Benzene, 1,3-dimethyl-2-nitro-
- Formula: C8H9NO2
- Molecular weight: 151.1626
- IUPAC Standard InChIKey: HDFQKJQEWGVKCQ-UHFFFAOYSA-N
- CAS Registry Number: 81-20-9
- Chemical structure:
This structure is also available as a 2d Mol file - Other names: m-Xylene, 2-nitro-; 1,3-Dimethyl-2-nitrobenzene; 2-Nitro-m-xylene; 2,6-Dimethylnitrobenzene; 2-Nitro-1,3-dimethylbenzene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 8.6 ± 1.6 | kJ/mol | Ccb | Acree, Tucker, et al., 1993 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -50.8 ± 1.3 | kJ/mol | Ccb | Acree, Tucker, et al., 1993 | |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -4383.5 ± 0.7 | kJ/mol | Ccb | Acree, Tucker, et al., 1993 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tfus | 288. | K | N/A | Witschonke, 1954 | Uncertainty assigned by TRC = 0.4 K; TRC |
Tfus | 288.55 | K | N/A | Witschonke, 1954 | Uncertainty assigned by TRC = 0.3 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 57.5 ± 0.8 | kJ/mol | N/A | Verevkin and Heintz, 2000 | AC |
ΔvapH° | 59.4 ± 0.9 | kJ/mol | C | Acree, Tucker, et al., 1993 | ALS |
Reduced pressure boiling point
Tboil (K) | Pressure (bar) | Reference | Comment |
---|---|---|---|
498.2 | 0.992 | Weast and Grasselli, 1989 | BS |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
57.2 ± 0.8 | 303. | GS | Verevkin and Heintz, 2000 | Based on data from 284. to 323. K.; AC |
49.7 | 388. | A | Stephenson and Malanowski, 1987 | Based on data from 373. to 498. K.; AC |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
B - John E. Bartmess
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.811 ± 0.048 | IMRE | Fukuda and McIver, 1985 | ΔGea(355 K) = -18.3 kcal/mol; ΔSea =-1.1, est. from data in Chowdhury, Heinis, et al., 1986; B |
0.742 ± 0.087 | IMRE | Huh, Kang, et al., 1999 | ΔG(EA) 343K; anchored to ΔG value. Including anchor ΔS, EA is ca. 0.4 kcal/mol more bound.; B |
<2.610 ± 0.050 | PD | Mock and Grimsrud, 1989 | B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.17 ± 0.015 | PE | Kobayashi and Nagakura, 1972 | LLK |
9.17 | PE | Kobayashi and Nagakura, 1974 | Vertical value; LLK |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Acree, Tucker, et al., 1993
Acree, W.E., Jr.; Tucker, S.A.; Pilcher, G.; Chowdhary, A.; Ribeiro da Silva, M.D.M.; Monte, M.J.S.,
Enthalpies of combustion of 2,2',4,4',6,6'-hexamethylazobenzene-N,N-dioxide, 2,2',6,6'-tetramethylazobenzene-N,N-dioxide, 2,4,6-trimethylnitrobenzene, and 2,6-dimethyl-nitrobenzene: the dissociation enthalpies of the N=N and N-O bonds,
J. Chem. Thermodyn., 1993, 25, 1253-1261. [all data]
Witschonke, 1954
Witschonke, C.R.,
Freezing point and purity data for some organic compounds,
Anal. Chem., 1954, 26, 562-4. [all data]
Verevkin and Heintz, 2000
Verevkin, Sergey P.; Heintz, Andreas,
Thermochemistry of substituted benzenes: quantification of ortho-, para-, meta-, and buttress interactions in alkyl-substituted nitrobenzenes,
The Journal of Chemical Thermodynamics, 2000, 32, 9, 1169-1182, https://doi.org/10.1006/jcht.2000.0589
. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Fukuda and McIver, 1985
Fukuda, E.K.; McIver, R.T., Jr.,
Relative electron affinities of substituted benzophenones, nitrobenzenes, and quinones. [Anchored to EA(SO2) from 74CEL/BEN],
J. Am. Chem. Soc., 1985, 107, 2291. [all data]
Chowdhury, Heinis, et al., 1986
Chowdhury, S.; Heinis, T.; Grimsrud, E.P.; Kebarle, P.,
Entropy Changes and Electron Affinities from Gas-Phase Electron Transfer Equilibria: A- + B = A + B-,
J. Phys. Chem., 1986, 90, 12, 2747, https://doi.org/10.1021/j100403a037
. [all data]
Huh, Kang, et al., 1999
Huh, C.; Kang, C.H.; Lee, H.W.; Nakamura, H.; Mishima, M.; Tsuno, Y.; Yamataka, H.,
Thermodynamic stabilities and resonance demand of aromatic radical anions in the gas phase,
Bull. Chem. Soc. Japan, 1999, 72, 5, 1083-1091, https://doi.org/10.1246/bcsj.72.1083
. [all data]
Mock and Grimsrud, 1989
Mock, R.S.; Grimsrud, E.P.,
Gas-Phase Electron Photodetachment Spectroscopy of the Molecular Anions of Nitroaromatic Hydrocarbons at Atmospheric Pressure,
J. Am. Chem. Soc., 1989, 111, 8, 2861, https://doi.org/10.1021/ja00190a020
. [all data]
Kobayashi and Nagakura, 1972
Kobayashi, T.; Nagakura, S.,
Photoelectron spectra of nitro-compounds,
Chem. Lett., 1972, 903. [all data]
Kobayashi and Nagakura, 1974
Kobayashi, T.; Nagakura, S.,
Photoelectron spectra of substituted benzenes,
Bull. Chem. Soc. Jpn., 1974, 47, 2563. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References
- Symbols used in this document:
EA Electron affinity Tboil Boiling point Tfus Fusion (melting) point ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.