Ccb | Parks, West, et al., 1946 | Reanalyzed by Cox and Pilcher, 1970, Original value = -7130.7 ± 2.8 kJ/mol; Corresponding ΔfHºsolid = -163.3 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 302.81 | J/mol*K | N/A | Atake, Gyoten, et al., 1982 | DH |
S°solid,1 bar | 306.31 | J/mol*K | N/A | Frankosky and Aston, 1965 | crystaline, I phase; DH |
S°solid,1 bar | 309.6 | J/mol*K | N/A | Huffman, Parks, et al., 1930 | crystaline, I phase; Extrapolation below 90 K, 82.38 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
370.7 | 455. | Kurbatov, 1947 | T = 183 to 256°C, mean Cp, two temperatures.; DH |
Constant pressure heat capacity of solid
Cp,solid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
243.4 | 298.15 | Colomina, Jimenez, et al., 1989 | DH |
252.11 | 300. | Atake, Gyoten, et al., 1982 | T = 3 to 300 K.; DH |
245.64 | 298.15 | Frankosky and Aston, 1965 | crystaline, I phase; T = 13 to 340 K.; DH |
256.1 | 293.81 | Momotani, Suga, et al., 1956 | T = 273 to 443 K. Unsmoothed experimental datum.; DH |
258.5 | 303. | Spaght, Thomas, et al., 1932 | crystaline, II phase; T = 30 to 200°C.; DH |
254.8 | 294.6 | Huffman, Parks, et al., 1930 | crystaline, I phase; T = 85 to 294 K. Value is unsmoothed experimental datum.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 538.2 | K | N/A | Weast and Grasselli, 1989 | BS |
Tboil | 536.85 | K | N/A | Cooper, Crowne, et al., 1967 | Uncertainty assigned by TRC = 0.6 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 438. ± 3. | K | AVG | N/A | Average of 13 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 758. ± 1. | K | N/A | Tsonopoulos and Ambrose, 1995 | |
Tc | 758. | K | N/A | Ambrose, Broderick, et al., 1974 | Uncertainty assigned by TRC = 2. K; TRC |
Tc | 751.15 | K | N/A | Guye and Mallet, 1902 | Uncertainty assigned by TRC = 10. K; crit. temp. greater than this - sample decomposes at this T; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 68.6 | kJ/mol | CGC | Zhao, Unhannanant, et al., 2008 | AC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 83. ± 7. | kJ/mol | AVG | N/A | Average of 7 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
56.8 | 458. | A | Stephenson and Malanowski, 1987 | Based on data from 443. to 537. K.; AC |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
85.2 | 320. | A | Ambrose, Lawrenson, et al., 1976 | Based on data from 303. to 338. K.; AC |
83.2 | 329. | A | Overberger, Steele, et al., 1969 | Based on data from 314. to 364. K.; AC |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
20.63 | 438.7 | Domalski and Hearing, 1996 | See also Spaght, Thomas, et al., 1931.; AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
4.58 | 383.7 | Domalski and Hearing, 1996 | CAL |
47.02 | 438.7 |
Temperature of phase transition
Ttrs (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|
382. | crystaline, III | crystaline, I | Fujiwara, Inaba, et al., 1992 | DH |
439. | crystaline, I | liquid | Fujiwara, Inaba, et al., 1992 | DH |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
1.100 | 117.5 | crystaline, III | crystaline, II | Fujiwara, Inaba, et al., 1992 | From Atake, Gyoten, et al., 1982; DH |
1.500 | 384.0 | crystaline, II | crystaline, I | Petropavlov, Tsygankova, et al., 1988 | DH |
1.103 | 115.5 | crystaline, II | crystaline, I | Yoshimoto, Fujiwara, et al., 1985 | DH |
