Fluorene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas42.23 ± 0.74kcal/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfgas41.83 ± 0.35kcal/molCcrRakus, Verevkin, et al., 1994ALS
Δfgas39.89 ± 0.98kcal/molCcbSabbah, 1991see Sabbah and Antipine, 1987; ALS

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
9.47750.Dorofeeva O.V., 1989Recommended values are also reproduced in the reference book [ Frenkel M., 1994]. These statistically calculated S(T) values agree with experimental ones within 1 J/mol*K.; GT
13.84100.
19.47150.
26.267200.
37.457273.15
41.37 ± 0.24298.15
41.661300.
56.410400.
68.709500.
78.518600.
86.348700.
92.694800.
97.916900.
102.271000.
105.931100.
109.031200.
111.671300.
113.931400.
115.881500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfsolid21.6 ± 0.67kcal/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfsolid21.48 ± 0.33kcal/molCcrRakus, Verevkin, et al., 1994ALS
Δfsolid20.7 ± 0.98kcal/molCcbSabbah, 1991see Sabbah and Antipine, 1987; ALS
Quantity Value Units Method Reference Comment
Δcsolid-1585.71 ± 0.26kcal/molCcrRakus, Verevkin, et al., 1994Corresponding Δfsolid = 21.47 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid-1585.0 ± 0.96kcal/molCcbSabbah, 1991see Sabbah and Antipine, 1987; Corresponding Δfsolid = 20.7 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
solid,1 bar49.551cal/mol*KN/AFinke, Messerly, et al., 1977crystaline, I phase; DH

Constant pressure heat capacity of solid

Cp,solid (cal/mol*K) Temperature (K) Reference Comment
48.549298.15Finke, Messerly, et al., 1977crystaline, I phase; T = 10 to 440 K.; DH
45.29298.1Eibert, 1944T = 25 to 200°C, equations only, in t°C. Cp(c) = 0.2479 + 0.001233t cal/g*K (25 to 70°C); Cp(liq) = 0.320 + 0.00845t cal/g*K (114 to 200°C).; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil571.2KN/AAldrich Chemical Company Inc., 1990BS
Tboil567.2KN/AWeast and Grasselli, 1989BS
Tboil569.55KN/ALecat, 1943Uncertainty assigned by TRC = 0.5 K; TRC
Quantity Value Units Method Reference Comment
Tfus388. ± 2.KAVGN/AAverage of 13 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple355.51KN/ASabbah, 1991Uncertainty assigned by TRC = 0.03 K; TRC
Ttriple387.94KN/AFinke, Messerly, et al., 1977, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.02 K; C2 - C1 is a second order transition; TRC
Ttriple387.94KN/AOsborn and Douslin, 1975Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Δvap17.3 ± 0.41kcal/molCGCHanshaw, Nutt, et al., 2008AC
Δvap17.8 ± 0.29kcal/molGCHaftka, Parsons, et al., 2006Based on data from 373. to 423. K.; AC
Δvap17.3kcal/molCGCChickos, Hesse, et al., 1998AC
Δvap17.3kcal/molCGCChickos, Hosseini, et al., 1995Based on data from 403. to 453. K.; AC
Δvap15.7kcal/molBRakus, Verevkin, et al., 1994Based on data from 323. to 363. K.; AC
Quantity Value Units Method Reference Comment
Δsub20. ± 1.kcal/molAVGN/AAverage of 9 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
16.0398.GCLei, Chankalal, et al., 2002Based on data from 323. to 473. K.; AC
15.1398.N/ASasse, Jose, et al., 1988Based on data from 383. to 427. K.; AC
13.0417.AStephenson and Malanowski, 1987Based on data from 402. to 568. K.; AC
13.5498.IMortimer and Murphy, 1923Based on data from 423. to 573. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
434. to 573.65.245323011.0763.857Mortimer and Murphy, 1923Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
20.3383.GSNass, Lenoir, et al., 1995Based on data from 313. to 453. K.; AC
20.3 ± 0.1343.GSRakus, Verevkin, et al., 1994Based on data from 323. to 363. K.; AC
20.8 ± 0.24318.PGSasse, Jose, et al., 1988Based on data from 318. to 333. K.; AC
18.9363.AStephenson and Malanowski, 1987Based on data from 348. to 388. K.; AC
22.0320.THansen and Eckert, 1986Based on data from 298. to 343. K.; AC
19.9328.GSSATO, INOMATA, et al., 1986Based on data from 308. to 347. K.; AC
21.1 ± 0.1303.GSSonnefeld, Zoller, et al., 1983Based on data from 283. to 323. K.; AC
19.9 ± 0.31350. to 388.N/AFinke, Messerly, et al., 1977See also Osborn and Douslin, 1975, 2.; AC
19.6388.BOsborn and Douslin, 1975, 2AC
19.2 ± 0.2293.TEBudurov, 1960Based on data from 286. to 300. K.; AC
19.8306. to 322.N/ABradley and Cleasby, 1953See also Jones, 1960.; AC
19.8315.N/ABradley and Cleasby, 1953, 2Based on data from 306. to 323. K. See also Stephenson and Malanowski, 1987.; AC
19.800306.30VBradley and Cleasby, 1953, 3ALS