0.990 | 117.5 | crystaline, III | crystaline, II | Atake, Gyoten, et al., 1982 | First order transition.; DH |
1.1284 | 116.48 | crystaline, II | crystaline, I | Frankosky and Aston, 1965 | Entropy obtained as difference of integral of observed Cp over range 115 to 128 K, and integral of extrapolated Cp data.; DH |
1.841 | 383.55 | crystaline, II | crystaline, I | Momotani, Suga, et al., 1956 | DH |
20.585 | 438.35 | crystaline, I | liquid | Momotani, Suga, et al., 1956 | DH |
1.766 | 383.7 | crystaline, II | crystaline, I | Spaght, Thomas, et al., 1932 | DH |
20.640 | 438.7 | crystaline, I | liquid | Spaght, Thomas, et al., 1932 | DH |
1.017 | 108. | crystaline, III | crystaline, II | Huffman, Parks, et al., 1930 | DH |
0.155 | 151. | crystaline, II | crystaline, I | Huffman, Parks, et al., 1930 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
9.3 | 117.5 | crystaline, III | crystaline, II | Fujiwara, Inaba, et al., 1992 | From; DH |
3.9 | 384.0 | crystaline, II | crystaline, I | Petropavlov, Tsygankova, et al., 1988 | DH |
9.55 | 115.5 | crystaline, II | crystaline, I | Yoshimoto, Fujiwara, et al., 1985 | DH |
8.3 | 117.5 | crystaline, III | crystaline, II | Atake, Gyoten, et al., 1982 | First; DH |
10.08 | 116.48 | crystaline, II | crystaline, I | Frankosky and Aston, 1965 | Entropy; DH |
4.81 | 383.55 | crystaline, II | crystaline, I | Momotani, Suga, et al., 1956 | DH |
46.86 | 438.35 | crystaline, I | liquid | Momotani, Suga, et al., 1956 | DH |
4.60 | 383.7 | crystaline, II | crystaline, I | Spaght, Thomas, et al., 1932 | DH |
47.0 | 438.7 | crystaline, I | liquid | Spaght, Thomas, et al., 1932 | DH |
9.5 | 108. | crystaline, III | crystaline, II | Huffman, Parks, et al., 1930 | DH |
1.0 | 151. | crystaline, II | crystaline, I | Huffman, Parks, et al., 1930 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C12H18 = C12H18
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -345. ± 3. | kJ/mol | Cm | Adam and Chang, 1969 | liquid phase; solvent: Pure phase; Heat of isomerization; ALS |
ΔrH° | -382. | kJ/mol | Eqk | Oth, 1968 | liquid phase; Heat of isomerization, see Oth, 1969; ALS |
ΔrH° | -383. | kJ/mol | Cm | Oth, 1968 | liquid phase; solvent: Toluene-d8; Heat of isomerization at 150°C; ALS |
By formula: C12H18 = C12H18
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -235. ± 3. | kJ/mol | Cm | Adam and Chang, 1969 | liquid phase; solvent: Pure phase; ALS |
ΔrH° | -249. | kJ/mol | Eqk | Oth, 1968 | liquid phase; Heat of isomerization, see Oth, 1969; ALS |
By formula: C6H7N+ + C12H18 = (C6H7N+ • C12H18)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 71.5 | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 102. | J/mol*K | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
By formula: C12H18 = C12H18
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -179. | kJ/mol | Ciso | Childs and Mulholland, 1983 | liquid phase; ALS |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
View reactions leading to C12H18+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 7.85 ± 0.01 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 860.6 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 836.0 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
<0.121 ± 0.017 | ECD | Wojnarovits and Foldiak, 1981 | EA is an upper limit: Chen and Wentworth, 1989. G3MP2B3 calculations indicate an EA of ca. -0.1 eV, anion unbound.; B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
7.85 | PE | Howell, Goncalves, et al., 1984 | LBLHLM |
7.87 | EI | Kuznesof, Stafford, et al., 1967 | RDSH |
7.85 ± 0.02 | PI | Vilesov, 1961 | RDSH |
7.85 | PI | Bralsford, Harris, et al., 1960 | RDSH |
7.8 | CTS | Foster, 1959 | RDSH |
7.95 | CTS | Briegleb and Czekalla, 1959 | RDSH |
7.85 | PE | Howell, Goncalves, et al., 1984 | Vertical value; LBLHLM |
7.9 | PE | Kovac, Mohraz, et al., 1980 | Vertical value; LLK |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | NIST Standard Reference Data Program Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Sadtler Research Labs Under US-EPA Contract |
State | gas |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW- 223 |
NIST MS number | 228195 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | HP-5 | 120. | 1452.4 | Pérez-Parajón, Santiuste, et al., 2004 | 60. m/0.25 mm/0.25 μm |
Capillary | OV-101 | 100. | 1416. | Gerasimenko and Nabivach, 1982 | N2; Column length: 50. m; Column diameter: 0.30 mm |
Capillary | OV-101 | 120. | 1428. | Gerasimenko and Nabivach, 1982 | N2; Column length: 50. m; Column diameter: 0.30 mm |
Capillary | OV-101 | 140. | 1442. | Gerasimenko and Nabivach, 1982 | N2; Column length: 50. m; Column diameter: 0.30 mm |
Capillary | OV-101 | 100. | 1415.6 | Gerasimenko, Kirilenko, et al., 1981 | N2; Column length: 50. m; Column diameter: 0.3 mm |
Capillary | OV-101 | 120. | 1428.2 | Gerasimenko, Kirilenko, et al., 1981 | N2; Column length: 50. m; Column diameter: 0.3 mm |
Capillary | OV-101 | 140. | 1441.6 | Gerasimenko, Kirilenko, et al., 1981 | N2; Column length: 50. m; Column diameter: 0.3 mm |
Capillary | Squalane | 100. | 1415. | Engewald and Wennrich, 1976 | N2; Column length: 100. m; Column diameter: 0.23 mm |
Kovats' RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | OV-101 | 1431. | Hayes and Pitzer, 1982 | 110. m/0.25 mm/0.20 μm, He, 1. K/min; Tstart: 35. C; Tend: 200. C |
Kovats' RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Carbowax 20M | 100. | 1778.0 | Engewald and Wennrich, 1976 | N2; Column length: 100. m; Column diameter: 0.23 mm |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Petrocol DH | 1437. | White, Hackett, et al., 1992 | 100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C |
Capillary | OV-101 | 1431. | Hayes and Pitzer, 1981 | 108. m/0.25 mm/0.2 μm, 1. K/min; Tstart: 35. C; Tend: 200. C |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Petrocol DH | 1437. | Supelco, 2012 | 100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | OV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc. | 1431. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Colomina, Jimenez, et al., 1989
Colomina, M.; Jimenez, P.; Roux, M.V.; Turrion, C.,
Thermochemical properties of 1,2,4,5-tetramethylbenzene, pentamethylbenzene, and hexamethylbenzene,
J. Chem. Thermodyn., 1989, 21, 275-281. [all data]
Boned, Colomina, et al., 1964
Boned, M.L.; Colomina, M.; Perez-Ossorio, R.; Turrion, C.,
Investigaciones termoquimicas sobre los polimetilbencenos superiores,
Anal. Fisc. Quim. B, 1964, 60, 459-468. [all data]
Parks, West, et al., 1946
Parks, G.S.; West, T.J.; Naylor, B.F.; Fujii, P.S.; McClaine, L.A.,
Thermal data on organic compounds. XXIII. Modern combustion data for fourteen hydrocarbons and five polyhydroxy alcohols,