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Method Reference Comment
4.57387.7DSCLisicki and Jamróz, 2000AC
4.680387.9N/ADomalski and Hearing, 1996AC
4.7490387.0N/AEibert, 1944DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
12.3387.0Eibert, 1944DH

Temperature of phase transition

Ttrs (K) Initial Phase Final Phase Reference Comment
288.crystaline, IIcrystaline, IFinke, Messerly, et al., 1977Second order transition.; DH

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
4.67930387.94crystaline, IliquidFinke, Messerly, et al., 1977DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
12.06387.94crystaline, IliquidFinke, Messerly, et al., 1977DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C13H9- + Hydrogen cation = Fluorene

By formula: C13H9- + H+ = C13H10

Quantity Value Units Method Reference Comment
Δr350.5 ± 2.0kcal/molD-EARömer, Janaway, et al., 1997gas phase; B
Δr351.7 ± 2.1kcal/molG+TSTaft and Bordwell, 1988gas phase; B
Δr353.3 ± 2.6kcal/molG+TSCumming and Kebarle, 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr342.7 ± 2.1kcal/molH-TSRömer, Janaway, et al., 1997gas phase; B
Δr344.0 ± 2.0kcal/molIMRETaft and Bordwell, 1988gas phase; B
Δr345.5 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; B

C10H8+ + Fluorene = (C10H8+ • Fluorene)

By formula: C10H8+ + C13H10 = (C10H8+ • C13H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr14.6kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
6.0307.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

C12H8+ + Fluorene = (C12H8+ • Fluorene)

By formula: C12H8+ + C13H10 = (C12H8+ • C13H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr13.3kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
5.4283.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

C13H10+ + Fluorene = (C13H10+ • Fluorene)

By formula: C13H10+ + C13H10 = (C13H10+ • C13H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr16.5kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
7.2331.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

C13H11+ + Fluorene = (C13H11+ • Fluorene)

By formula: C13H11+ + C13H10 = (C13H11+ • C13H10)

Quantity Value Units Method Reference Comment
Δr14.4kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr6.1kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

3Hydrogen + Fluorene = Fluorene, 1,2,3,4,4a,9a-hexahydro-, cis-

By formula: 3H2 + C13H10 = C13H16

Quantity Value Units Method Reference Comment
Δr-42.kcal/molEqkFrye and Weitkamp, 1969gas phase; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
9.9 XN/A
8.43000.XN/A
12. LN/A
10. MN/A

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C13H10+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)7.91 ± 0.02eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)198.7kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity192.1kcal/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
<0.278 ± 0.026ECDWojnarovits and Foldiak, 1981EA is an upper limit: Chen and Wentworth, 1989. G3MP2B3 calculations indicate an EA of ca. -0.1 eV, anion unbound.; B

Proton affinity at 298K

Proton affinity (kcal/mol) Reference Comment
197.9Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Gas basicity at 298K

Gas basicity (review) (kcal/mol) Reference Comment
191.4Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Ionization energy determinations

IE (eV) Method Reference Comment
7.88 ± 0.05EQMautner(Meot-Ner), 1980LLK
8.52EITerlouw, Heerma, et al., 1974LLK
7.89 ± 0.03PIPotapov, Kardash, et al., 1972LLK
7.93 ± 0.01PEDewar, Haselbach, et al., 1970RDSH
8.42CTSMukherjee, 1969RDSH
7.78CTSSlifkin and Allison, 1967RDSH
7.91PERuscic, Kovac, et al., 1978Vertical value; LLK
7.93 ± 0.02PEMaier and Turner, 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C13H9+12.5 ± 0.1HEIRapp, Staab, et al., 1970RDSH