J. Am. Chem. Soc., 1946, 68, 2524-2527. [all data]
Draeger, 1985
Draeger, J.A.,
The methylbenzenes II. Fundamental vibrational shifts, statistical thermodynamic functions, and properties of formation,
J. Chem. Thermodyn., 1985, 17, 263-275. [all data]
Hastings S.H., 1957
Hastings S.H.,
Thermodynamic properties of selected methylbenzenes from 0 to 1000 K,
J. Phys. Chem., 1957, 61, 730-735. [all data]
Oth, 1968
Oth, J.F.M.,
The kinetics and thermochemistry of the thermal rearrangement of hexamethylbicyclo[2.2.0]hexa-2,5-diene (hexamethyldewarbenzene) and of hexamethyltetracyclo[2.2.0,0(2,6).0(3,5)]hexane (hexamethylprismane),
Chem. Ber., 1968, 47, 1185-1195. [all data]
Banse and Parks, 1933
Banse, H.; Parks, G.S.,
Thermal data on organic compounds. XII. The heats of combustion of nine hydrocarbons,
J. Am. Chem. Soc., 1933, 55, 3223-3227. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Holdiness, 1984
Holdiness, M.R.,
Resonance energy of hexaethylbenzene and hexamethylbenzene,
Thermochim. Acta, 1984, 78, 435-436. [all data]
Atake, Gyoten, et al., 1982
Atake, T.; Gyoten, H.; Chihara, H.,
A concealed anomaly at 117.5 K in the heat capacity of hexamethylbenzene,
J. Chem. Phys., 1982, 76(11), 5535-5540. [all data]
Frankosky and Aston, 1965
Frankosky, M.; Aston, J.G.,
The heat capacity and entropy of hexamethylbenzene from 13 to 340 K. An estimate of the internal rotation barrier,
J. Phys. Chem., 1965, 69, 3126-3132. [all data]
Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Daniels, A.C.,
Thermal data on organic compounds. VII. The heat capacities, entropies and free energies of twelve aromatic hydrocarbons,
J. Am. Chem. Soc., 1930, 52, 1547-1558. [all data]
Kurbatov, 1947
Kurbatov, V.Ya.,
Specific heat of liquids. I. Specific heat of benzenoid hydrocarbons,
Zhur. Obshch. Khim., 1947, 17, 1999-2003. [all data]
Momotani, Suga, et al., 1956
Momotani, M.; Suga, H.; Seki, S.; Nitta, I.,
Phase transitions in crystals composed of organic molecules with methyl groups at the molecular periperies, Proceed. National Academy of Sci. (India), XXV(Section A,
part, 1956, II), 74-82. [all data]
Spaght, Thomas, et al., 1932
Spaght, M.E.; Thomas, S.B.; Parks, G.S.,
Some heat capacity data on organic compounds obtained with a radiation calorimeter,
J. Phys. Chem., 1932, 36, 882-888. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Cooper, Crowne, et al., 1967
Cooper, A.R.; Crowne, C.W.P.; Farrell, P.G.,
Gas-Liquid Chromatographic Studies of Electron-Donor-Acceptor Systems,
Trans. Faraday Soc., 1967, 63, 447. [all data]
Tsonopoulos and Ambrose, 1995
Tsonopoulos, C.; Ambrose, D.,
Vapor-Liquid Critical Properties of Elements and Compounds. 3. Aromatic Hydrocarbons,
J. Chem. Eng. Data, 1995, 40, 547-558. [all data]
Ambrose, Broderick, et al., 1974
Ambrose, D.; Broderick, B.E.; Townsend, R.,
The Critical Temperatures and Pressures of Thirty Organic Compounds,
J. Appl. Chem. Biotechnol., 1974, 24, 359. [all data]
Guye and Mallet, 1902
Guye, P.A.; Mallet, E.,
Measurement of Critical Constants,
Arch. Sci. Phys. Nat., 1902, 13, 274-296. [all data]
Zhao, Unhannanant, et al., 2008
Zhao, Hui; Unhannanant, Patamaporn; Hanshaw, William; Chickos, James S.,
Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects,
J. Chem. Eng. Data, 2008, 53, 7, 1545-1556, https://doi.org/10.1021/je800091s
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Ambrose, Lawrenson, et al., 1976