De-protonation reactions

C13H9- + Hydrogen cation = Fluorene

By formula: C13H9- + H+ = C13H10

Quantity Value Units Method Reference Comment
Δr350.5 ± 2.0kcal/molD-EARömer, Janaway, et al., 1997gas phase; B
Δr351.7 ± 2.1kcal/molG+TSTaft and Bordwell, 1988gas phase; B
Δr353.3 ± 2.6kcal/molG+TSCumming and Kebarle, 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr342.7 ± 2.1kcal/molH-TSRömer, Janaway, et al., 1997gas phase; B
Δr344.0 ± 2.0kcal/molIMRETaft and Bordwell, 1988gas phase; B
Δr345.5 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

C10H8+ + Fluorene = (C10H8+ • Fluorene)

By formula: C10H8+ + C13H10 = (C10H8+ • C13H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr14.6kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
6.0307.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

C12H8+ + Fluorene = (C12H8+ • Fluorene)

By formula: C12H8+ + C13H10 = (C12H8+ • C13H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr13.3kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
5.4283.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

C13H10+ + Fluorene = (C13H10+ • Fluorene)

By formula: C13H10+ + C13H10 = (C13H10+ • C13H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr16.5kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
7.2331.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

C13H11+ + Fluorene = (C13H11+ • Fluorene)

By formula: C13H11+ + C13H10 = (C13H11+ • C13H10)

Quantity Value Units Method Reference Comment
Δr14.4kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr6.1kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Timothy J. Johnson, Tanya L. Myers, Yin-Fong Su, Russell G. Tonkyn, Molly Rose K. Kelly-Gorham, and Tyler O. Danby

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-1806
NIST MS number 228672

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Rakus, Verevkin, et al., 1994
Rakus, K.; Verevkin, S.P.; Schatzer, J.; Beckhaus, H.-D.; Ruchardt, C., Thermochemistry and thermal decomposition of 9,9'-bifluorenyl and 9,9'-dimethyl-9,9'-bifluorenyl - the stabilization energy of 9-fluorenyl radicals, Chem. Ber., 1994, 127, 1095-1103. [all data]

Sabbah, 1991
Sabbah, R., Thermodynamic study of fluorene and dibenzofuran, Bull. Soc. Chim. Fr., 1991, 128, 350. [all data]

Sabbah and Antipine, 1987
Sabbah, R.; Antipine, I., Thermodynamic study on four polycycles. Relationship between their energy values and their structure, Bull. Soc. Chim. Fr., 1987, 392-400. [all data]

Dorofeeva O.V., 1989
Dorofeeva O.V., Thermodynamic Properties of Gaseous Polycyclic Aromatic Hydrocarbons Containing Five-Membered Rings. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-263 (in Russian), Moscow, 1989. [all data]

Frenkel M., 1994
Frenkel M., Thermodynamics of Organic Compounds in the Gas State, Vol. I, II, Thermodynamics Research Center, College Station, Texas, 1994, 1994. [all data]

Finke, Messerly, et al., 1977
Finke, H.L.; Messerly, J.F.; Lee, S.H.; Osborn, A.G.; Douslin, D.R., Comprehensive thermodynamic studies of seven aromatic hydrocarbons, J. Chem. Thermodyn., 1977, 9, 937-956. [all data]

Eibert, 1944
Eibert, J., Thesis Washington University (St. Louis), 1944. [all data]

Aldrich Chemical Company Inc., 1990
Aldrich Chemical Company Inc., Catalog Handbook of Fine Chemicals, Aldrich Chemical Company, Inc., Milwaukee WI, 1990, 1. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Lecat, 1943
Lecat, M., Azeotropes of Ethyl Urethane and other Azeotropes, C. R. Hebd. Seances Acad. Sci., 1943, 217, 273. [all data]

Finke, Messerly, et al., 1977, 2
Finke, H.L.; Messerly, J.F.; Lee, S.H.; Osborn, A.G.; Douslin, D.R., Comprehensive thermodynamic studies of seven aromatic hydrocarbons, J. Chem. Thermodyn., 1977, 9, 937. [all data]

Osborn and Douslin, 1975
Osborn, A.G.; Douslin, D.R., Vapor Pressure and Derived Enthalpies of Vaporization for Some Condensed Ring Hydrocarbons, J. Chem. Eng. Data, 1975, 20, 229-31. [all data]

Hanshaw, Nutt, et al., 2008
Hanshaw, William; Nutt, Marjorie; Chickos, James S., Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons, J. Chem. Eng. Data, 2008, 53, 8, 1903-1913, https://doi.org/10.1021/je800300x . [all data]

Haftka, Parsons, et al., 2006
Haftka, Joris J.H.; Parsons, John R.; Govers, Harrie A.J., Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography, Journal of Chromatography A, 2006, 1135, 1, 91-100, https://doi.org/10.1016/j.chroma.2006.09.050 . [all data]

Chickos, Hesse, et al., 1998
Chickos, James; Hesse, Donald; Hosseini, Sarah; Nichols, Gary; Webb, Paul, Sublimation enthalpies at 298.15K using correlation gas chromatography and differential scanning calorimetry measurements, Thermochimica Acta, 1998, 313, 2, 101-110, https://doi.org/10.1016/S0040-6031(97)00432-2 . [all data]

Chickos, Hosseini, et al., 1995
Chickos, James S.; Hosseini, Sarah; Hesse, Donald G., Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times, Thermochimica Acta, 1995, 249, 41-62, https://doi.org/10.1016/0040-6031(95)90670-3 . [all data]

Lei, Chankalal, et al., 2002
Lei, Ying Duan; Chankalal, Raymond; Chan, Anita; Wania, Frank, Supercooled Liquid Vapor Pressures of the Polycyclic Aromatic Hydrocarbons, J. Chem. Eng. Data, 2002, 47, 4, 801-806, https://doi.org/10.1021/je0155148 . [all data]

Sasse, Jose, et al., 1988
Sasse, Karim; Jose, Jacques; Merlin, Jean-Claude, A static apparatus for measurement of low vapor pressures. Experimental results on high molecular-weight hydrocarbons, Fluid Phase Equilibria, 1988, 42, 287-304, https://doi.org/10.1016/0378-3812(88)80065-7 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Mortimer and Murphy, 1923
Mortimer, F. Spencer.; Murphy, Ray v., The Vapor Pressures of Some Substances Found in Coal Tar., Ind. Eng. Chem., 1923, 15, 11, 1140-1142, https://doi.org/10.1021/ie50167a012 . [all data]

Nass, Lenoir, et al., 1995
Nass, Karen; Lenoir, Dieter; Kettrup, Antonius, Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure, Angew. Chem. Int. Ed. Engl., 1995, 34, 16, 1735-1736, https://doi.org/10.1002/anie.199517351 . [all data]

Hansen and Eckert, 1986
Hansen, Philip C.; Eckert, Charles A., An improved transpiration method for the measurement of very low vapor pressures, J. Chem. Eng. Data, 1986, 31, 1, 1-3, https://doi.org/10.1021/je00043a001 . [all data]

SATO, INOMATA, et al., 1986
SATO, NOBUYUKI; INOMATA, HIROSHI; ARAI, KUNIO; SAITO, SHOZABURO, Measurement of vapor pressures for coal-related aromatic compounds by gas saturation method., J. Chem. Eng. Japan / JCEJ, 1986, 19, 2, 145-147, https://doi.org/10.1252/jcej.19.145 . [all data]

Sonnefeld, Zoller, et al., 1983
Sonnefeld, W.J.; Zoller, W.H.; May, W.E., Dynamic coupled-column liquid-chromatographic determination of ambient-temperature vapor pressures of polynuclear aromatic hydrocarbons, Anal. Chem., 1983, 55, 2, 275-280, https://doi.org/10.1021/ac00253a022 . [all data]

Osborn and Douslin, 1975, 2
Osborn, Ann G.; Douslin, Donald R., Vapor pressures and derived enthalpies of vaporization for some condensed-ring hydrocarbons, J. Chem. Eng. Data, 1975, 20, 3, 229-231, https://doi.org/10.1021/je60066a022 . [all data]

Budurov, 1960
Budurov, S., Izv. Khim. Inst. Bulg. Akad. Nauk, 1960, 7, 281. [all data]

Bradley and Cleasby, 1953
Bradley, R.S.; Cleasby, T.G., 346. The vapour pressure and lattice energy of hydrogen-bonded crystals. Part I. Oxamide, oxamic acid, and rubeanic acid, J. Chem. Soc., 1953, 1681, https://doi.org/10.1039/jr9530001681 . [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Bradley and Cleasby, 1953, 2
Bradley, R.S.; Cleasby, T.G., 349. The vapour pressure and lattice energy of some aromatic ring compounds, J. Chem. Soc., 1953, 1690, https://doi.org/10.1039/jr9530001690 . [all data]