Ambrose, D.; Lawrenson, I.J.; Sprake, C.H.S.,
The vapour pressure of hexamethylbenzene,
The Journal of Chemical Thermodynamics, 1976, 8, 5, 503-504, https://doi.org/10.1016/0021-9614(76)90071-9
. [all data]
Overberger, Steele, et al., 1969
Overberger, John E.; Steele, William A.; Aston, John G.,
The vapor pressure of hexamethylbenzene the standard entropy of hexamethylbenzene vapor and the barrier to internal rotation,
The Journal of Chemical Thermodynamics, 1969, 1, 6, 535-542, https://doi.org/10.1016/0021-9614(69)90014-7
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Spaght, Thomas, et al., 1931
Spaght, M.E.; Thomas, S.B.; Parks, G.S.,
Some Heat-Capacity Data on Organic Compounds obtained with a Radiation Calorimeter,
J. Phys. Chem., 1931, 36, 3, 882-888, https://doi.org/10.1021/j150333a009
. [all data]
Fujiwara, Inaba, et al., 1992
Fujiwara, T.; Inaba, A.; Atake, T.; Chihara, H.,
Thermodynamic properties of deuterated hexamethylbenzene and of its solid solutions with the hydrogenated analog. A large isotope effect on the phase transition at the temperature 117 K,
J. Chem. Thermodynam., 1992, 24, 863-881. [all data]
Petropavlov, Tsygankova, et al., 1988
Petropavlov, N.N.; Tsygankova, I.G.; Teslenko, L.A.,
Microcalorimetric investigation of polymorphic transitions in organic crystals,
Sov. Phys. Crystallogr., 1988, 33(6), 853-855. [all data]
Yoshimoto, Fujiwara, et al., 1985
Yoshimoto, Y.; Fujiwara, T.; Atake, T.; Chihara, H.,
Solid-solid transition in hexamethylbenzene that depends on thermal history,
Chem. Lett., 1985, (9), 1347-1350. [all data]
Adam and Chang, 1969
Adam, W.; Chang, J.C.,
Kinetics and thermochemistry of valence isomerization by differential scanning calorimetry: the case of hexamethylprismane and hexamethyldewarbenzene,
Int. J. Chem. Kinet., 1969, 1, 487-492. [all data]
Oth, 1969
Oth, J.F.M.,
The kinetics and thermochemistry of the thermal rearrangement of hexamethyl(Dewar benzene) and of hexamethylprismane,
Angew. Chem. Int. Ed. Engl., 1969, 7, 646. [all data]
Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S.,
Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems,
J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026
. [all data]
Childs and Mulholland, 1983
Childs, R.F.; Mulholland, D.L.,
Thermochemical relationships between some bicyclohexenyl and benzenium cations,
J. Am. Chem. Soc., 1983, 105, 96-99. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Wojnarovits and Foldiak, 1981
Wojnarovits, L.; Foldiak, G.,
Electron capture detection of aromatic hydrocarbons,
J. Chromatogr. Sci., 1981, 206, 511. [all data]
Chen and Wentworth, 1989
Chen, E.C.M.; Wentworth, W.E.,
Experimental Determination of Electron Affinities of Organic Molecules,
Mol. Cryst. Liq. Cryst., 1989, 171, 271. [all data]
Howell, Goncalves, et al., 1984
Howell, J.O.; Goncalves, J.M.; Amatore, C.; Klasinc, L.; Wightman, R.M.; Kochi, J.K.,
Electron transfer from aromatic hydrocarbons and their π-complexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials,
J. Am. Chem. Soc., 1984, 106, 3968. [all data]
Kuznesof, Stafford, et al., 1967
Kuznesof, P.M.; Stafford, F.E.; Shriver, D.F.,
Electron impact ionization potentials of methyl-substituted borazines,
J. Phys. Chem., 1967, 71, 1939. [all data]
Vilesov, 1961
Vilesov, F.I.,
Photoionisation of organic vapours in the vacuum ultra-violet,