Bradley and Cleasby, 1953, 3
Bradley, R.S.; Cleasby, T.G., The vapour pressure and lattice energy of some aromatic ring compounds, J. Am. Chem. Soc., 1953, 1690-16. [all data]

Lisicki and Jamróz, 2000
Lisicki, Zygmunt; Jamróz, Malgorzata E., (Solid + liquid) equilibria in (polynuclear aromatic+ tertiary amide) systems, The Journal of Chemical Thermodynamics, 2000, 32, 10, 1335-1353, https://doi.org/10.1006/jcht.2000.0685 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Römer, Janaway, et al., 1997
Römer, B.; Janaway, G.; Brauman, J.I., Cyclopentadienyl, Indenyl, and Fluorenyl Anions: Gas-Phase and Solvation Energy Contributions to Electron Detachment Energies, J. Am. Chem. Soc., 1997, 119, 9, 2249, https://doi.org/10.1021/ja961947x . [all data]

Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G., Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase, Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005 . [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Meot-Ner (Mautner), 1980
Meot-Ner (Mautner), M., Dimer Cations of Polycyclic Aromatics: Experimental Bonding Energies and Resonance Stabilization, J. Phys. Chem., 1980, 84, 21, 2724, https://doi.org/10.1021/j100458a012 . [all data]

Frye and Weitkamp, 1969
Frye, C.G.; Weitkamp, A.W., Equilibrium hydrogenations of multi-ring aromatics, J. Chem. Eng. Data, 1969, 14, 372-376. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Wojnarovits and Foldiak, 1981
Wojnarovits, L.; Foldiak, G., Electron capture detection of aromatic hydrocarbons, J. Chromatogr. Sci., 1981, 206, 511. [all data]

Chen and Wentworth, 1989
Chen, E.C.M.; Wentworth, W.E., Experimental Determination of Electron Affinities of Organic Molecules, Mol. Cryst. Liq. Cryst., 1989, 171, 271. [all data]

Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D., Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons, Int. J. Mass Spectrom., 2000, 201, 283. [all data]

Mautner(Meot-Ner), 1980
Mautner(Meot-Ner), M., Ion thermochemistry of low volatility compounds in the gas phase. 3. Polycyclic aromatics: Ionization energies, proton, and hydrogen affinities. Extrapolations to graphite, J. Phys. Chem., 1980, 84, 2716. [all data]

Terlouw, Heerma, et al., 1974
Terlouw, J.K.; Heerma, W.; Frintrop, P.C.M.; Dijkstra, G.; Meinema, H.A., Electron-impact induced fragmentation of some heterocyclic-tin compounds, J. Organomet. Chem., 1974, 64, 205. [all data]

Potapov, Kardash, et al., 1972
Potapov, V.K.; Kardash, I.E.; Sorokin, V.V.; Sokolov, S.A.; Evlasheva, T.I., Photoionization of heteroaromatic compounds, Khim. Vys. Energ., 1972, 6, 392. [all data]

Dewar, Haselbach, et al., 1970
Dewar, M.J.S.; Haselbach, E.; Worley, S.D., Calculated and observed ionization potentials of unsaturated polycyclic hydrocarbons; calculated heats of formation by several semiempirical s.c.f. m.o. methods, Proc. Roy. Soc. (London), 1970, A315, 431. [all data]

Mukherjee, 1969
Mukherjee, T.K., Charge-transfer donor abilities of o,o'bridged biphenyls, J. Phys. Chem., 1969, 73, 3442. [all data]

Slifkin and Allison, 1967
Slifkin, M.A.; Allison, A.C., Measurement of ionization potentials from contact charge transfer spectra, Nature, 1967, 215, 949. [all data]

Ruscic, Kovac, et al., 1978
Ruscic, B.; Kovac, B.; Klasinc, L.; Gusten, H., Photoelectron spectroscopy of J. Heterocycl. Chem.. Fluorene analogues, Z. Naturforsch. A:, 1978, 33, 1006. [all data]

Maier and Turner, 1972
Maier, J.P.; Turner, D.W., Steric inhibition of resonance studied by molecular photoelectron spectroscopy. Part I. Biphenyls, Faraday Discuss. Chem. Soc., 1972, 54, 149. [all data]

Rapp, Staab, et al., 1970
Rapp, U.; Staab, H.A.; Wunsche, C., Skelettumlagerungen unter Elektronenbeschuss-IV: zur Struktur der C13H9- und C12H9N-Ionen bei Benzylidenaminobenztriazolen, Org. Mass Spectrom., 1970, 3, 45. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References