Zh. Fiz. Khim., 1961, 35, 2010, In original 986. [all data]
Bralsford, Harris, et al., 1960
Bralsford, R.; Harris, P.V.; Price, W.C.,
The effect of fluorine on the electronic spectra and ionization potentials of molecules,
Proc. Roy. Soc. (London), 1960, A258, 459. [all data]
Foster, 1959
Foster, R.,
Ionization potentials of electron donors,
Nature (London), 1959, 183, 1253. [all data]
Briegleb and Czekalla, 1959
Briegleb, G.; Czekalla, J.,
Die Bestimmung von lonisierungsenergien aus den Spektren von Elektronenubergangskomplexen,
Z.Elektrochem., 1959, 63, 6. [all data]
Kovac, Mohraz, et al., 1980
Kovac, B.; Mohraz, M.; Heilbronner, E.; Boekelheide, V.; Hopf, H.,
Photoelectron spectra of the cyclophanes,
J. Am. Chem. Soc., 1980, 102, 4314. [all data]
Pérez-Parajón, Santiuste, et al., 2004
Pérez-Parajón, J.M.; Santiuste, J.M.; Takács, J.M.,
Sensitivity of the methylbenzenes and chlorobenzenes retention index to column temperature, stationary phase polarity, and number and chemical nature of substituents,
J. Chromatogr. A, 2004, 1048, 2, 223-232, https://doi.org/10.1016/j.chroma.2004.07.028
. [all data]
Gerasimenko and Nabivach, 1982
Gerasimenko, V.A.; Nabivach, V.M.,
Relationship between molecular structure and gas chromatographic retention of alkylbenzenes C8-C1 2 on polydimethylsiloxane,
Zh. Anal. Khim., 1982, 37, 110-116. [all data]
Gerasimenko, Kirilenko, et al., 1981
Gerasimenko, V.A.; Kirilenko, A.V.; Nabivach, V.M.,
Capillary gas chromatography of aromatic compounds found in coal tar fractions,
J. Chromatogr., 1981, 208, 1, 9-16, https://doi.org/10.1016/S0021-9673(00)87953-4
. [all data]
Engewald and Wennrich, 1976
Engewald, W.; Wennrich, L.,
Molekülstruktur und Retentionsverhalten. VIII. Zum Retentionsverhalten höherer Alkylbenzole bei der Gas-Verteilungs-Chromatographie,
Chromatographia, 1976, 9, 11, 540-547, https://doi.org/10.1007/BF02275960
. [all data]
Hayes and Pitzer, 1982
Hayes, P.C., Jr.; Pitzer, E.W.,
Characterizing petroleum- and shale-derived jet fuel distillates via temperature-programmed Kováts indices,
J. Chromatogr., 1982, 253, 179-198, https://doi.org/10.1016/S0021-9673(01)88376-X
. [all data]
White, Hackett, et al., 1992
White, C.M.; Hackett, J.; Anderson, R.R.; Kail, S.; Spock, P.S.,
Linear temperature programmed retention indices of gasoline range hydrocarbons and chlorinated hydrocarbons on cross-linked polydimethylsiloxane,
J. Hi. Res. Chromatogr., 1992, 15, 2, 105-120, https://doi.org/10.1002/jhrc.1240150211
. [all data]
Hayes and Pitzer, 1981
Hayes, P.C., Jr.; Pitzer, E.W.,
Kovats indices as a tool in characterizing hydrocarbon fuels in temperature programmed glass capillary gas chromatography. Part 1. Qualitative identification, Inhouse rpt. for Air Force Wright Aeronautical Labs., Air Force Wright Aeronautical Labs., Wright-Patterson AFB, Ohio, 1981, 75. [all data]
Supelco, 2012
Supelco, CatalogNo. 24160-U,
Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]
Waggott and Davies, 1984
Waggott, A.; Davies, I.W.,
Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid Cp,solid Constant pressure heat capacity of solid EA Electron affinity IE (evaluated) Recommended ionization energy S°solid,1 bar Entropy of solid at standard conditions (1 bar) Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttrs Temperature of phase transition ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.